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Abstract  
It is well-known that breast tumors exhibit different expression patterns that can be used to 
assign intrinsic subtypes – the PAM50 assay, for example, categorizes tumors into: Luminal A, 
Luminal B, HER2-enriched and Basal-like – yet tumors are often more complex than 
categorization can describe. We used 911 sporadic breast tumors to reparameterize expression 
from the PAM50 genes to five orthogonal tumor dimensions using principal components (PC). 
Three dimensions captured intrinsic subtype, two dimensions were novel, and all replicated in 
945 TCGA tumors. By definition dimensions are independent, an important attribute for 
inclusion in downstream studies exploring effects of tumor diversity. One application where 
tumor subtyping has failed to provide impact is susceptibility genetics. Germline genetic 
heterogeneity reduces power for gene-finding. The identification of heritable tumor 
characteristics has potential to increase homogeneity. We compared 238 breast tumors from 
high-risk pedigrees not attributable to BRCA1 or BRCA2 to 911 sporadic breast tumors. Two PC 
dimensions were significantly enriched in the pedigrees (intrinsic subtypes were not). We 
performed proof-of-concept gene-mapping in one enriched pedigree and identified a 0.5 Mb 
genomewide significant region at 12q15 that segregated to the 8 breast cancer cases with the 
most extreme PC tumors through 32 meioses (p=2.6×10-8). In conclusion, our study: suggests a 
new approach to describe tumor diversity; supports the hypothesis that tumor characteristics are 
heritable providing new avenues for germline studies; and proposes a new breast cancer locus. 
Reparameterization of expression patterns may similarly inform other studies attempting to 
model the effects of tumor heterogeneity.  
 

Introduction 
The discovery of distinctive gene expression patterns(1) and breast tumor intrinsic subtypes 
(Luminal A, Luminal B, HER2-enriched, and Basal-like) have illustrated different paths to 
tumorigenesis and associations with clinical endpoints(2,3). These landmark studies underscored 
expression as an important attribute of a tumor, with clinical relevance. However, categorization 
of tumors in to mutually excusive intrinsic subtype based on similarity to archetypal tumors may 
be an oversimplistic use of these gene expression patterns. Profiles often exhibit various aspects 
that resemble different archetypal subtypes, and this admixture is lost in the current end-use of 
gene features. Here we revisit how to present expression data from selected features (i.e. genes 
previously defined as classifiers) for more flexible end-uses of these important discriminators. 
Improved extraction of expression variation from feature sets optimizes the potential to advance 
our understanding of tumor diversity and its usage across diverse domains, such as gene 
mapping, prediction and treatment. 
 
The high-risk pedigree design has been instrumental in the mapping and discovery of germline 
susceptibility genes for breast cancer(4,5). Critical to success is an informative phenotype. Power 
is optimized for phenotypes where the underlying genetics are homogeneous. A focus on early 
onset disease led to evidence for the high penetrance genes BRCA1 and BRCA2(6,7). However, 
beyond these early successes, little progress has been made with pedigree-based gene-mapping 
for pedigrees not attributable to BRCA1 or BRCA2 (non-BRCA1/2); genetic heterogeneity 
remains a major obstacle. A ‘same-gene-same-molecular-subtype’ hypothesis is supported by the 
fact that BRCA1 tumors have distinct expression profiles(8) and are most often Basal-like(9). 
Further, small non-BRCA1/2 family studies (18 tumors in 8 families(10), and 23 tumors in 11 
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families(11)) observed some tumor subtype patterning consistent with an ability to partition non-
BRCA1/2 tumors. However, definitive evidence for this hypothesis remain to be defined. To our 
knowledge, here we present the largest tumor study in non-BRCA1/2 families (238 tumors in 11 
pedigrees). We use the PAM50(12) for gene expression and explore whether categorical intrinsic 
subtypes or reparameterized tumor expression dimensions are enriched in pedigrees. Under the 
‘same-gene-same-molecular-subtype’ hypothesis such tumor phenotypes would reflect inherited 
susceptibility and be powerful for gene mapping. 

