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Abstract	1	

As	single-cell	RNA	sequencing	technologies	have	rapidly	developed,	so	have	analysis	2	

methods.	Many	methods	have	been	tested,	developed	and	validated	using	simulated	3	

datasets.	Unfortunately,	current	simulations	are	often	poorly	documented,	their	4	

similarity	to	real	data	is	not	demonstrated,	or	reproducible	code	is	not	available.	5	

Here	we	present	the	Splatter	Bioconductor	package	for	simple,	reproducible	and	6	

well-documented	simulation	of	single-cell	RNA-seq	data.	Splatter	provides	an	interface	7	

to	multiple	simulation	methods	including	Splat,	our	own	simulation,	based	on	a	gamma-8	

Poisson	distribution.	Splat	can	simulate	single	populations	of	cells,	populations	with	9	

multiple	cell	types	or	differentiation	paths. 10	
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Background	13	

The	first	decade	of	next-generation	sequencing	has	seen	an	explosion	in	our	14	

understanding	of	the	genome	[1].	In	particular,	the	development	of	RNA	sequencing	15	

(RNA-seq)	has	enabled	unprecedented	insight	into	the	dynamics	of	gene	expression	[2].	16	

Researchers	now	routinely	conduct	experiments	designed	to	test	how	gene	expression	17	

is	affected	by	various	stimuli.	One	limitation	of	bulk	RNA-seq	experiments	is	that	they	18	

measure	the	average	expression	level	of	genes	across	the	many	cells	in	a	sample.	19	

However,	recent	technological	developments	have	enabled	the	extraction	and	20	

amplification	of	minute	quantities	of	RNA,	allowing	sequencing	to	be	conducted	on	the	21	

level	of	single	cells	[3].	The	increased	resolution	of	single-cell	RNA-seq	(scRNA-seq)	data	22	

has	made	a	range	of	new	analyses	possible.	23	
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As	scRNA-seq	data	has	become	available	there	has	been	a	rapid	development	of	new	1	

bioinformatics	tools	attempting	to	unlock	its	potential.	Currently	there	are	at	least	120	2	

software	packages	that	have	been	designed	specifically	for	the	analysis	of	scRNA-seq	3	

data,	the	majority	of	which	have	been	published	in	peer-reviewed	journals	or	as	4	

preprints	[4].	The	focus	of	these	tools	is	often	different	from	those	designed	for	the	5	

analysis	of	a	bulk	RNA-seq	experiment.	In	a	bulk	experiment,	the	groups	of	samples	are	6	

known	and	a	common	task	is	to	test	for	genes	that	are	differentially	expressed	(DE)	7	

between	two	or	more	groups.	In	contrast,	the	groups	in	a	single-cell	experiment	are	8	

usually	unknown	and	the	analysis	is	often	more	exploratory.	9	

Much	of	the	existing	software	focuses	on	assigning	cells	to	groups	based	on	their	10	

expression	profiles	(clustering)	before	applying	more	traditional	DE	testing.	This	11	

approach	is	taken	by	tools	such	as	SC3	[5],	CIDR	[6]	and	Seurat	[7],	and	is	appropriate	12	

for	a	sample	of	mature	cells	where	it	is	reasonable	to	expect	cells	to	have	a	particular	13	

type.	In	a	developmental	setting,	for	example,	where	stem	cells	are	differentiating	into	14	

mature	cells,	it	may	be	more	appropriate	to	order	cells	along	a	continuous	trajectory	15	

from	one	cell	type	to	another.	Tools	such	as	Monocle	[8],	CellTree	[9]	and	Sincell	[10]	16	

take	this	approach,	ordering	cells	along	a	path,	then	identifying	patterns	in	the	changes	17	

of	gene	expression	along	that	path.	18	

Another	defining	characteristic	of	scRNA-seq	data	is	its	sparsity;	typically	19	

expression	is	only	observed	for	relatively	few	genes	in	each	cell.	The	observed	zero	20	

counts	have	both	biological	(different	cell	types	express	different	genes)	and	technical	21	

(an	expressed	RNA	molecule	might	not	be	captured)	causes,	with	technical	zeros	often	22	

referred	to	as	“dropout”.		Some	analysis	methods	(ZIFA	[11],	MAST	[12],	ZINB-WaVE	23	

[13])	incorporate	dropout	into	their	models	while	others	(MAGIC	[14],	SAVER	[15],	24	

scImpute	[16])	attempt	to	infer	what	the	true	expression	levels	should	be.		25	
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Existing	scRNA-seq	analysis	packages,	and	any	new	methods	that	are	being	1	

developed,	should	demonstrate	two	properties:	first	that	they	can	do	what	they	claim	to	2	

do,	whether	that	is	clustering,	lineage	tracing,	differential	expression	testing	or	3	

improved	performance	compared	to	other	methods,	and	second	that	they	produce	some	4	

meaningful	biological	insight.	The	second	criterion	is	specific	to	particular	studies	but	it	5	

should	be	possible	to	address	the	first	point	in	a	more	general	way.	6	

A	common	way	to	test	the	performance	of	an	analysis	method	is	through	a	7	

simulation.	Simulated	data	provides	a	known	truth	to	test	against,	making	it	possible	to	8	

assess	whether	a	method	has	been	implemented	correctly,	whether	the	assumptions	of	9	

the	method	are	appropriate,	and	demonstrating	the	method’s	limitations.	Such	tests	are	10	

often	difficult	with	real	biological	data,	as	an	experiment	must	be	specifically	designed,	11	

or	results	from	an	appropriate	orthogonal	test	taken	as	the	truth.	Simulations,	however,	12	

easily	allow	access	to	a	range	of	metrics	for	assessing	the	performance	of	an	analysis	13	

method.	An	additional	advantage	of	evaluating	methods	using	simulated	data	is	that	14	

many	datasets,	with	different	parameters	and	assumptions,	can	be	rapidly	generated	at	15	

minimal	cost.	As	such,	many	of	the	scRNA-seq	analysis	packages	that	are	currently	16	

available	have	used	simulations	to	demonstrate	their	effectiveness.	These	simulations,	17	

however,	are	often	not	described	in	a	reproducible	or	reusable	way	and	the	code	to	18	

construct	them	may	not	be	readily	available.	When	code	is	available	it	may	be	poorly	19	

documented	or	written	specifically	for	the	computing	environment	used	by	the	authors,	20	

limiting	its	reproducibility	and	making	it	difficult	for	other	researchers	to	reuse.	Most	21	

importantly,	publications	do	not	usually	provide	sufficient	detail	demonstrating	that	a	22	

simulation	is	similar	to	real	datasets,	or	in	what	ways	it	differs.	23	

In	this	paper	we	present	Splatter,	an	R	Bioconductor	package	for	reproducible	and	24	

accurate	simulation	of	single-cell	RNA	sequencing	data.	Splatter	is	a	framework	25	

designed	to	provide	a	consistent	interface	to	multiple	published	simulations,	enabling	26	
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researchers	to	quickly	simulate	scRNA-seq	count	data	in	a	reproducible	fashion	and	1	

make	comparisons	between	simulations	and	real	data.	Along	with	the	framework	we	2	

have	developed	our	own	simulation	model,	Splat,	and	show	how	it	compares	to	3	

previously	published	simulations	based	on	real	datasets.	We	also	provide	a	short	4	

example	of	how	simulations	can	be	used	for	assessing	analysis	methods.	5	

Results	6	

The	Splatter	framework	7	

Currently,	Splatter	implements	six	different	simulation	models,	each	with	their	own	8	

assumptions	but	accessed	through	a	consistent,	easy-to-use	interface.	These	simulations	9	

are	described	in	more	detail	in	the	following	sections	and	in	the	documentation	for	each	10	

simulation	in	Splatter,	which	also	describes	the	required	input	parameters.	11	

The	Splatter	simulation	process	consists	of	two	steps.	The	first	step	estimates	the	12	

parameters	required	for	the	simulation	from	a	real	dataset.	The	result	of	the	first	step	is	13	

