
1 
 

Reverse Engineering of Trascriptional Networks Uncovers Candidate 

Master Regulators Governing Neuropathology of Schizophrenia 

 

 

Abolfazl Doostparast Torshizi1, Chris Armoskus2, Siwei Zhang3, Winton Moy3, Oleg V Evgrafov2, 

Jubao Duan3, James A Knowles2, Kai Wang1 

 

1Institute for Genomic Medicine, Columbia University, New York, New York, NY  10032, USA.  

2Zilkhe Neurogenetic Institute, University of Southern California, Los Angeles, CA 90089, USA. 

3Center for Psychiatric Genetics, North Shore University Health System and The University of 

Chicago, Evanston, IL 60201, USA. 

 

 

 

 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2017. ; https://doi.org/10.1101/133363doi: bioRxiv preprint 

https://doi.org/10.1101/133363


2 
 

Abstract 

 

Tissue-specific reverse engineering of transcriptional networks has led to groundbreaking discoveries 

uncovering underlying regulators of cellular networks in various diseases. However, whether these 

approaches can be applied to complex psychiatric diseases is largely explored, partly due to the general 

lack of appropriate cellular models for mental disorders. In this study, using a recently published high 

quality RNA-seq data on dorsolateral prefrontal cortex from 307 Schizophrenia (SCZ) patients and 245 

controls, we deconvoluted the transcriptional network aiming at the identification of master regulators 

mediating expression of a large body of genes. Together with an independent RNA-seq data on cultured 

primary neuronal cells derived from olfactory neuroepithelium from a cohort of 143 SCZ cases and 112 

controls, we identified five candidate master regulators (MRs), including TCF4, NR1H2, HDAC9, ZNF10, 

and ZNF436. TCF4 was previously identified as a SCZ susceptibility gene, but its regulatory subnetworks 

had been elusive. Other genes have not been convincingly associated with SCZ in previous studies. 

Additional analysis of predicted transcription factor binding site, ChIP-Seq data and ATAC-Seq data 

confirmed many predicted regulatory targets by the identified MRs. Our study uncovered a few candidate 

master regulators for SCZ that affects a collection of genes, and these master regulators may serve as 

therapeutic targets for intervention. 

 

 

Introduction 

 

As a debilitating neurocognitive disease, Schizophrenia (SCZ) affects almost 0.7% [1-4] of adults. 

Mostly diagnosed at the onset of adulthood, SCZ causes severe neurocognitive and neurophysiological 

dysfunctions. Despite a vast amount of research workforce, its etiology has a long way to be fully 

elucidated. Over the past decade, a considerable effort has been put in establishing genetic basis of SCZ 

to uncover risk factors as the underlying drivers of this crippling disease,  but only a fraction of these studies 

have conclusively identified some genetic risk factors such as rare copy-number variants (CNVs) [5] and 

common variants [6]. 

Thus far, post-mortem gene-expression profiling has been the back-bone of a large portion of research 

studies conducted on SCZ. This technique bears several limitations, making it challenging when 

interpreting the experimental outcomes [7-9]. There are also logistical issues collecting post-mortem brain 

tissues due to time consuming process of building brain banks where only a few portion of the tissues may 

be related to SCZ-affected people [10]. On the other hand, SCZ is a complex disorder causing genetic 

disturbances across a wide range of genes while SCZ patients have diverse genetic backgrounds and 

personality traits [11].  Given the fact that mining gene expression patterns from brain-tissue instead of 

peripheral blood is a primary means in studying transcription regulatory mechanisms, previous studies 

indicate that gene expression changes in SCZ affects multiple regions in the brain including the prefrontal 

[12, 13] and temporal cortices [14, 15] and hippocampus [16, 17].  In this regard, several points should be 

mentioned including: (1) SCZ is associated with genomic disturbances across several cortical regions 

affecting a large spectrum of genes [16]; (2) multiple cell types host transcriptome changes comprised of 

subclasses of principal neurons [18, 19], interneurons [12, 20], and olygodendrocytes [12] making any 

inference quite challenging due to the pathophysiological processes that each cell types goes through; (3) 

expression of transcripts related to the genes involved in various intracellular processes are directly 

affected in SCZ where interrelations between these transcripts  are not well-established yet.   Some of 

these transcripts include:  synaptic transmission [13, 21], energy metabolism [22, 23], immune response 