Materials and Methods 
Population-based tumors: the LACE and Pathways (LACE/Pathways) Studies 
The Life After Cancer Epidemiology (LACE) and Pathways Studies are prospective cohort 
studies of breast cancer prognosis(13,14) Briefly, in the LACE Study, women were enrolled at 
least 6 months after diagnosis with Stage I-IIIb breast cancer, with baseline data collection in 
2000. In the Pathways Study, 4,505 women at all stages of breast cancer were enrolled between 
2006 and 2013, on average about two months after diagnosis. In these studies, most or all women 
were diagnosed with breast cancer in the Kaiser Permanente Northern California healthcare 
system; a small proportion of women in the LACE Study were also enrolled in the state of Utah. 
Both cohorts were sampled as broadly representative of breast cancers in the general population 
and participants were enrolled without regard to family history of cancer. A stratified random 
sample from the combined LACE/Pathways cohorts was selected for acquisition of primary 
tumor punches from FFPE blocks(15). Common hormone receptor positive, HER2-negative 
breast cancers, by immunohistochemistry subtypes, were sampled at a lower frequency. In this 
study, expression data for tumors from the 911 Caucasian women was used (selected to match 
the ethnicity in the Utah pedigrees). Survey weights were provided to address the decreased 
sampling rate of certain immunohistochemistry subtypes.  
 
Gene expression data was generated using the PAM50 RT-qPCR research assay(12) in the 
Bernard Lab at the Huntsman Cancer Institute(15). For each tumor sample a calibrated log-
expression ratio was produced for each gene, producing an expression matrix. Centroid-based 
algorithms were used to generate quantitative normalized subtype scores for each of the four 
clinical subtypes plus a subtype characteristic of normal tissue (“Normal-like”). These subtype 
scores represent the correlation with “prototypic” breast tumors for each of the subtypes. As per 
standard protocol, each tumor was categorized according to its maximal subtype score. Each 
tumor was additionally assigned quantitative proliferation, progesterone receptor (PGR), 
estrogen receptor (ESR) and ERRB2 expression scores(16). 
 
Derivation of expression dimensions using Principal Component (PC) Analysis 
To explore alternate representation of tumor expression in the PAM50 genes, we used principal 
component (PC) analysis to identify tumor expression dimensions that explained the majority of 
variance. Principal components analysis was performed on the PAM50 expression matrix of the 
911 population tumors using core packages of R version 3.1.1. To address the stratified sampling 
of the LACE/Pathways tumors, a sampling strategy incorporating survey weights was used. A 
weighted random sample with replacement to the correct size (N=911) was performed prior to 
PC analysis. This weighting procedure was repeated 10,000 times and the resulting PCs from 
each iteration were aligned as necessary, then averaged and centered. Each PC is a linear 
combination of the gene expression across the 50 genes, and can be utilized as a quantitative 
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variable. Stacked intrinsic-subtype-specific histograms were used to explore patterns between 
each quantitative PC and the categorical intrinsic subtypes. Kendall’s tau coefficient was used to 
quantify the correlation of each PC to the PAM50 quantitative scores for proliferation, PGR, 
ESR and ERBB2 expression.  
 
Replication in the The Cancer Genome Atlas (TCGA) data.  
The TCGA breast tumor expression data was used as a replication study for the established 
dimensions in the LACE/Pathways data. We used RNA sequencing data for 745 breast tumors 
from Caucasian women in the TCGA Breast Invasive Carcinoma project. Standardized FPKM 
values for RNA sequencing transcriptome data and intrinsic subtype were downloaded from the 
National Cancer Institute GDC portal. The PC rotation matrix derived from the LACE/Pathways 
data was applied to log-transformed standardized FPKM expression values to establish the 
defined PC dimensions in the TCGA data. Similarly, stacked intrinsic-subtype-specific 
histograms were generated. Further, we investigated the possibility that novel PC dimensions 
were representative of single genes elsewhere in the genome using comparisons of PC variables 
and individual genes across the genome using Pearson product moment (�).  
 