a	parameters	object	unique	to	each	simulation	model.	These	objects	have	been	designed	14	

to	hold	the	information	required	for	the	specific	simulation	and	display	details	such	as	15	

which	parameters	can	be	estimated	and	which	have	been	changed	from	the	default	16	

value.	It	is	important	that	each	simulation	has	its	own	object	for	storing	parameters	as	17	

different	simulations	can	vary	greatly	in	the	information	they	require.	For	example,	18	

some	simulations	only	need	parameters	for	well-known	statistical	distributions	while	19	

others	require	large	vectors	or	matrices	of	data	sampled	from	real	datasets.	20	

In	the	second	step,	Splatter	uses	the	estimated	parameters,	along	with	any	21	

additional	parameters	that	cannot	be	estimated	or	are	overridden	by	the	user,	to	22	

generate	a	synthetic	scRNA-seq	dataset.	If	there	is	no	relevant	real	data	to	estimate	23	

parameters	from,	a	synthetic	dataset	can	still	be	generated	using	default	parameters	24	
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that	can	be	manually	modified	by	the	user.	Additional	parameters	that	may	be	required	1	

depend	on	the	simulation;	these	could	include	parameters	indicating	whether	to	use	a	2	

zero-inflated	model	or	the	number	of	genes	and	cells	to	simulate.	The	main	result	of	the	3	

simulation	step	is	a	matrix	of	counts,	which	is	returned	as	an	SCESet	object	as	defined	by	4	

the	scater	package.	Scater	is	a	low-level	analysis	package	that	provides	various	functions	5	

for	quality	control,	visualization	and	preprocessing	of	scRNA-seq	data	[17].	Briefly,	the	6	

structure	of	the	SCESet	combines	cell	by	feature	(gene)	matrices	for	storing	expression	7	

values	along	with	tables	for	storing	metadata	about	cells	and	features	(further	details	8	

are	described	in	the	scater	documentation	and	the	accompanying	paper).	This	is	a	9	

convenient	format	for	returning	intermediate	values	created	during	simulation	as	well	10	

as	the	final	expression	matrix.	For	example,	the	underlying	gene	expression	means	in	11	

different	groups	of	cells	are	returned	and	could	be	used	as	a	truth	when	evaluating	12	

differential	expression	testing.	Using	an	SCESet	also	provides	easy	access	to	scater’s	13	

functionality.		14	

Splatter	is	also	able	to	compare	SCESet	objects.	These	may	contain	simulations	with	15	

different	models	or	different	parameters,	or	real	datasets	from	which	parameters	have	16	

been	estimated.	The	comparison	function	takes	one	or	more	SCESet	objects,	combines	17	

them	(keeping	any	cell	or	gene-level	information	that	is	present	in	all	of	them)	and	18	

produces	a	series	of	diagnostic	plots	comparing	aspects	of	scRNA-seq	data.	The	19	

combined	datasets	are	also	returned,	making	it	easy	to	produce	additional	comparison	20	

plots	or	statistics.	Alternatively,	one	SCESet	can	be	designated	as	a	reference,	such	as	the	21	

real	data	used	to	estimate	parameters,	and	the	difference	between	the	reference	and	the	22	

other	datasets	can	be	assessed.	This	approach	is	particularly	useful	for	comparing	how	23	

well	simulations	recapitulate	real	datasets.	Examples	of	these	comparison	plots	are	24	

shown	in	the	following	sections.	25	

Simulation	models	26	
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Splatter	provides	implementations	of	our	own	simulation	model,	Splat,	as	well	as	1	

several	previously	published	simulations.	The	previous	simulations	have	either	been	2	

published	as	R	code	associated	with	a	paper	or	as	functions	in	existing	packages.	By	3	

including	them	in	Splatter,	we	have	made	them	available	in	a	single	place	in	a	more	4	

accessible	way.	If	only	a	script	was	originally	published,	such	as	the	Lun	[18]	and	Lun	2	5	

[19]	simulations,	the	simulations	have	been	re-implemented	in	Splatter.	If	the	6	

simulation	is	available	in	an	existing	R	package,	for	example	scDD	[20]	and	BASiCS	[21],	7	

we	have	simply	written	wrappers	that	provide	consistent	input	and	output	but	use	the	8	

package	implementation.	We	have	endeavored	to	keep	the	simulations	and	estimation	9	

procedures	as	close	as	possible	to	what	was	originally	published	while	providing	a	10	

consistent	interface	within	Splatter.	The	six	different	simulations	currently	available	in	11	

Splatter	are	described	below.	12	

Simple	13	

The	negative	binomial	is	the	most	common	distribution	used	to	model	RNA-seq	14	

count	data,	as	in	the	edgeR	[22]	and	DESeq	[23]	packages.	The	Simple	simulation	is	a	15	

basic	implementation	of	this	approach.	A	mean	expression	level	for	each	gene	is	16	

simulated	using	a	gamma	distribution	and	the	negative	binomial	distribution	is	used	to	17	

generate	a	count	for	each	cell	based	on	these	means,	with	a	fixed	dispersion	parameter	18	

(default	=	0.1)	(Additional	File	1	Figure	1).	This	simulation	is	primarily	included	as	a	19	

baseline	reference	and	is	not	intended	to	accurately	reproduce	many	of	the	features	of	20	

scRNA-seq	data.	21	

Lun	22	

Published	in	“Pooling	across	cells	to	normalize	single-cell	RNA	sequencing	data	with	23	

many	zero	counts”	[18]	the	Lun	simulation	builds	on	the	Simple	simulation	by	adding	a	24	

scaling	factor	for	each	cell	(Additional	File	1	Figure	2).	The	cell	factors	are	randomly	25	

sampled	from	a	normal	distribution	with	mean	1	and	variance	0.5.	The	inverse-log!	26	
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transformed	factors	are	used	to	adjust	the	gene	means	resulting	in	a	matrix	in	which	1	

each	cell	has	a	different	mean.	This	represents	the	kinds	of	technical	effects	that	scaling	2	

normalisation	aims	to	remove.	The	matrix	of	means	is	then	used	to	sample	counts	from	3	

a	negative	binomial	distribution,	with	a	fixed	dispersion	parameter.	This	simulation	can	4	

also	model	differential	expression	between	multiple	groups	with	fixed	fold	changes.	5	

Lun	2	6	

In	“Overcoming	confounding	plate	effects	in	differential	expression	analyses	of	7	

single-cell	RNA-seq	data”	[19]	Lun	and	Marioni	extended	the	negative	binomial	model	8	

from	the	Lun	simulation.	This	simulation	samples	input	parameters	from	real	data,	with	9	

very	little	random	sampling	from	statistical	distributions.	In	the	Lun	2	simulation	the	10	

cell	factors	are	replaced	with	a	library	size	factor	and	an	additional	level	of	variation	is	11	

added	by	including	a	batch	effects	factor.	While	the	library	size	factor	acts	on	individual	12	

cells	the	batch	effects	are	applied	to	groups	of	cells	from	the	same	batch.	This	simulation	13	

is	thus	highly	specific	to	the	scenario	when	there	are	known	batch	effects	present	in	the	14	

data,	for	example	Fluidigm	C1	plate	effects.	Differential	expression	can	be	added	15	

between	two	sets	of	batches	and	the	user	can	choose	to	use	a	zero-inflated	negative	16	

binomial	(ZINB)	model.	Counts	are	simulated	from	a	negative	binomial	using	the	library	17	

size	and	plate	factor	adjusted	gene	means	and	gene-wise	dispersion	estimates	obtained	18	

from	the	real	data.	If	the	ZINB	model	is	chosen,	zero	inflated	estimates	of	gene	means	19	

and	dispersions	are	used	instead.	An	additional	step	then	randomly	sets	some	counts	to	20	

zero,	based	on	the	gene-wise	proportions	of	zeros	observed	in	the	data.	Additional	File	1	21	