[24, 25], and inhibitory  neurotransmission [21, 28]; (4) there might  be links between  gene expression  

changes and susceptible genetic loci playing important roles in developing  SCZ while despite emerging 

empirical evidences, these links are not well-investigated yet [9, 10, 26]. Despite considerable number of 

research studies conducted on case-control gene-expression samples, a great deal of the reported findings 
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shows a small amount of overlap, though many of them share the same data sets [4].  Along with the 

instinctive limitations of microarray-based studies [27], it appears that these methods are underpowered 

to capture the subtle regulatory patterns in cell-specific studies where multiple brain regions are directly 

involved. 

Due to the complexities of the underlying signatures governing mechanistic processes in SCZ 

development, it makes perfect sense to take advantage of molecular networks to uncover such 

complexities. Molecular networks (interactome) as a harmonized orchestration of genomic interactions play 

a central role in mediating cellular processes through regulating expression of the genes or formation of 

transcriptional complexes. According to [28], cellular networks possess the scale-free property mostly 

observed in protein-protein interaction and metabolic networks [29, 30]. One of the most commonly used 

network-based representation approaches of cellular processes is co-expression networks bearing the 

scale-free property [31, 32]. Nevertheless, co-expression networks and other similar means are not 

comprehensive enough to fully recapitulate the entire underlying molecular structures affecting the disease 

phenotype. In principle, currently existing expression network analysis approaches fall into four categories 

including [28]: optimization methods [33, 34], which usually optimize the network based upon a certain 

criterion;  regression techniques [35, 36], which fit  the data to a priori  models; Multi-omics integrative  

approaches [37], and statistical methods [38]. Despite vast applicability of these sets of approaches, there 

are critical issues making them less efficient in dealing with eukaryotic organisms bearing complex cellular 

structures.  These shortcomings can be listed as follows: connecting genes having direct interactions 

leaving their mutual causal effects aside, overfitting when dealing with small number of samples, suffering 

from curse of dimensionality, and not being able to reverse-engineer the mammalian genome-wide cellular 

networks [28]. On the other hand, many of the currently existing network-based approaches are not 

context-specific leading to high false positive rates. With the emergence of information-theoretic 

deconvolution techniques initiated by Basso et al., [28] and its successful applications in a wide range of 

complex diseases such as cancer [39, 40], prostate differentiation [41], and neurodegenerative diseases 

[42], the way to infer causal relationships between transcription factors and their downstream regulon was 

paved. 

A powerful substitute to microarray technology to accurately characterize transcription at the gene level 

is RNA sequencing.  As the largest genomic data bank in brain samples obtained from autopsies of 

individuals with and without  psychiatric disorders, Common Mind Consortium (CMC) [4] has provided 

researchers with  a rich database orders of magnitude larger than the current  similar databases. In this 

study, using RNA-seq data obtained from prefrontal cortex, we will be conducting the reverse engineering 

of the regulatory processes mediating SCZ to elucidate critical Master Regulators (MRs) and to infer their 

role in orchestrating cellular transcriptional processes. The prefrontal cortex was chosen for two reasons:  

first, it controls high-level cognitive functions many of which are disturbed in SCZ; second, years of study 

point out this important region due to its abnormalities in cellular and neurochemical functions in SCZ 

sufferers. Using the reverse-engineered extracted networks, we will further analyze the activity of the 

detected MRs in developing Schizophrenia and will validate the computational results both by reviewing 

the published transcription factors (TFs) and published in-vitro experiments. Our findings of these 

experiments were then also validated using another independent RNA-seq data from Cultured primary 

Neuronal cells derived from Olfactory Neuroepithelium (CNON) of individuals with and without SCZ. 

 

Results 

 

Analysis on the CMC data sets 

The CMC data contains 15971 transcripts extracted from 552 brain samples 307 of which cases and 

245 controls. Our main goal was to reverse-engineer the transcriptional regulatory networks based on 

generated RNA-seq data to infer the MRs and their blanket of regulated targets (regulon) along with 

constructing their corresponding sub-networks. To do so, we employed ARACNe (Algorithm for 
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Reconstruction of Accurate Cellular Networks) as powerful and versatile tool to reconstructing cellular 

networks [28, 43]. In this method, first gene-gene co-regulatory patterns are identified by an information 

theoretic method called Mutual Information (MI). In the next step, the constructed networks are pruned by 

removing indirect relationships in which two genes are co-regulated through one or more intermediate 

entities. This process is performed by applying Data Processing Inequality (DPI), a well-known term in data 

transmission theory.  This allows us to observe relationships bearing significantly high probabilities of 

representing direct interactions or mediated interactions through post-transcriptional agents not being 

detected from gene expression profiles. 