High-risk breast cancer pedigrees: Identification, selection and acquisition of materials  
High-risk breast cancer pedigrees were identified in the Utah Population Database (UPDB) 
through record linkage of a 16-generation genealogy and statewide cancer records from the Utah 
Cancer Registry (UCR). High-risk pedigrees were defined based on a statistical excess of breast 
cancer (p<0.05; example Figure 1a). Pedigrees known to be attributable to BRCA1/2 from 
previous Utah studies (screen positive or linked to chromosomes 17q21 or 13q13) were removed 
from consideration. Pedigrees with fewer than 15 meioses between cases were also removed as 
these lack power for gene-finding(17). Record linkage between the UPDB and electronic 
medical records in the University of Utah and Intermountain Healthcare systems allowed 
identification of tumor blocks. Twenty-five non-BRCA1/2 extended high-risk pedigrees were 
identified, each with a minimum of 15 available tumors (Table 1). Matched tumor and grossly 
uninvolved (GU) formalin-fixed paraffin-embedded (FFPE) breast tissue blocks were retrieved 
for pathological review and acquisition of tumor punches (ideal: 4×1.5 mm tumor punches; 
minimum 1 punch) and GU scrolls (ideal: 7×15 µm full face GU scrolls; minimum 4 scrolls) was 
performed. This resulted in 391 quality-controlled paired tumor-GU tissue samples obtained 
from the Intermountain BioRepository (N=354) and the University of Utah Department of 
Pathology (N=37). In parallel, living breast cancer cases within the 25 high-risk pedigrees were 
invited to participate, including a blood draw. Eleven high-risk pedigrees contained the vast 
majority of the tissue samples (N=245). These 11 most informative pedigrees were the focus of 
this study. Nucleic acid extraction was performed as described previously(16). After quality 
control, 238 breast cancer cases had both quality controlled tumor RNA and germline DNA 
available (45 blood-derived, 1 from saliva, the remaining from GU breast tissue). All women 
were Caucasian. Ethical approvals for the study were governed by IRBs at the University of Utah 
and Intermountain Healthcare. 
 

PAM50 gene expression in high-risk pedigrees and comparison to population tumors 
Parallel to the tumors from the LACE/Pathways studies, expression data for the 238 tumors in 
the 11 non-BRCA1/2 high-risk pedigrees was also generated using the PAM50 RT-qPCR 
research assay in the Bernard Lab at the Huntsman Cancer Institute (example of  Figure 1b). 
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Intrinsic subtype and proliferation, PGR, ESR and ERRB2 expression scores were assigned as 
per standard protocol. Principal component variables, as defined in the LACE/Pathways 
population data, were used to generate PC scores (dimensions) for high-risk pedigree tumors.  
 
Under the null hypothesis that germline genetics do not influence tumor expression, tumors in 
the pedigrees are independent and the patterns observed should match distributions from the 
general population. Rejection of the null is consistent with a role for germline variants in tumor 
expression, and provides potential heritable expression phenotypes. The distribution of intrinsic 
subtypes for the LACE/Pathways data, corrected for the stratified sampling criteria, has 
previously been determined(15). Differences in the distribution of intrinsic subtypes between 
pedigree and LACE/Pathways tumors was evaluated using a chi-squared goodness of fit test. 
Differences in quantitative PC scores between pedigree and population tumors was determined 
using a weighted t-test to account for the LACE/Pathways sampling weights. For bi-modal PCs a 
likelihood ratio test of proportions was implemented. Tests were repeated for each of the 11 
pedigrees separately, with a Bonferroni correction applied to account multiple testing 
(�=0.0045).  
 
Proof-of-concept: Shared Genomic Segment (SGS) with novel PC dimensions 
We performed SGS gene mapping in one Utah high-risk pedigree as a case-study to explore the 
utility of potential novel heritable dimensions. The pedigree was selected based on harboring 
tumors with PC dimensions significantly different than that expected. SGS analysis requires 
high-density single nucleotide polymorphism (SNP) data. We used the OmniExpress high-
density SNP array with genoptyes called using standard Illumina protocols. SNP quality control 
included: duplicate check, sex check, SNP call-rate (95%), sample call rate (90%, more liberal 
due to the FFPE DNA), and failure of Hardy-Weinberg equilibrium (p≤1×10-5). SGS analysis 
identifies statistically significant chromosomal regions shared by multiple, distant relatives. It is 
based on evaluating identity-by-state (IBS) sharing at consecutive SNP loci, with segregation 
from a common ancestor implied if the observed sharing is significantly longer than expected by 
chance(17,18). The method was developed specifically for extended pedigrees, with power 
gained from the unlikely event that long segments are inherited across a large number of meioses 
by chance(17). Statistical significance for an SGS chromosomal region is determined empirically 
using a gene-drop approach. Pairs of haplotypes are randomly assigned to pedigree founders 
according to the haplotype distribution. Mendelian segregation and recombination are simulated 
to generate genotypes for all pedigree members. 1000Genomes Project(19) genoptye data were 
used to estimate a graphical model for linkage disequilibrium (LD)(20), providing a probability 
distribution of chromosome-wide haplotypes in the population. The Rutgers genetic map(21) was 
used for a genetic map for recombination, with interpolation based on physical base pair position 
for SNPs not represented. Once the gene-drop is complete, simulated SNP genotypes for the 
individuals of interest are used to determine chance sharing. The gene-drop procedure is repeated 
tens of millions of times to estimate the significance of the observed sharing. We considered 
tumors to be “PC-extreme” if they were above the 90th population percentile.  We performed 
genomewide SGS analyses iteratively on ordered subsets of breast cancer cases, beginning with 
those with the two most extreme PC values, expanding one case at a time, and stopping when all 
PC-extreme tumors had been considered.  Genomewide significance thresholds for SGS that 
account for multiple testing (all subsets and all chromosomes) have been described 
previously(22). Briefly, –log10 p-values for all chromosomes and across all subsets follows a 
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gamma distribution, with parameters that vary based on the number of cases and the structure of 
a pedigree. Based on the assumption that the vast majority of all sharing in a genome is under the 
null, parameters for the gamma distribution can be estimated from the real data and pedigree 
structure. Pedigree-specific genomewide significance thresholds are then derived from the 
appropriate gamma distribution using the theory of large deviations. 
  