Figure	3	shows	the	model	assumptions	and	parameters	for	this	simulation.	22	

scDD	23	

The	scDD	package	aims	to	test	for	differential	expression	between	two	groups	of	24	

cells	but	also	more	complex	changes	such	as	differential	distributions	or	differential	25	

proportions	[20].	This	is	reflected	in	the	scDD	simulation,	which	can	contain	a	mixture	26	
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of	genes	simulated	to	have	different	distributions,	or	differing	proportions	where	the	1	

expression	of	the	gene	is	multi-modal.	This	simulation	also	samples	information	from	a	2	

real	dataset.	As	the	scDD	simulation	is	designed	to	reproduce	a	high	quality,	filtered	3	

dataset,	it	only	samples	from	genes	with	less	than	75	percent	zeros.	As	a	result,	it	only	4	

simulates	relatively	highly	expressed	genes.	The	Splatter	package	simply	provides	5	

wrapper	functions	to	the	simulation	function	in	the	scDD	package,	while	capturing	the	6	

necessary	inputs	and	outputs	needed	to	compare	to	other	simulations.	The	full	details	of	7	

the	scDD	simulation	are	described	in	the	scDD	package	vignette	[24].	8	

BASiCS	9	

The	BASiCS	package	introduced	a	model	for	separating	variation	in	scRNA-seq	data	10	

into	biological	and	technical	components	based	on	the	expression	of	external	spike-in	11	

controls	[21].	This	model	also	enables	cell-specific	normalisation	and	was	extended	to	12	

detect	differential	expression	between	groups	of	cells	[25].		Similar	to	the	scDD	13	

simulation,	Splatter	provides	a	wrapper	for	the	BASiCS	simulation	function,	which	is	14	

able	to	produce	datasets	with	both	endogenous	and	spike-in	genes	as	well	as	multiple	15	

batches	of	cells.	As	the	BASiCS	simulation	contains	both	biological	and	technical	16	

variation	it	can	be	used	to	test	the	ability	of	methods	to	distinguish	between	the	two.	17	

Splat	18	

We	have	developed	the	Splat	simulation	to	capture	many	features	observed	in	real	19	

scRNA-Seq	data,	including	high	expression	outlier	genes,	differing	sequencing	depths	20	

(library	sizes)	between	cells,	trended	gene-wise	dispersion,	and	zero-inflation.	Our	21	

model	uses	parametric	distributions	with	hyper-parameters	estimated	from	real	data	22	

(Figure	1).	The	core	of	the	Splat	simulation	is	the	gamma-Poisson	hierarchical	model	23	

where	the	mean	expression	level	for	each	gene	𝑖,	𝑖 = 1, . . . ,𝑁,	is	simulated	from	a	gamma	24	

distribution	and	the	count	for	each	cell	𝑗,	𝑗 = 1, . . . ,𝑀,	is	subsequently	sampled	from	a	25	
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Poisson	distribution,	with	modifications	to	include	expression	outliers	and	to	enforce	a	1	

mean-variance	trend.	2	

	3	

Figure	1:	Diagram	of	the	Splat	simulation	model.	Input	parameters	are	indicated	with	double	4	

borders	and	those	that	can	be	estimated	from	real	data	are	shaded	blue.	Red	shading	indicates	the	5	

final	output.	The	simulation	begins	by	generating	means	from	a	gamma	distribution.	Outlier	6	

expression	genes	are	added	by	multiplying	by	a	log-normal	factor	and	the	means	are	proportionally	7	

adjusted	for	each	cell’s	library	size.	Adjusting	the	means	using	a	simulated	Biological	Coefficient	of	8	
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Variation	(BCV)	enforces	a	mean-variance	trend.	These	final	means	are	used	to	generate	counts	1	

from	a	Poisson	distribution.	In	the	final	step	dropout	is	(optionally)	simulated	by	randomly	setting	2	

some	counts	to	zero,	based	on	each	gene’s	mean	expression.	3	

More	specifically,	the	Splat	simulation	initially	samples	gene	means	from	a	Gamma	4	

distribution	with	shape	𝛼	and	rate	𝛽.	While	the	gamma	distribution	is	a	good	fit	for	gene	5	

means	it	does	not	always	capture	extreme	expression	levels.	To	counter	this	a	6	

probability	(𝜋!)	that	a	gene	is	a	high	expression	outlier	can	be	specified.	We	then	add	7	

these	outliers	to	the	simulation	by	replacing	the	previously	simulated	mean	with	the	8	

median	of	the	simulated	gene	means	multiplied	by	an	inflation	factor.	The	inflation	9	

factor	is	sampled	from	a	log-normal	distribution	with	location	𝜇!	and	scale	𝜎! .	10	

The	library	size	(total	number	of	counts)	varies	within	an	scRNA-seq	experiment	11	

and	can	be	very	different	between	experiments	depending	on	the	sequencing	depth.	We	12	

model	library	size	using	a	log-normal	distribution	(with	location	𝜇! 	and	scale	𝜎!)	and	13	

use	the	simulated	library	sizes	(𝐿!)	to	proportionally	adjust	the	gene	means	for	each	cell.	14	

This	allows	us	to	alter	the	number	of	counts	per	cell	independently	of	the	underlying	15	

gene	expression	levels.	16	

It	is	known	that	there	is	a	strong	mean-variance	trend	in	RNA-Seq	data,	where	lowly	17	

expressed	genes	are	more	variable	and	highly	expressed	genes	are	more	consistent	[26].	18	

In	the	Splat	simulation	we	enforce	this	trend	by	simulating	the	biological	coefficient	of	19	

variation	(BCV)	for	each	gene	from	a	scaled	inverse	chi-squared	distribution,	where	the	20	

scaling	factor	is	a	function	of	the	gene	mean.	After	simulating	the	BCV	values	we	21	

generate	a	new	set	of	means	(𝜆!,!)	from	a	gamma	distribution	with	shape	and	rate	22	

parameters	dependent	on	the	simulated	BCVs	and	previous	gene	means.	We	then	23	

generate	a	matrix	of	counts	by	sampling	from	a	Poisson	distribution,	with	lambda	equal	24	

to	𝜆!,! .	This	process	is	similar	to	the	simulation	of	bulk	RNA-seq	data	used	by	Law	et	al.	25	

[27].	26	
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The	high	proportion	of	zeros	is	another	key	feature	of	scRNA-seq	data	[11],	one	1	

cause	of	which	is	technical	dropout.	We	use	the	relationship	between	the	mean	2	

expression	of	a	gene	and	the	proportion	of	zero	counts	in	that	gene	to	model	this	3	

process	and	use	a	logistic	function	to	produce	a	probability	that	a	count	should	be	zero.	4	

The	logistic	function	is	defined	by	a	midpoint	parameter	(𝑥!),	the	expression	level	at	5	

which	50	percent	of	cells	are	zero,	and	a	shape	parameter	(𝑘)	that	controls	how	quickly	6	

the	probabilities	change	from	that	point.	The	probability	of	a	zero	for	each	gene	is	then	7	

used	to	randomly	replace	some	of	the	simulated	counts	with	zeros	using	a	Bernoulli	8	

distribution.	9	

Each	of	the	different	steps	in	the	Splat	simulation	outlined	above	are	easily	10	

controlled	by	setting	the	appropriate	parameters	and	can	be	turned	off	when	they	are	11	

not	desirable	or	appropriate.	The	final	result	is	a	matrix	of	observed	counts	𝑌!,! 	where	12	

the	rows	are	genes	and	the	columns	are	cells.	The	full	set	of	input	parameters	is	shown	13	

in	Table	1.	14	

Table	1:	Input	parameters	for	the	Splat	simulation	model	15	

Name	 Symbol	 Description	
Mean	shape	 𝛼	 Shape	parameter	for	the	mean	gene	expression	gamma	

distribution	
Mean	rate	 𝛽	 Rate	parameter	for	the	mean	gene	expression	gamma	

distribution	
Library	size	location	 𝜇!	 Location	parameter	for	the	library	size	log-normal	

distribution	
Library	size	scale	 𝜎!	 Scale	parameter	for	the	library	size	log-normal	

distribution	
Outlier	probability	 𝜋!	 Probability	that	a	gene	is	an	expression	outlier	
Outlier	location	 𝜇!	 Location	parameter	for	the	expression	outlier	factor	

log-normal	distribution	
Outlier	scale	 𝜎!	 Scale	parameter	for	the	expression	outlier	factor	log-

normal	distribution	
Common	BCV	 𝜙	 Common	BCV	dispersion	across	all	genes	
BCV	degrees	of	
freedom	