The P-value threshold of 1e-08 using DPI=0.1 (as recommended in [43]) lead to a repertoire of 102473 

interactions ranging from 1 to 106 interactions for each individual transcript.  Our goal is to focus on hub 

Transcription Factor (TF) genes that will be called MRs. We curated a long list of known human TFs from 

three sources including FANTOM5 consortium [44], a curated set by Vaquerizas [45], and TRRUST  [46].  

A total of 2198 TFs were curated from these sources. Among the entire hub genes of the constructed 

network, 1466 TFs were found as hub genes. We will further focus on the TFs and their respective sub-

network topology.  TFs subnetwork is provided in Supplementary Table 1.  1466 TFs were found in the 

network which meet the ARACNe set up criteria. This subnetwork contains 24548 interactions accounting 

for almost 24% of the entire interactions in the constructed network. We annotated these transcripts to 

their genes where 57 TFs were Differentially Expressed (DE) between cases and controls at p=0.01 

(FDR<0.05). The full network on CMC data is provided in Supplementary Table 2. 

Making use of ARACNe, in addition to identifying new MRs, we also re-identified many of the TFs 

previously published in the literature. These TFs can be shortlisted as follows: JUND [47]; KCNIP3 [48]; 

LHX6 [49]; NRG1 and GSK3B [50]; NFE2 and MZF1 [51]; NPAS3 [52]; DISC1 [53, 54]. We should mention 

that the obtained MRs are the direct result of unbiased data-driven analysis of transcription data and no 

latent biological knowledge were incorporated in their acquisition. 

 

Protein Activity Analysis Using RNA-seq Data. 

 

We managed further network analysis to deeply analyze the activity of the identified MRs by taking into 

account the expression pattern of their downstream regulon through a dedicated probabilistic algorithm. 

This method exploits the regulator mode of action, the regulator-target gene interaction confidence and the 

pleiotropic features of the target regulation. We used VIPER (Virtual Inference of Protein-activity  by 

Enriched Regulon analysis)  [40]. 

We fed the output of the previous stage (ARACNe) network to VIPER in order to check whether or not 

any of the identified MRs have significant regulatory role in expression level of their downstream regulon. 

We reconstructed the network using 1466 MRs consisting 24548 interactions. One of the unrealistic 

assumptions in analyzing regulatory networks is to consider a uniform distribution of the targets as a prior 

for analyzing the regulatory effects of MRs. This is due to the fact that the degree of co-regulation in 

transcriptional networks are high and the assumption of statistical independence of gene expression is 

unrealistic. To account for these correlations between the genes, we provided a null model by using the z-

score of the gene expression signatures obtained from two-sided t-test by permuting the samples at 

random. The computational results of the ten top MRs are depicted in Figure 1. 

According to Figure 1, the first column on the left represents the expression of the regulon of the MR 

where blue means repression and red means activation. In the second column, gene symbols are 

represented. The Act and Exp columns represent the inferred activity and expression degrees of the 

identified MRs.  

 

The activity of the MRs is inferred based on the enrichment of their closet regulated targets. In order to 

find out which genes are the enriched targets in the genetic signatures i.e., the z-score previously 

computed, we employed the leading-edge analysis [55] proposed by Subramanian et al. to identify the 
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genes driving the enrichment of a gene set on the signatures based on Gene Set Enrichment Analysis 

(GSEA). Among these top MRs, all of them were captured by ARACNe as hub genes during the network 

deconvolution process. Table 1 denotes these MRs along with the number of their target genes and their 

DE p-value between cases and controls at FDR<0.05. 