Results  
Novel breast tumor dimensions 
From the 911 population tumors, PC analysis identified five PCs that accounted for 68% of the 
total expression variance (30.5%, 18.9%, 10.2%, 5.3%, 3.2% explained by PCs 1-5 respectively). 
Components beyond PC5 explained diminishing amounts of variance. The relationship between 
PCs 1-5 and common intrinsic subtypes is illustrated in Figure 2 and gene coefficients 
(eigenvectors) are shown in Supplemental Table 1 (S1 Table).  
 
PC1 appears to represent ER signaling and concurrently, in the opposing direction, proliferation 
(major coefficients for PC1 include PGR, ESR1, NAT1, FOXA1;  Kendall’s tau with 
proliferation: 0.65, S1 Figure). Based on the stacked histograms (Figure 2a), PC1 clearly 
delineates Basal-like from Luminal A tumors. PC2 includes strong coefficients for cytokeratins 
KRT5, KRT14 and KRT17, as well as other basal markers (SFRP1 and MIA) and differentiates 
Basal-like from Luminal B tumors (Figure 2a). PC4 is the only component with a large 
coefficient for ERBB2, and contains substantial coefficients for growth factor genes (EGFR, 
FGFR4 and GRB7). As expected, PC4 correlates well with the ERBB2 score (Kendall’s tau: 
0.55, S2 Figure), and differentiates HER2-enriched tumors (Figure 2a). Together, PC1, PC2 and 
PC4 successfully recapitulate the 4 most common intrinsic subtypes (Figure 3).  
 
Dimensions PC3 and PC5 were novel. They were not associated with intrinsic subtypes (Figure 
2b), nor were they highly correlated with PAM50 proliferation, PGR, ESR or ERBB2 scores. A 
notable characteristic for PC3 was that gene coefficients for basal cytokeratins were strong, but 
co-expressed with ER-regulated genes (atypical for any intrinsic subtype). PC5 also exhibited 
coefficients for KRT17 and ER-regulated gene expression in the same direction, but otherwise 
was most similar to PC4, including appreciable coefficients for EGFR, FGFR4, and GRB7.  
 
Despite extensive differences in expression technology, all PCs replicated in the TCGA RNA 
sequencing data (S3 Figure, S4 Figure), confirming the PC dimensions are robust and do not 
suffer unduly from over-fitting. In particular, the TCGA data replicated the novel dimensions 
PC3 and PC5. To explore whether these novel dimensions were acting as proxies for other genes, 
correlations between the TCGA PC3 and PC5 scores and gene expression for each of the other 
genes in the transcriptome were evaluated. The distribution of these correlations was Gaussian 
with no outliers for both PC3 and PC5. The three most highly correlated genes with PC3 score 
were KRT14 (�=0.57), KRT17 (�=0.57) and KRT5 (�=0.55), reflecting PAM50 genes which 
were among the highest-ranked coefficients in the PC3 eigenvector. The most highly correlated 
PAM50 gene with PC5 score was MMP11 (�=0.76) which is the highest rank coefficient in the 
PC5 eigenvector. Given no individual genes beyond those in the PAM50 correlated highly with 
either PC3 or PC5, these novel dimensions are more likely representative of a complex/pathway 
of multiple aberrantly expressed genes. 
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Enrichment of tumor dimensions PC3 and PC5 in high-risk pedigrees 
Pedigrees were not homogeneous by intrinsic subtype (Table 1, Figure 1b), nor were pedigrees 
significantly increased for any subtype after controlling for multiple testing. However, we did 
detect highly significant differences between the high-risk pedigree and the population tumors in 
dimensions PC3 (p<1×10-12) and PC5 (p=7.6×10-8). Furthermore, 6 pedigrees were individually 
significantly different from the general population for either PC3 and/or PC5 (Table 2). The 
significant elevation of PC3 and PC5 scores in high-risk pedigrees makes these excellent 
phenotypes to investigate for shared inherited susceptibility. 