𝑑𝑓	 Degrees	of	freedom	for	the	BCV	inverse	chi-squared	
distribution	

Dropout	midpoint	 𝑥!	 Midpoint	for	the	dropout	logistic	function	
Dropout	shape	 𝑘	 Shape	of	the	dropout	logistic	function	
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Comparison	of	simulations	1	

To	compare	the	simulation	models	available	in	Splatter	we	estimated	parameters	2	

from	several	real	datasets	and	then	generated	synthetic	datasets	using	those	3	

parameters.	Both	the	standard	and	zero-inflated	versions	of	the	Splat	and	Lun	2	4	

simulations	were	included,	giving	a	total	of	eight	simulations.	We	began	with	the	Tung	5	

dataset	which	contains	induced	pluripotent	stem	cells	from	three	HapMap	individuals	6	

[28].		7	

To	reduce	the	computational	time	we	randomly	sampled	200	cells	to	use	for	the	8	

estimation	step	and	each	simulation	consisted	of	200	cells.	Benchmarking	showed	a	9	

roughly	linear	relationship	between	the	number	of	genes	or	cells	and	the	processing	10	

time	required	(Additional	File	1	Figures	4−5).	The	estimation	procedures	for	the	Lun	2	11	

and	BASiCS	simulations	are	particularly	time	consuming,	however	the	Lun	2	estimation	12	

can	be	run	using	multiple	cores	unlike	the	BASiCS	estimation	procedure.	We	did	not	13	

perform	any	quality	control	of	cells	and	only	removed	genes	that	were	zero	in	all	of	the	14	

selected	cells.	We	believe	this	presents	the	most	challenging	situation	to	simulate,	as	15	

there	are	more	likely	to	be	violations	of	the	underlying	model.	This	scenario	is	also	16	

possibly	the	most	useful	as	it	allows	any	analysis	method	to	be	evaluated,	from	low-level	17	

filtering	to	complex	downstream	analysis.	Figure	2	shows	some	of	the	plots	produced	by	18	

Splatter	to	compare	simulations	based	on	the	Tung	dataset.		19	
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	1	

Figure	2:	Comparison	of	simulations	based	on	the	Tung	dataset.	The	left	column	panels	show	the	2	

distribution	of	mean	expression	(A),	variance	(C)	and	library	size	(G)	across	the	real	dataset	and	the	3	

simulations	as	boxplots,	along	with	a	scatter	plot	of	the	mean-variance	relationship	(E).	The	right	4	

column	shows	boxplots	of	the	ranked	differences	between	the	real	data	and	simulations	for	the	5	

same	statistics:	mean	(B),	variance	(D),	mean-variance	relationship	(F)	and	library	size	(H).		Note	6	
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that	the	y-axis	for	plots	of	the	variance	has	been	limited	in	order	to	show	more	detail.	Variances	for	1	

the	Lun	and	Lun	2	simulations	extend	beyond	what	has	been	shown.	2	

We	compared	the	gene	means,	variances,	library	sizes	and	the	mean-variance	3	

relationship.	From	these	diagnostic	plots,	we	can	evaluate	how	well	each	simulation	4	

reproduces	the	real	dataset	and	how	it	differs.	One	way	to	compare	across	the	5	

simulations	is	to	look	at	the	overall	distributions	(Figure	2,	left	column).	Alternatively,	6	

we	can	choose	a	reference	(in	this	case	the	real	data)	and	look	at	departures	from	that	7	

data	(Figure	2,	right	column).	Examining	the	mean	expression	levels	across	genes,	we	8	

see	that	the	scDD	simulation	is	missing	lowly	expressed	genes,	as	expected,	as	is	the	Lun	9	

simulation.	In	contrast,	the	Simple	and	Lun	2	simulations	are	skewed	towards	lower	10	

expression	levels	(Figure	2A,	Figure	2B).	The	BASiCS	simulation	is	a	good	match	to	the	11	

real	data	as	is	the	Splat	simulation.	Both	versions	of	the	Lun	2	simulation	produce	some	12	

extremely	highly	variable	genes,	an	effect	which	is	also	seen	to	a	lesser	extent	in	the	Lun	13	

simulation.	The	difference	in	variance	is	reflected	in	the	mean-variance	relationship	14	

where	genes	from	the	Lun	2	simulation	are	much	too	variable	at	high	expression	levels	15	

for	this	dataset.	Library	size	is	another	aspect	in	which	the	simulations	differ	from	the	16	

real	data.	The	simulations	that	do	not	contain	a	library	size	component	(Simple,	Lun,	17	

scDD)	have	different	median	library	sizes	and	much	smaller	spreads.	In	this	example,	18	

the	BASiCS	simulation	produces	too	many	large	library	sizes,	as	does	the	Lun	2	19	

simulation	to	a	lesser	degree.	20	

A	key	aspect	of	scRNA-seq	data	is	the	number	of	observed	zeros.	To	properly	21	

recreate	an	scRNA-seq	dataset	a	simulation	must	produce	the	correct	number	of	zeros	22	

but	also	have	them	appropriately	distributed	across	both	genes	and	cells.	In	addition,	23	

there	is	a	clear	relationship	between	the	expression	level	of	a	gene	and	the	number	of	24	

observed	zeros	[29]	and	this	should	be	reproduced	in	simulations.	Figure	3	shows	the	25	

distribution	of	zeros	for	the	simulations	based	on	the	Tung	dataset.	26	
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	1	

Figure	3:	Comparison	of	zeros	in	simulations	based	on	the	Tung	dataset.	The	top	row	shows	2	

boxplots	of	the	distribution	of	zeros	per	cell	(A)	and	the	difference	from	the	real	data	(B).	The	3	

distribution	(C)	and	difference	(D)	in	zeros	per	gene	are	shown	in	the	middle	row.	The	bottom	row	4	

shows	scatter	plots	of	the	relationship	between	the	mean	expression	of	a	gene	(including	cells	with	5	

zero	counts)	and	the	percentage	of	zeros	as	both	the	raw	observations	(E)	and	as	ranked	differences	6	

from	the	real	data	(F).	7	
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For	this	dataset	the	Simple	and	Lun	2	simulations	produce	too	many	zeros	across	1	

both	genes	and	cells	while	the	Lun	and	scDD	simulations	produce	too	few.	Interestingly,	2	

the	Splat	simulation	produces	a	better	fit	to	this	dataset	when	dropout	is	not	included,	3	

suggesting	that	additional	dropout	is	not	present	in	the	Tung	dataset.	However,	this	is	4	

not	the	case	for	all	data	and	sometimes	simulating	additional	dropout	produces	a	better	5	

fit	to	the	data	(for	example	the	Camp	dataset	presented	below).	We	can	also	consider	the	6	

relationship	between	the	expression	level	of	a	gene,	calculated	including	cells	with	zero	7	

counts,	and	the	percentage	of	zero	counts	in	that	gene.	The	Lun	and	scDD	simulations	8	

produce	too	few	zeros	at	low	expression	levels,	while	the	Simple	and	Lun	2	simulations	9	

produce	too	many	zeros	at	high	expression	levels.	It	is	important	to	note	that	as	the	10	

scDD	simulation	removes	genes	with	more	than	75	percent	zeros	prior	to	simulation	11	

this	model	can	never	produce	genes	with	high	numbers	of	zeros	as	shown	in	Figure	3C.	12	