According to [56, 57], significant activation of MRs based on its regulon analysis can cause confounding 

effects since many of their regulated targets might have been regulated by a bona fide activated TF. This 

phenomenon is called shadow effect. This is even more serious in transcriptional regulations because they 

are highly pleiotropic. To address this, we penalized the contribution of the pleiotropically regulated targets 

to the enrichment score. Since we had previously addressed the pleiotropic effects in network generation 

stage, we expect to observe a small number of pleiotropic connections. No shadow connections were 

observed. Further, in order to predict synergistic interactions between the regulators, we computed the 

enrichment of co-regulons. This was defined as the intersections between the targets.  Our expectation 

was that a gene expression signature is synergistically regulated by a combination of regulators when their 

corresponding co-regulons show a significantly higher enrichment on the signature than the union of the 

corresponding regulons [58]. We computed the enrichment of the co-regulons for the top 10 co-regulators 

(Figure 2). 

 

According to Figure 2, out of the top 10 co-regulating sets, 8 co-regulating sets are observed that 

significantly co-regulate their downstream targets and were identified also by VIPER. Two other transcripts 

can be observed here including ENSG00000114631 annotated to PODXL2 and ENSG00000163655 

annotated to GMPS. 

Methylation patterns of TMEM9 [59], has been reported to be associated with Parkinson’s disease 

though it has not been referred to as directly regulating SCZ. KLHL36 has been reported to be likely of 

associating with SCZ but has not been directly referred to. CRH is a protein coding gene associated with 

Alzheimer’s disease, depression, and SCZ [60, 61]. ARPP19 has been identified to be DE between two 

large SCZ cohorts associated with nerve terminal function [62]. HDAC9 plays an important role in 

transcriptional regulation, cell cycle progression and developmental events. HDAC9 is a histone 

deacetylase inhibitor that has been shown to potentiate hipocampal-dependent memory and synaptic 

plasticity leading to different neuropsychiatric conditions [63]. TCF4 is another important finding that may 

play an important role in nervous system development. It is associated with Pitt Hopkins Syndrome and 

mental retardation [64]. This gene has also been reported to host a SNP in its intron that might be 

associated with SCZ  [65-67]. SCZ has also been reported to host genetic variants contributing to SCZ 

development [6]. In the following sections, we will conduct similar network analysis and will discuss 

common findings between these two numerical experiments. 

 

Results on CNON Data 

 

The CNON data contain 23920 transcripts extracted from 255 brain samples 143 of which cases and 

112 controls. Adopting the same set up parameters, we ran ARACNe [28, 43] on the new data set and 

reverse engineered the transcriptional network. The P-value threshold of 1e-8 using DPI=0.1 (as 

recommended in [43]) lead to a repertoire of 173524 interactions ranging from 1 to 330 interactions for 

each individual transcript. The full constructed network is provided in Supplementary Table 3. Using our 

curated TF list, we observed 1836 TF nodes in the constructed network.  The subnetwork of these TFs is 

provided in Supplementary Table 4. This subnetwork accounts for 34757 interactions and covers almost 

20% of the entire significant existing interactions in the network. 

Conducting the activity analysis of the identified hub genes, VIPER was run on the constructed network. 

The top 10 MRs were obtained.  Representations of the MRs is provided in Supplementary Fig.  1.  The 

entire target genes of the five MRs in both CMC and CNON datasets are represented in Figure 3. 
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Common Findings 

 

Using the top 15 MRs identified in the CMC data (Figure 1), we checked the reverse-engineered 

network of CNON data to see if any of these MRs also act as hub genes in the CNON network. Five MRs 

were found in the CNON network including: TCF4, NR1H2, HDAC9, ZNF436, and ZNF10 having 48, 23, 

11, 38, and 14 gene targets. The entire target genes being regulated by these MRs are being listed in 

Supplementary Table 5. Overall, these five MRs regulate 102, 68, 36, 66, and 43 genes, respectively. For 

each MR, we conducted Pathway Enrichment Analysis (PEA) using WebGestalt [68]. PEA of the targets 

of TCF4 revealed the following pathways (multiple test adjusted) including: Notch signaling pathway 

(p=0.0001), ErbB signaling pathway (p=0.0009), Purine metabolism (p=0.0004), long-term depression 

(p=0.0008), circadian rhythm (p=0.001). Targets of NR1H2 were enriched in the following pathways: 

bladder cancer (p=0.0015) and pathways in cancer (p=0.0117). Chronic myeloid leukemia (p=0.00045), 

TGF-beta signaling pathway (p=0.0060), p53 signaling pathway (p=0.0040), pathways in cancer 

(p=0.0033) were observed for the targets of ZNF436. Oxidative phosphorylation (p=0.0060) and Metabolic 

pathways (p=0.0077) refer to the ZNF10 targets and finally, insulin signaling pathway (p=0.0056) and focal 

adhesion (p=0.0115) were observed for the targets of HDAC9.  