 
Shared Genomic Segment (SGS) analysis 
As a pedigree-specific set, breast tumors in pedigree 1817 had significantly higher values for 
dimensions PC3 (p=6×10-4) and PC5 (p=0.013) than the population tumors (Table 2). Hence, 
1817 was selected as a pedigree case-study to explore the utility of PC3 and PC5 for gene 
mapping. A total set of 15 women had tumors that were extreme for either PC3, PC5, or both 
(above the 90th population percentile for the dimension).  Germline DNA was available for all 15 
women, either from peripheral blood or from GU breast tissue, and were germline SNP 
genotyped: 4 women whose tumors were extreme for both PC3 and PC5; 6 women whose 
tumors were extreme for only PC3; and 5 women whose tumors were extreme for only PC5. 
After quality control, 571,489 SNPs in 14 women were available for SGS analysis. The nine 
PC3-extreme breast cancer cases with SNP data were separated by 36 meioses, and the nine 
PC5-extreme breast cancer cases were separated by 43 meioses (Figure 1b). Ordered subsets for 
both PC dimensions were analyzed across the genome. Genomewide significance thresholds of 
5.0×10-7 and 5.9×10-7, were established for PC3 and PC5 respectively. 
 
One genomewide significant 0.5 Mb region (70.3-70.8 Mb, hg18) was identified for the PC3-
extreme tumors at chromosome 12q15 (p=2.6×10-8, LOD equivalent=6.4). No genomewide 
significant regions were found for the PC5-extreme analysis. The PC3 12q15 locus was shared 
by the 8 women with the most extreme PC3 tumors (all above the 95th percentile) and was 
inherited through 32 meioses. Only three genes reside in the SGS region: CNOT2 (CCR4-NOT 
Transcription Complex Subunit 2), KCNMB4 (Potassium Calcium-Activated Channel Subfamily 
M Regulatory Beta Subunit 4), and part of MYRFL (Myelin Regulatory Factor-Like). Notably, 
the gene CNOT2 is a subunit of the CCR4-NOT complex, a global transcriptional 
regulator(23,24) involved in cell growth and survival(25,26). Post-hoc inspection of the PC3-
extreme tumor breast cancer cases sharing the 12q15 region did not reveal any previously 
suggested characteristics that alternatively could have been used to identify this subset. Cases did 
not cluster in particular branches of the pedigree (Figure 1b), are not homogeneous for intrinsic 
subtype (as previously noted), and do not share similar ages at diagnosis. 
 
Discussion 
The PAM50 gene expression assay was designed for molecular subtyping breast tumors into 
categorical intrinsic subtypes(12). We revisited use of these 50 gene features, defined an 
alternate parameterization via principal components, and identified 5 PC expression dimensions. 
Two of 5 expression dimensions within the PAM50 genes (PC3 and PC5) are previously 
unrecognized tumor characteristics and are independent of intrinsic subtypes. Key genes driving 
these new dimensions are also those important in architypal intrinsic types, but with atypical co-
expression. Novel dimension PC3 includes substantial coefficients for ER-regulated genes and 
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basal cytokeratin genes (KRT5, KRT14 and KRT17) acting in the same direction. Luminal breast 
cancers are uniformly ER positive, but express cytokeratins 8 and 18(27). Whereas, Basal-like 
tumors are ER negative and express cytokeratins 5, 14, 17(27,28). Hence, PC3-extreme (high) 
tumors are a mix: luminal tumors that also express basal cytokeratins. We note myoepithelial 
cells comprising “normal” ducts also express basal cytokeratins, so this signature is also evident 
in the Normal-like subtype (Figure 2a). Proliferative tumors do not usually exhibit normal stroma 
contamination and basal cytokeratins are therefore an uncharacteristic feature in Luminal B and 
HER2-enriched tumors, which were included in the PC3-extreme tumors. This suggests the basal 
cytokeratin expression comes from the ER positive tumor epithelial cells, rather than normal 
stroma contamination; however, further investigation is necessary to confirm this atypical 
luminal tumor expression of basal cytokeratins.     
 