Both	the	Splat	and	BASiCS	models	are	successful	at	distributing	zeros	across	genes	and	13	

cells	as	well	as	maintaining	the	mean-zeros	relationship.	14	

Although	the	analysis	presented	in	Figure	2	and	Figure	3	allows	us	to	visually	15	

inspect	how	simulations	compare	with	a	single	dataset	we	also	wished	to	compare	16	

simulations	across	a	variety	of	datasets.	To	address	this	we	performed	simulations	17	

based	on	five	different	datasets	(outlined	in	Table	2)	that	varied	in	terms	of	library	18	

preparation	protocol,	cell	capture	platform,	species	and	tissue	complexity.	Three	of	the	19	

datasets	used	Unique	Molecular	Identifiers	(UMIs)	[30]	and	two	used	full-length	20	

protocols.	Complete	comparison	panels	for	all	the	datasets	are	provided	in	Additional	21	

File	1	Figures	5–10	and	processing	times	for	all	datasets	are	shown	in	Additional	File	1	22	

Figure	11.	23	

Table	2:	Details	of	real	datasets	24	

Dataset	 Species	 Cell	type	 Platform	 Protocol	 UMI	 Number	
of	cells	

Camp	[31]	 Human	 Whole	brain	 Fluidigm	C1	 SMARTer	 No	 597	
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organoids	
Engel	[32]	 Mouse	 Natural	killer	T	

cells	
Flow	
cytometry	

Modified	
Smart-seq2	

No	 203	

Klein	[33]	 Human	 K562	cells	 InDrop	 CEL-Seq	 Yes	 213	
Tung	[28]		 Human	 Induced	

pluripotent	stem	
cells	

Fluidigm	C1	 Modified	
SMARTer	

Yes	 564	

Zeisel	[34]	 Mouse	 Cortex	and	
hippocampus	
cells	

Fluidigm	C1	 STRT-Seq	 Yes	 3005	

For	each	dataset,	we	estimated	parameters	and	produced	a	synthetic	dataset	as	1	

described	previously.	We	then	compared	simulations	across	metrics	and	datasets	by	2	

calculating	a	median	absolute	deviation	(MAD)	for	each	metric.	For	example,	to	get	a	3	

MAD	for	the	gene	expression	means,	the	mean	expression	values	for	both	the	real	data	4	

and	the	simulations	were	sorted	and	the	real	values	were	subtracted	from	the	simulated	5	

values.	The	median	of	these	absolute	differences	was	taken	as	the	final	statistic.	To	6	

compare	between	simulations,	we	ranked	the	MADs	for	each	metric	with	a	rank	of	one	7	

being	most	similar	to	the	real	data.	Figure	4	summarises	the	ranked	results	for	the	five	8	

datasets	as	a	heatmap.	A	heatmap	of	the	MADs	is	presented	in	Additional	File	1	Figure	9	

12	and	the	values	themselves	in	Additional	File	2.	10	
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	1	

Figure	4:	Comparison	of	simulation	models	based	on	various	datasets.	For	each	dataset	2	

parameters	were	estimated	and	synthetic	datasets	generated	using	various	simulation	methods.	3	

The	Median	Absolute	Deviation	(MAD)	between	each	simulation	and	the	real	data	was	calculated	for	4	

a	range	of	metrics	and	the	simulations	ranked.	A	heatmap	of	the	ranks	across	the	metrics	and	5	

datasets	is	presented	here.	We	see	that	the	Splat	simulation	(with	and	without	dropout)	performs	6	

consistently	well,	with	the	BASiCS	simulation	and	the	two	versions	of	the	Lun	2	simulation	also	7	

performing	well.	8	
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Looking	across	the	metrics	and	datasets	we	see	that	the	Splat	simulations	are	1	

consistently	highly	ranked.	In	general,	it	seems	that	the	datasets	are	not	zero-inflated	2	

and	thus	the	zero-inflated	simulations	do	not	preform	as	well	as	their	regular	3	

counterparts.	The	Splat	simulations	were	least	successful	on	the	Camp	cerebral	4	

organoid	and	Engel	T-cell	datasets.	The	complex	nature	of	the	Camp	data	(many	cell	5	

types)	and	the	full-length	protocols	used	by	both	may	have	contributed	to	Splat’s	poorer	6	

performance.	In	this	situation	the	semi-parametric,	sampling-based	models	may	have	an	7	

advantage	and	the	Lun	2	simulation	was	the	best	performer	on	most	aspects	of	the	8	

Camp	data.	Interestingly,	the	Simple	simulation	was	the	best	performer	on	the	Engel	9	

dataset.	This	result	suggests	that	the	additional	features	of	the	more	complex	10	

simulations	may	be	unnecessary	in	this	case	or	that	other	models	may	be	more	11	

appropriate.	The	Lun	simulation	is	consistently	among	the	worst	performing.	However,	12	

given	that	this	model	is	largely	similar	to	the	others,	it	is	likely	due	to	the	lack	of	an	13	

estimation	procedure	for	most	parameters	rather	than	significant	problems	with	the	14	

model	itself.	The	scDD	simulation	also	often	differed	significantly	from	the	real	data,	15	

which	is	unsurprising	as	this	simulation	is	designed	to	produce	a	filtered	dataset,	not	the	16	

raw	datasets	used	here.	A	comparison	based	on	a	filtered	version	of	the	Tung	dataset,	17	

showing	scDD	to	be	a	better	match,	is	provided	in	Additional	File	1	Figure	13.	18	

Most	importantly	we	see	that	simulations	perform	differently	on	different	datasets.	19	

This	emphasises	the	importance	of	evaluating	different	models	and	demonstrating	their	20	

similarity	to	real	datasets.	Other	comparisons	may	also	be	of	interest	for	evaluation	such	21	

as	testing	each	simulated	gene	to	see	if	it	matches	known	distributions,	an	example	of	22	

which	is	shown	in	Additional	File	1	Figure	14.	The	Splatter	framework	makes	these	23	

comparisons	between	simulation	models	straightforward,	making	it	easier	for	24	

researchers	to	choose	simulations	that	best	reflect	the	data	they	are	trying	to	model.	25	

Complex	simulations	with	Splat	26	
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The	simulation	models	described	above	are	sufficient	for	simulating	a	single,	1	

homogeneous	population	but	not	to	reproduce	the	more	complex	situations	seen	in	2	

some	real	biological	samples.	For	example,	we	might	wish	to	simulate	a	population	of	3	

cells	from	a	complex	tissue	containing	multiple	mature	cell	types	or	a	developmental	4	

scenario	where	cells	are	transitioning	between	cell	types.	In	this	section,	we	present	5	

how	the	Splat	simulation	can	be	extended	to	reproduce	these	complex	sample	types	6	

(Figure	5).	7	

Simulating	groups	8	

Splat	can	model	samples	with	multiple	cell	types	by	creating	distinct	groups	of	cells	9	

where	several	genes	are	differentially	expressed	between	the	different	groups.	10	

Previously	published	simulations	can	reproduce	this	situation	to	some	degree	but	are	11	

often	limited	to	fixed	fold	changes	between	only	two	groups.	In	the	Splat	simulation,	12	

however,	differential	expression	is	modeled	using	a	process	similar	to	that	for	creating	13	

expression	outliers	and	can	be	used	to	simulate	complex	cell	mixtures.		Specifically	a	14	

multiplicative	differential	expression	factor	is	assigned	to	each	gene	and	applied	to	the	15	

underlying	mean.	For	DE	genes,	these	factors	are	generated	from	a	log-normal	16	

distribution	while	for	other	genes	they	are	equal	to	one.	Setting	the	number	of	groups	17	

and	the	probability	that	a	cell	comes	from	each	group	allows	flexibility	in	how	different	18	

groups	are	defined.	Additionally,	parameters	controlling	the	probability	that	genes	are	19	

differentially	expressed	as	well	as	the	magnitude	and	direction	of	DE	factors	can	be	set	20	

individually	for	each	group.	The	resulting	SCESet	object	contains	information	about	21	

which	group	each	cell	comes	from	as	well	as	the	factors	applied	to	each	gene	in	each	22	

group	(Figure	5A).		23	

Simulating	batches	24	

A	common	technical	problem	in	all	sequencing	experiments	is	batch	effects,	where	25	

technical	variation	is	created	during	sample	collection	and	preparation.	The	Splat	26	
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simulation	can	model	these	effects	using	multiplicative	factors	that	are	applied	to	all	1	

genes	for	groups	of	cells.	Adding	this	extra	layer	of	variation	allows	researchers	to	2	

evaluate	how	methods	perform	in	the	presence	of	unwanted	variation	(Figure	5B).	3	