Among the identified MRs, TCF4 and NR1H2 are TFs, ZNF10 and ZNF436 are zinc finger proteins that 

may be involved in transcriptional regulation, and HDAC9 is a histone modification gene which is involved 

in peters anomaly [69] and congenital malformations [70]. In order to check whether the identified MRs are 

enriched in the promoter region of their targets, we conducted TF binding enrichment  analysis (TFBEA) 

using JASPAR [71] (Figure 4) on TCF4 and NR1H2.  First, sequence motif of these genes were extracted. 

Second, we extracted the sequence of the target genes 2000 base pairs upstream and 1000 base pairs 

downstream of their Transcription Start Sites (TSSs). The significance threshold of 0.80 was chosen on 

the relative enrichment scores of the target genes (Figure 4). To make sure that the TFBEA results are 

projecting the correct enrichment scores, for both TCF4 and NR1H2, we re-iterated the TFBEA process 

using a random list of unrelated genes which were not in their subnetworks and computed the relative 

enrichment scores. Enrichment scores for the real target genes of these MRs and the random target genes 

is provided in Figure 4. For both TCF4 and NR1H2 the enrichment scores are significantly larger than 

random enrichment scores implicating high confidence in finding correct binding positions in the target 

genes. These results will further be validated in vivo. 

Conducting two-sided t-test (FDR<01.05) between cases and controls in the CMC data, the following 

MRs were Differentially Expressed (DE) including: NR1H2 (p=0.0015), ZNF436 (p=1.67e-05), ZNF10 

(p=0.0043), and HDAC (p=1.93e-07). Also TCF4 was partially DE with p=0.0180. Looking at the target 

genes of these MRs, we note that most of the target genes are DE. 

 

expression Quantitative Trait Loci (eQTL) Analysis 

 

In order to probe the role of genetic variants on expression of the identified MRs, we analyzed the 

associations between cis and trans acting Single Nucleotide Polymorphisms (SNPs) to identify SNPs 

associated with the expression of the MRs of interest. We used the eQTL analysis results provided by 

Fromer et al [4] on the CMC data and extracted the associated SNPs for the candidate MRs. It should be 

mentioned that the eQTL analysis conducted in [4] replicates eQTLs characterized by a variety of RNA-

seq and microarray studies from different sources such as GTEx v6 [72], Harvard Brain Bank [73], 

BrainCloud [74], the National Institute  of Health (NIH)  [75], and the UK Britain  Expression Consortium 

[76]. Associated SNPs having distance over 1 Mbp from each gene were called trans-acting. The list of 

detected associations between the SNPs and the MRs is are depicted in Figure 5. The false discovery 

threshold of FDR ≤ 0.05 was applied to filter out insignificant associations. In this figure, SNPs that passed 

the FDR threshold have been marked by star sign. 

As a trans-acting SNP, rs4713722 was associated with TCF4 (p=9.04e-08). Two cis-acting SNPs were 
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significantly associated with HDAC9 including rs2528407 (p=0.00047997) and rs4413678 

(p=0.000698039).  We also identified three susceptible cis-acting loci associated with ZNF436 including 

rs11589432 (p=0.000328594), rs11588134 (p=0.000329618), and rs3795295 (p=0.000331596). No 

association had passed the FDR correction filter for NR1H2 and ZNF10. Of these SNPs, rs4413678 has 

already been captured to be associated with major depression disorder but no similar finding for the other 

SNPs were observed in the literature. A conclusion that can be made here is that the identified loci may 

have direct impact not only on their associated genes, but exert particular expression patterns on the entire 

regulon of the MRs.  

 We checked to see if the corresponding SNPs to each of the MRs were in LD. On, ZNF436, 100 

pairwise SNPs were in LD having (R2 ≥ 0.86). We then looked at the SNPs that were in LD with the 

identified significant candidate loci in this gene. The three candidate SNPs in ZNF436 were in LD having 

(R2 ≥ 0.966). In HDAC9, 150 pairs of SNPs were in LD but none of the two candidate SNPs rs2528407 

and rs4413678 were in LD with others. 