While comparisons of high-risk pedigree and population tumors did not support a ‘same-gene-
same-intrinsic-subtype’ hypothesis, a ‘same-gene-same-tumor-dimension’ hypothesis was 
supported. Although not explicitly shown here, it is highly likely that PC, which clearly 
differentiates Basal-like tumors in its extreme tail (S1 Figure) would be significantly enriched in 
BRCA1 pedigrees. Here, novel breast tumor dimensions, PC3 and PC5, were found to be 
significantly enriched in non-BRCA1/2 high-risk pedigrees. This provides potential new heritable 
breast cancer phenotypes and new opportunities to identify genetic susceptibility loci through 
reduced heterogeneity and increased statistical power. Consistent with this hypothesis, we 
presented a proof-of-concept gene-mapping case-study using PC3-extreme tumors in one high-
risk pedigree which identified a genomewide significant 0.5 Mb region at 12q15 that inherited to 
the 8 most PC3-extreme breast cancer cases across 32 meioses (p=2.8×10-8). Of the three genes 
residing in the 0.5 Mb region, CNOT2 is a compelling candidate because of its role as a 
regulatory protein of the CCR4 (carbon catabolite repressor-4)-NOT (negative on TATA) 
complex, which functions as a master regulator of transcription, translation and mRNA 
stability(29,30). CCR4-NOT and CNOT2 have been demonstrated to function in the regulation of 
DNA damage response, cell cycle progression, DNA replication stress response, and control of 
cell viability(26,31-33). A transcriptional module of CNOT2 has also been correlated with 
heritable susceptibility of metastatic progression in a mouse model of breast cancer. Previously 
direct involvement of CNOT2 in metastasis has been demonstrated; knockdown of CNOT2 
enhanced and overexpression of CNOT2 attenuated lung metastasis of mouse mammary tumor 
cells(25). An attractive possibility is that a germline risk modifies CNOT2 expression, leading to 
dysregulation of mechanisms controlling cell growth and DNA damage repair. The natural next 
step will be to determine specific genetic variants in our 12q15 locus and assess effect on 
CNOT2. 
 
Beyond our application in gene-mapping, a PC dimension approach to reparameterize expression 
of pre-selected gene features may have utility in other domains. Principal components are 
orthogonal measures, providing independent variables for multi-variate modeling. This 
flexibility has the potential for increased power over a single variable categorical approach by 
allowing multiple expression dimensions to be modeled simultaneously. In particular, other 
study designs using the PAM50 expression for tumor characterization can immediately explore 
the PCs described here proving additional opportunities to identify novel clinical or therapeutic 
associations. Furthermore, the deeper appreciation of the gene expression dimensions of breast 
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tumors uncovered here may be useful in illuminating functionally important tumor pathways, or 
particular tumor evolutions.  
 
In summary, we have revisited interpreatation of PAM50 gene expression, identified and 
replicated 5 orthogonal PC dimensions, and discovered two novel breast tumor dimensions with 
significant evidence for underlying genetic heritability. Based on one of these novel tumor 
dimensions, we have mapped a genomewide significant breast cancer locus at 12q15 and present 
a compelling breast cancer susceptibility candidate gene, CNOT2. The strong statistical 
significance achieved by the mapping of this new breast cancer susceptibility locus harkens back 
to the era of pedigree gene-mapping successes. These novel tumor dimensions may, indeed, 
reduce germline genetic heterogeneity and hold promise for a new wave of susceptibility gene 
discovery in breast cancer. Furthermore, the appreciation of all five expression dimensions from 
the PAM50 assay lends additional informative variables that can be assessed immediately, with 
potential for new discoveries in other study designs where molecular phenotypes are important, 
such as, treatment response and clinical outcome studies.  
 
Data availability 
Pedigree expression data referenced in this study will be available in the Gene Expression 
Omnibus database. TCGA expression data is available from the NCA Genomic Data Commons 
Data Portal (Project ID: TCGA-BRCA). 
 