Simulating	paths	4	

A	common	use	of	scRNA-seq	is	to	study	cellular	development	and	differentiation.	5	

Instead	of	having	groups	of	mature	cells,	individual	cells	are	somewhere	on	a	6	

continuous	differentiation	path	or	lineage	from	one	cell	type	to	another.	To	model	this,	7	

the	Splat	simulation	uses	the	differential	expression	process	described	above	to	define	8	

the	expression	levels	of	a	start	and	end	cell	for	each	path.	A	series	of	steps	is	then	9	

defined	between	the	two	cells	types	and	the	simulated	cells	are	randomly	assigned	to	10	

one	of	these	steps,	receiving	the	mean	expression	levels	at	that	point.	Therefore,	the	11	

simulation	of	lineages	using	Splat	is	defined	by	the	differential	expression	parameters	12	

used	to	create	the	differences	between	the	start	and	end	of	each	path.	It	also	13	

incorporates	the	parameters	that	define	the	path	itself,	such	as	the	length	(number	of	14	

steps)	and	skew	(whether	cells	are	more	likely	to	come	from	the	start	or	end	of	the	15	

path).	16	

In	real	data	it	has	been	observed	that	expression	of	genes	can	change	in	more	17	

complex,	non-linear	ways	across	a	differentiation	trajectory.	For	example,	a	gene	may	be	18	

lowly	expressed	at	the	beginning	of	a	process,	highly	expressed	in	the	middle	and	lowly	19	

expressed	at	the	end.	Splat	models	these	kinds	of	changes	by	generating	a	Brownian	20	

bridge	(a	random	walk	with	fixed	end	points)	between	the	two	end	cells	of	a	path,	which	21	

is	then	smoothed	and	interpolated	using	an	Akima	spline	[35,36].	This	random	element	22	

allows	many	possible	patterns	of	expression	changes	over	the	course	of	a	path	23	

(Additional	File	1	Figure	15).	While	non-linear	changes	are	possible	they	are	not	the	24	

norm.	Splat	defines	parameters	that	control	the	proportion	of	genes	that	are	non-linear	25	

and	how	variable	those	genes	can	be.		26	
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Further	complexity	in	simulating	differentiation	paths	can	be	achieved	by	modeling	1	

lineages	with	multiple	steps	or	branches.	For	example	a	stem	cell	that	differentiates	into	2	

an	intermediate	cell	type	that	then	changes	into	one	of	two	mature	cell	types.	These	3	

possibilities	are	enabled	by	allowing	the	user	to	set	a	starting	point	for	each	path	(Figure	4	

5C).			5	

	6	

Figure	5:	Examples	of	complex	Splat	simulations.	(A)	A	Principle	Components	Analysis	(PCA)	7	

plot	of	a	simulation	with	six	groups	with	varying	numbers	of	cells	and	levels	of	differential	8	

expression.	(B)	A	PCA	plot	of	a	simulation	with	two	groups	(pink	and	blue)	and	two	batches	(circle	9	

and	triangle).	PC1	separates	groups	(wanted	biological	variation)	while	PC2	separates	batches	10	

(unwanted	technical	variation).	(C)	A	PCA	plot	of	a	simulation	with	differentiation	paths;	the	11	

coloured	gradient	indicates	how	far	along	a	path	each	cell	is	from	blue	to	pink.	A	progenitor	cell	type	12	

(blue	circles)	differentiates	into	an	intermediate	cell	type	(pink	circles/blue	triangles	or	diamonds),	13	

which	becomes	one	of	two	(pink	triangle	or	diamond)	mature	cell	types.		14	

Example:	using	Splatter	simulations	to	evaluate	a	clustering	method	15	

To	demonstrate	how	the	simulations	available	in	Splatter	could	be	used	to	evaluate	16	

an	analysis	method	we	present	an	example	of	evaluating	a	clustering	method.	SC3	[5]	is	17	

a	consensus	k-means	based	approach	available	from	Bioconductor	[37].	As	well	as	18	

assigning	cells	to	groups,	SC3	is	able	to	detect	genes	that	are	differentially	expressed	19	

between	groups	and	marker	genes	that	uniquely	identify	each	group.	To	test	SC3	we	20	

estimated	Splat	simulation	parameters	from	the	Tung	dataset	and	simulated	400	cells	21	

from	three	groups	with	probabilities	of	0.6,	0.25	and	0.15.	The	probability	of	a	gene	22	

being	differentially	expressed	in	a	group	was	0.1,	resulting	in	approximately	1700	DE	23	
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genes	per	group.	We	then	ran	SC3	with	three	clusters	(𝑘 = 3)	and	compared	the	results	1	

to	the	true	groupings	(Figure	6A).	We	also	assessed	the	detection	of	DE	and	marker	2	

genes.		True	DE	genes	were	taken	as	genes	with	simulated	DE	in	any	group	and	true	3	

marker	genes	as	the	subset	of	DE	genes	that	were	DE	in	only	a	single	group	(Figure	6B).	4	

This	procedure	was	repeated	20	times	with	different	random	seeds	to	get	some	idea	of	5	

the	variability	and	robustness	of	the	method.	6	

	7	

	8	

Figure	6:	Evaluation	of	SC3	results.	Metrics	for	the	evaluation	of	clustering	(A)	include	the	Rand	9	

index,	Hubert	and	Arabie’s	adjusted	Rand	index	(HA),	Morey	and	Agresti’s	adjusted	Rand	index	10	

(MA),	Fowlkes	and	Mallows	index	(FM)	and	the	Jaccard	index.	Detection	of	differentially	expressed	11	

and	marker	genes	were	evaluated	(B)	using	accuracy,	recall	(true	positive	rate),	precision,	F1	score	12	

(harmonic	mean	of	precision	and	recall)	and	false	positive	rate	(FPR).	All	of	the	metrics	are	13	

presented	here	as	boxplots	across	the	20	simulations.	14	

Figure	6	shows	the	evaluation	of	SC3’s	clustering	and	gene	identification	on	the	15	

simulated	data.	Five	measures	were	used	to	evaluate	the	clustering:	the	Rand	index	16	

(Rand),	Hubert	and	Arabie’s	(HA)	adjusted	Rand	index	and	Morey	and	Agresti’s	(MA)	17	

adjusted	Rand	index	(both	of	which	adjust	for	chance	groupings),	Fowlkes	and	Mallows	18	

index	(FM)	and	the	Jaccard	index	(Jaccard).	All	of	these	indices	attempt	to	measure	the	19	

similarity	between	two	clusterings,	in	this	case	the	clustering	returned	by	SC3	and	the	20	
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true	groups	in	the	simulation.	SC3	appears	to	identify	clusters	well	for	the	majority	of	1	

simulations,	in	some	cases	producing	a	near-perfect	clustering.	It	may	be	interesting	to	2	

examine	individual	cases	further	in	order	to	identify	when	SC3	is	able	to	perform	better.	3	

Both	the	DE	genes	and	marker	genes	identified	by	SC3	show	a	similar	pattern	across	our	4	

classification	metrics	of	accuracy,	precision,	recall	and	F1	score.	On	average	5	

approximately	2700	of	the	truly	DE	genes	and	2500	of	the	true	marker	genes	passed	6	