 

 

Experimental Validation 

In order to gain a deeper insight into the real impacts of the identified MRs on their regulons, we have 

conducted a series of experiments on the regulatory impacts of MRs if they bind to the putative targets. 

We first examined whether the predicted MRs bind to their regulons by using our ATAC-seq-based 

empirical TF-binding footprints (inferred by PIQ tool) data sets in iPSC-derived glutamatergic neurons. Out 

of the top 5 MRs, only TCF4 and NR1H2 are among the TFs analyzed by PIQ. Using the three sets of 

ATAC-seq footprint data derived from d30, d41 neurons, and iPS cells, we extracted the corresponding 

.BED files. All footprints have been annotated using the TF matrix with the names of different TF factors 

annotated in the .BED files. For each sample, footprints are generated using three different PIQ purity 

scores (0.7, 0.8, or 0.9; equivalent to FDR of 0.3, 0.2, or 0.1, respectively) (in an R package). The 

corresponding files are then extracted using the MR list and the peak names (and coordinates) containing 

TCF4 gene are collected as a subset of the original .BED file.  Such subsets of genomic coordination are 

then annotated using the findPeaks.pl included in the HOMER package with hg19 reference genome. 20 

target genes out of 102 regulons of TCF4 (total TCF4 targets in ATAC-seq data=3947) were validated to 

be bound by TCF4 (Fisher’s exact test P=0.175). These genes are listed in Table 2. 

To make further investigations, we downloaded the TCF4 ChIP-seq data in HEK293 cell line from 

ENCODE [77]. After retrieving the data, we annotated the data using ANNOVAR [78] to obtain the enriched 

regions by TCF4.  46 TCF4 peaks (total targets= 7008) were observed within the promoter region of the 

target genes (Fisher’s exact test P=1.702e-04) which are listed in Table 3. 

In another effort, we investigated several ChIP-seq experiments available on Cistrome.org. Two MRs 

of NR1H2 and ZNF436 were available for human subjects in blood tissue. 61 (out of 68) (P=1.42e-17, total 

target number= ~10000) and 20 (out of 66) (Fisher’s exact test P=0.124, 7582 targets) target genes were 

validated to be affected by NR1H2 and ZNF436, respectively. 
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Methods 

ARACNe network reconstruction 

 

ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks), an information-theoretic 

algorithm for inferring transcriptional interactions, was used to identify candidate transcriptional regulators 

of the transcripts annotated to genes bot in CMC and CNON data.  First, mutual interaction between a 

candidate TF( x ) and its potential target (
y

) was computed by pairwise mutual information, MI(
yx,

), 

using a Gaussian kernel estimator.  MI was thresholded based on the null-hypothesis of statistical 

independence (P<0.05, Bonferroni corrected for the number of tested pairs). Second, the constructed 

network was pruned by removing indirect interactions the data processing inequality (DPI), a property of 

the MI.  Therefore, for each (
yx,

) pair, a path through another TF( z ) was considered and every path 

pertaining the following constraint were removed (
)),(),,(min(),( yzMIzxMIyxMI 

). 

 

VIPER 

The regulon enrichment on gene expression signatures was tested by VIPER algorithm.  First, the gene 

expression signature is obtained by comparing two groups of samples representing distinctive phenotypes 

or treatments. In order to generate a quantitative measurement of difference between the groups any 

method can be used including:  fold change, Students t-test, Mann-Whitney U test, etc.  As an alternative, 

single- sample-based gene expression signatures can be obtained by comparing the expression levels of 

each feature in each sample against a set of reference samples by any suitable method, including for 

example Students t-test, Z-score transformation or fold change; or relative to the average expression level 

across all samples when clear reference samples are not available. In the next step, regulon enrichment 

on the gene expression signature can be computed using Analytic rank-based enrichment analysis (aREA) 

that will be discussed below. At the end, significance values (P-value and normalized enrichment score) 

are computed by comparing each regulon enrichment score to a null model generated by randomly and 

uniformly permuting the samples 1,000 times. 