Computer code 
The software used for SGS analysis is available at https://gitlab.com/camplab/sgs and 
https://gitlab.com/camplab/jpsgcs.  
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Figure 1. Example Utah high-risk breast cancer pedigree 1817. a. Confirmed and sampled breast 
cancer cases are indicated in black (55 sampled out of 138 total confirmed UCR cases). Star, 
triangle and hexagon symbols indicate pedigree branches. b. shows only those cases from (a) 
with tumor expression data available and indicates PAM50 intrinsic subtype by color. Cases 
whose tumors are extreme for PC3 are indicated by ‘3’; extreme for PC5 are indicated by ‘5’. c. 
shows only the PC3-extreme cases from (b). A ‘+’ indicates those cases that share the 
genomewide significant region at 12q15.  
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Figure 2. Distribution of PC scores by intrinsic subtype in LACE/Pathways.  a. PC1, PC2 and 
PC4 capture key features of intrinsic subtypes. PC1 illustrates proliferation and ER signaling, 
best differentiating Basal-like from Luminal A tumors. PC2 includes a strong signal from basal 
cytokeratins that clearly differentiates Basal-like from Luminal B.  PC4 includes a strong signal 
from ERBB2 and differentiates HER2-enriched tumors. Together these 3 dimensions can 
recapitulate intrinsic subtype clusters.  b. PC3 and PC5 are novel and are not associated with 
intrinsic subtype.  

 
Figure 3.  PC1,  PC2, and PC4 combined recapitulate PAM50 intrinsic subtypes. 
 
Tables 
Table 1: Summary of the 11 high-risk Utah pedigrees  
Tumor count by intrinsic subtype per pedigree. 

 PAM50 Intrinsic Subtype 

Pedigree Familial Female Tumor Basal HER2- Luminal Luminal Normal-
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risk  
p-value 

BrCa * -like enriched B A like 

1800 0.00030 66 20 1 5 6 6 2 
1801 0.04390 57 17 0 4 4 9 0 
1808 0.03432 112 24 4 2 6 12 0 
1809 0.04140 50 15 2 6 2 4 1 
1812 0.01615 43 17 2 1 6 7 1 
1817 0.00709 138 35 4 4 10 15 2 
1818 0.00786 111 20 2 2 2 12 2 
1819 0.04812 114 26 2 2 7 15 0 
1820 0.01195 68 20 2 3 6 9 0 
1821 0.01808 81 18 4 1 3 9 1 
1822 0.00909 159 31 1 5 9 14 2 

*Tumor samples with PAM50 data that passed QC. Three tumors belonged to two pedigrees and 
one tumor belonged to three pedigrees. 

 
Table 2: Results of weighted t-test of means for PC3 and PC5 
Comparison of pedigrees to the population (LACE/Pathways). Bonferroni corrected. 

PC3 PC5 
Pedigree n p t p t 

1800 20 ns 1.74 ns 1.609 
1801 17 ns 2.03 ns 2.311 
1808 24 0.0008 4.76 0.0129 3.674 
1809 15 0.0778 3.13 ns 2.468 
1812 17 ns 2.12 ns 0.305 
1817 35 0.0006 4.55 0.0133 3.508 
1818 20 0.0147 3.72 ns 0.230 
1819 26 0.0001 5.75 ns 1.437 
1820 20 ns 1.60 0.0033 4.352 
1821 18 0.1014 2.92 ns 1.735 
1822 31 0.00004 5.54 ns 0.184 
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S1 Figure. Correlation of PAM50 proliferation score with PC1 in LACE/Pathways. 

S2 Figure. Correlation of PAM50 ERBB2 score with PC4 in LACE/Pathways. 
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S3 Figure. Distribution of PC scores by intrinsic subtype replicate in TCGA expression data. a.  
PC1, PC2 and PC4 capture key features of intrinsic subtypes. b. PC3 and PC5 are independent of 
intrinsic subtype.  
 

 
S4 Figure. Intrinsic subtypes remain evident in TCGA breast tumors based on direct application 
of the PC1,  PC2, and PC4 equations (linear combinations of expression) derived from PAM50 
(LACE/Pathways) to RNAseq data from TCGA breast tumors.  
 
S1 Table. Eigenvectors and eigenvalues of principal components 1-5. 
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