SC3’s	automatic	filtering	(with	additional	non-DE	genes).	SC3	then	detected	around	100	7	

DE	genes	per	simulation,	along	with	99	marker	genes	(median	values).	Precision	(the	8	

proportion	of	identified	genes	that	are	true	positives)	is	very	high	while	recall	(the	9	

proportion	of	true	positives	that	were	identified,	or	true	positive	rate)	is	very	low.	This	10	

tells	us	that	in	this	scenario	SC3	is	producing	many	false	negatives,	but	that	the	genes	11	

that	it	finds	to	be	markers	or	DE	are	correct.	This	result	is	often	desirable,	particularly	12	

for	marker	genes,	and	is	reflected	in	the	very	low	false	positive	rate.		13	

While	it	is	beyond	the	scope	of	this	paper,	clearly	this	evaluation	could	be	extended,	14	

for	example	by	including	more	clustering	methods,	more	variations	in	simulation	15	

parameters	and	investigating	why	particular	results	are	seen.	However,	this	data,	and	16	

the	code	used	to	produce	it,	is	an	example	of	how	such	an	evaluation	could	be	conducted	17	

using	the	simulations	available	in	Splatter.	18	

Discussion	and	conclusions	19	

The	recent	development	of	single-cell	RNA	sequencing	has	spawned	a	plethora	of	20	

analysis	methods,	and	simulations	can	be	a	powerful	tool	for	developing	and	evaluating	21	

them.	Unfortunately,	many	current	simulations	of	scRNA-seq	data	are	poorly	22	

documented,	not	reproducible	or	fail	to	demonstrate	similarity	to	real	datasets.	In	23	

addition,	simulations	created	to	evaluate	a	specific	method	can	sometimes	fall	into	the	24	

trap	of	having	the	same	underlying	assumptions	as	the	method	that	they	are	trying	to	25	
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test.	An	independent,	reproducible	and	flexible	simulation	framework	is	required	in	1	

order	for	the	scientific	community	to	evaluate	and	develop	sophisticated	analysis	2	

methodologies.	3	

Here	we	have	developed	Splatter,	an	independent	framework	for	the	reproducible	4	

simulation	of	scRNA-seq	data.	Splatter	is	available	as	an	R	package	from	Bioconductor	5	

and	implements	a	series	of	simulation	models.	Splatter	can	easily	estimate	parameters	6	

for	each	model	from	real	data,	generate	synthetic	datasets	and	quickly	create	a	series	of	7	

diagnostic	plots	comparing	different	simulations	and	datasets.	8	

As	part	of	Splatter	we	introduce	our	own	simulation	called	Splat.	Splat	builds	on	the	9	

gamma-Poisson	(or	negative	binomial)	distribution	commonly	used	to	represent	RNA-10	

seq	data,	and	adds	high-expression	outlier	genes,	library	size	distributions,	a	mean-11	

variance	trend	and	the	option	of	expression-based	dropout.	Extensions	to	Splat	include	12	

the	simulation	of	more	complex	scenarios,	such	as	multiple	groups	of	cells	with	differing	13	

sizes	and	levels	of	differential	expression,	experiments	with	several	batches,	or	14	

differentiation	trajectories	with	multiple	paths	and	branches,	with	genes	that	change	in	15	

non-linear	ways.	16	

We	performed	an	evaluation	of	the	six	simulation	models	currently	available	in	17	

Splatter	by	comparing	synthetic	data	generated	using	estimated	parameters	to	five	18	

published	datasets.	Overall	Splat	performed	well,	ranking	highly	on	most	metrics.	19	

However,	other	simulations	performed	better	for	some	metrics	or	better	reproduced	20	

specific	datasets.	We	found	the	Camp	cerebral	organoid	dataset	the	most	challenging	to	21	

simulate,	perhaps	because	of	the	complex	nature	of	this	sample,	which	is	comprised	of	22	

many	different	cell	types.	In	addition,	this	dataset	(along	with	the	Engel	data)	used	a	full-23	

length	protocol,	which	may	contain	additional	noise	compared	to	the	UMI	datasets	[38].	24	
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One	of	the	key	features	of	scRNA-seq	data	is	the	high	number	of	zero	counts	where	1	

no	expression	is	observed	for	a	particular	gene	in	a	particular	cell.	This	can	be	especially	2	

challenging	to	simulate	as	not	only	must	there	be	the	correct	number	of	zeros	but	they	3	

must	be	correctly	distributed	across	genes	and	cells.	We	found	that	introducing	dropout	4	

(in	Splat)	or	zero-inflation	(in	Lun	2)	often	failed	to	improve	the	match	to	real	datasets,	5	

suggesting	that	they	are	not	truly	zero-inflated.	Together,	the	results	demonstrate	that	6	

no	simulation	can	accurately	reproduce	all	scRNA-seq	datasets.	They	also	emphasise	the	7	

variability	in	scRNA-seq	data,	which	arises	from	a	complex	set	of	biological	(for	example	8	

species,	tissue	type,	cell	type,	treatment	and	cell	cycle)	and	technical	(for	example	9	

platform,	protocol,	or	processing)	factors.	Non-parametric	simulations	that	permute	real	10	

data	could	potentially	produce	more	realistic	synthetic	datasets	but	at	the	cost	of	11	

flexibility	in	what	can	be	simulated	and	knowledge	of	the	underlying	parameters.	12	

Finally,	we	demonstrated	how	Splatter	could	be	used	for	the	development	and	13	

evaluation	of	analysis	methods,	using	the	SC3	clustering	method	as	an	example.	14	

Splatter’s	flexible	framework	allowed	us	to	quickly	generate	multiple	test	datasets,	15	

based	on	parameters	from	real	data.	The	information	returned	about	the	simulations	16	

gave	us	a	truth	to	test	against	when	evaluating	the	method.	We	found	that	SC3	17	

accurately	clustered	cells	and	was	precise	in	identifying	DE	and	marker	genes.	18	

The	simulations	available	in	Splatter	are	well	documented,	reproducible	and	19	

independent	of	any	particular	analysis	method.	Splatter’s	comparison	functions	also	20	

make	it	easy	to	demonstrate	how	similar	simulations	are	to	real	datasets.	Splatter	21	

provides	a	framework	for	simulation	models,	makes	existing	scRNA-seq	simulations	22	

accessible	to	researchers	and	introduces	Splat,	a	new	scRNA-seq	simulation	model.	As	23	

more	simulation	models	become	available,	such	as	those	replicating	newer	technologies	24	

including	k-cell	sequencing,	they	can	be	adapted	to	Splatter’s	framework.	The	Splat	25	

model	will	continue	to	be	developed	and	may,	in	the	future,	include	additional	modules	26	
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such	as	the	ability	to	add	gene	lengths	to	differentiate	between	UMI	and	full-length	data.	1	

We	hope	that	Splatter	empowers	researchers	to	rapidly	and	rigorously	develop	new	2	

scRNA-seq	analysis	methods,	ultimately	leading	to	new	discoveries	in	cell	biology.	3	

Methods	4	

Splat	parameter	estimation	5	

To	easily	generate	a	simulation	that	is	similar	to	a	given	dataset,	Splatter	includes	6	

functions	to	estimate	the	parameters	for	each	simulation	from	real	datasets.	Just	as	with	7	

the	simulation	models	themselves,	the	estimation	procedures	are	based	on	what	has	8	

been	published	and	there	is	variation	in	how	many	parameters	can	be	estimated	for	9	

each	model.	We	have	given	significant	attention	to	estimating	the	parameters	for	the	10	

Splat	simulation.	The	parameters	that	control	the	mean	expression	of	each	gene	(𝛼	and	11	