 

Analytic rank-based enrichment analysis (aREA) 

aREA tests for a global shift in the positions of each regulon genes when projected on the rank-sorted 

gene expression signature. Following up on the work in [79, 80], we used the mean of the quantile-

transformed rank positions  as test statistic (enrichment score). The enrichment score is computed twice: 

first by a one-tail approach, based on the absolute value of the gene expression signature obtained from 

statistical t-test; and then by a two-tail approach, where the positions of the genes whose expression is 

repressed by the regulator (R) are inverted in the gene expression signature before computing the 

enrichment score. The one-tail and two-tail enrichment score estimates are integrated while weighting their 

contribution based on the estimated mode of regulation. The contribution of each target gene from a given 

regulon to the enrichment score is also weighted based on the regulator-target gene interaction confidence. 

At last, the statistical significance for the enrichment score is estimated by comparison to a null model 

generated by permuting the samples uniformly at random or by an analytic approach equivalent to shuffle 

the genes in the signatures uniformly at random.  

 

Transcription factor binding site enrichment analysis  

Human reference genome (version GRCh37.p13) was used to extract the DNA sequence around TSS 

for transcription binding enrichment analysis. We obtained the gene coordinates from Ensembl database 

and scanned 3000 upstream and 1000 downstream of the TSS. The motifs of the TFs were obtained from 

JASPAR and the extracted sequences of each target were then fed into JASPAR and analyzed versus 

their corresponding TF. JASPAR database contains Position Weight Matrices (PWM) for each TF. Then, 

using a modified Needleman-Wunsch algorithm and the corresponding PWM of the TF, input sequence is 
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scanned to check whether or not the motif is enriched in the sequence. 
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Figure 1. Virtual Inference of Protein-activity by Enriched Regulon analysis. 

 

 

 

 

Figure 2. Representation of the enrichment of co-regulons on the gene expression signatures. 
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                   (a) TCF4 target genes.                                                (b)  NR1H2 target genes. 

 

 

                  (c) ZNF436 target genes.                                   (d)  ZNF10 target genes. 

 

 

                    (e) HDAC9 target genes. 

 

Figure 3. Target genes of the five identified master regulators. 
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                             (a) TCF4 motif.                                                     (b)  NR1H2 motif. 

 

 

(c) Transcription binding enrichment scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 

               

 

 

 

 

(d)  Mutual information values 

 

                            Figure 4. Transcription binding enrichment analysis of TCF4 and NR1H2. 
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Figure 5. SNP-MR associations. 
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Table 1. Topology of the MRs in the extracted networks combining the entire case and control samples 

 Gene #Targets P-value Gene #Targets P-value 

NRSN1 25 9.5e-6 ZNF10 29 0.004276522 

ANKRD6 43 6.29e-8 TCF4 54 0.01824 

TMEM 29 0.00078 NR1H2 46 0.00149 

KLHL36 36 2.56e-5 HDAC9 26 1.93E-07 

CRH 27 5.04e-7 ZNF436 28 1.67E-05 

ARPP19 49 4.22e-9 SERTAD4 26 4.75e-5 

PSME3 28 2.43e-5 RALGAPB 48 1.45e-5 

DENND5B 32 1.23e-5    

 

 

 

Table 2. Validated TCF4 targets based on ATAC-seq experiments. 

 CDKL2 TSPAN9 CALCRL SNAI2 NPAS3 

RUNX1T1 RYK MAP2K1 MGAT4A GAB1 

SOX6 PDE4D CHRM3 CDH8 BMT2 

RBPJ GRIK1 ZBTB38 ERBB4 DACT3 

 

 

 

Table 3. Validated TCF4 targets using TCF4 ENCODE ChIP-seq data from HEK293 cell line. 

 HHIP PRICKL

E2 

SLC3A

2 

RGL1 COL2

7A1 

TSPAN9 SNAI

2 
NPAS3 FHL2 WDSU

B1 

DISC

1 

RYK NR2F2-

AS1 

ZNF

775 
CRY1 LIMCH1 PPP2R

5A 

ROR

A 

JMJD6 MGAT4

A 

GNB

1 
ARHGAP21 GAB1 TRIM2 SOX6 PDE1

0A 

PDE4D BCL

6 
SRSF6 ATXN1 CHRM

3 

TMBI

M6 

CDH8 PHF6 CFA

P97 
RBPJ ZNF608 ZEB2 NLGN

1 

KBTB

D2 

GRIK1 PDE

3A 
ZBTB38 ERBB4 LCOR POU3F3 
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