𝛽)	are	estimated	by	fitting	a	gamma	distribution	to	the	winsorised	means	of	the	library	12	

size	normalised	counts	using	the	fitdistrplus	package	[39].	The	library	size	13	

normalisation	is	a	basic	normalisation	where	the	counts	in	the	original	dataset	are	14	

adjusted	so	that	each	cell	has	the	same	number	of	total	counts	(in	this	case	the	median	15	

across	all	cells)	and	any	genes	that	are	all	zero	are	removed.	We	found	that	genes	with	16	

extreme	means	affect	the	fit	of	the	gamma	distribution	and	that	this	effect	was	mitigated	17	

by	winsorising	the	top	and	bottom	10	percent	of	values	to	the	10th	and	90th	percentiles	18	

respectively.	Parameters	for	the	library	size	distribution	(𝜇! 	and	𝜎!)	are	estimated	in	a	19	

similar	way	by	fitting	a	log-normal	distribution	to	the	unnormalised	library	sizes.	20	

The	procedure	for	estimating	expression	outlier	parameters	is	more	complex.	21	

Taking	the	library	size	normalised	counts,	outliers	are	defined	as	genes	where	the	mean	22	

expression	is	more	than	two	MADs	greater	than	the	median	of	the	gene	expression	23	

means.	The	outlier	probability	𝜋!	is	then	calculated	as	the	proportion	of	genes	that	are	24	

outliers.	Parameters	for	the	outlier	factors	(𝜇!	and	𝜎!)	are	estimated	by	fitting	a	log-25	
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normal	distribution	to	the	ratio	of	the	means	of	the	outlier	genes	to	the	median	of	the	1	

gene	expression	means.	2	

BCV	parameters	are	estimated	using	the	estimateDisp	function	in	the	edgeR	package	3	

[22].	When	testing	the	estimation	procedure	on	simulated	datasets	we	observed	that	the	4	

edgeR	estimate	of	common	dispersion	was	inflated	(Additional	File	1	Figure	16),	5	

therefore	we	apply	a	linear	correction	to	this	value	(𝜙 = 0.1 + 0.25𝜙!"#!$).	6	

The	midpoint	(𝑥!)	and	shape	(𝑘)	parameters	for	the	dropout	function	are	estimated	7	

by	fitting	a	logistic	function	to	the	relationship	between	the	log	means	of	the	normalised	8	

counts	and	the	proportion	of	samples	that	are	zero	for	each	gene	(Additional	File	1	9	

Figure	17).	10	

While	we	note	that	our	estimation	procedures	are	somewhat	ad	hoc,	we	found	that	11	

these	procedures	are	robust,	efficient	and	guaranteed	to	produce	parameter	estimates	12	

on	all	datasets	we	tested.	13	

Datasets	14	

Each	of	the	real	datasets	used	in	the	comparison	of	simulations	is	publicly	available.	15	

Raw	FASTQ	files	for	the	Camp	dataset	were	downloaded	from	SRA	(Accession	16	

SRP066834)	and	processed	using	a	Bpipe	(v0.9.9.3)	[40]	pipeline	that	examined	the	17	

quality	of	reads	using	FastQC	(v0.11.4),	aligned	the	reads	to	the	hg38	reference	genome	18	

using	STAR	(v2.5.2a)	[41]	and	counted	reads	overlapping	genes	in	the	Gencode	V22	19	

annotation	using	featureCounts	(v1.5.0-p3)	[42].	Matrices	of	gene	by	cell	expression	20	

values	for	the	Klein	(Accession	GSM1599500)	and	Zeisel	(Accession	GSE60361)	datasets	21	

were	downloaded	from	GEO.	For	the	Tung	dataset	the	matrix	of	molecules	(UMIs)	22	

aligned	to	each	gene	available	from	https://github.com/jdblischak/singleCellSeq	was	23	

used.	This	data	is	also	available	from	GEO	(Accession	GSE77288).	The	Salmon	[43]	24	

quantification	files	for	the	Engel	dataset	were	download	from	the	Conquer	database	25	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2017. ; https://doi.org/10.1101/133173doi: bioRxiv preprint 

https://doi.org/10.1101/133173
http://creativecommons.org/licenses/by/4.0/


	 30	

(http://imlspenticton.uzh.ch:3838/conquer/)	and	converted	to	a	gene	by	cell	matrix	1	

using	the	tximport	[44]	package.	2	

Simulation	comparison	3	

For	each	dataset	the	data	file	was	read	into	R	(v3.4.0)	[45]	and	converted	to	a	gene	4	

by	cell	matrix.	We	randomly	selected	200	cells	without	replacement	and	filtered	out	any	5	

genes	that	had	zero	expression	in	all	cells	or	any	missing	values.	The	parameters	for	6	

each	simulation	were	estimated	from	the	selected	cells	and	a	synthetic	dataset	7	

generated	with	200	cells	and	the	same	number	of	genes	as	the	real	data.	Simulations	8	

were	limited	to	200	cells	(the	size	of	the	smallest	dataset)	to	reduce	the	computational	9	

time	required.	When	estimating	parameters	for	the	Lun	2,	scDD	and	BASiCS	simulations	10	

cells	were	randomly	assigned	to	two	groups.	For	the	Splat	and	Lun	2	simulations	both	11	

the	regular	and	zero-inflated	variants	were	used	to	simulate	data.	The	resulting	eight	12	

simulations	were	then	compared	to	the	real	data	using	Splatter’s	comparison	functions	13	

and	plots	showing	the	overall	comparison	produced.	To	compare	simulations	across	the	14	

datasets	summary	statistics	were	calculated.	For	each	of	the	basic	metrics	(mean,	15	

variance,	library	size,	zeros	per	gene	and	zeros	per	cell)	the	genes	were	sorted	16	

individually	for	each	simulation	and	the	difference	from	the	sorted	values	and	the	real	17	

data	calculated.	When	looking	at	the	relationship	between	mean	expression	level	and	18	

other	metrics	(variance,	zeros	per	gene)	genes	in	both	the	real	and	simulated	data	were	19	

sorted	by	mean	expression	and	the	difference	between	the	metric	of	interest	(eg.	20	

variance)	calculated.	The	Median	Absolute	Deviation	for	each	metric	was	then	calculated	21	

and	ranked	for	each	dataset	to	give	the	rankings	shown	in	Figure	4.	22	

Clustering	evaluation	23	

Parameters	for	Splat	simulations	used	in	the	example	evaluation	of	SC3	were	24	

estimated	from	the	Tung	dataset.	Twenty	synthetic	datasets	were	generated	using	these	25	

parameters	with	different	random	seeds.	Each	simulation	had	three	groups	of	different,	26	
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with	probabilities	of	0.6,	0.25	and	0.1,	and	a	probability	of	a	gene	being	differentially	1	

expressed	of	0.1.	Factors	for	differentially	expressed	genes	were	generated	from	a	log-2	

normal	distribution	with	location	parameter	equal	to	–0.1	and	scale	parameter	equal	to	3	

0.3.	For	each	simulation	the	SC3	package	was	used	to	cluster	cells	with	𝑘 = 3	and	asked	4	

to	detect	DE	and	marker	genes,	taking	those	with	adjusted	p-values	less	than	0.05.	True	5	

DE	genes	were	defined	as	genes	where	the	simulated	DE	factor	was	not	equal	to	one	in	6	

one	or	more	groups.	Marker	genes	were	defined	as	genes	where	the	DE	factor	was	not	7	

equal	to	one	in	a	single	group	(and	one	in	all	others).	Clustering	metrics	were	calculated	8	

using	the	clues	R	package	[46].	To	evaluate	the	DE	and	marker	gene	detection	we	9	

calculated	the	numbers	of	true	negatives	(TN),	true	positives	(TP),	false	negatives	(FN)	10	

and	false	positives.	We	then	used	these	values	to	calculate	the	metrics	shown	in	Figure	11	

6:	Accuracy	(𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁 / 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑔𝑒𝑛𝑒𝑠),	Recall	(𝑅𝑒𝑐 = 𝑇𝑃 / (𝑇𝑃 +12	

𝐹𝑁)),	Precision	(𝑃𝑟𝑒 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃)),	F1	Score	(𝐹1 = 2 ∗ ( 𝑃𝑟𝑒 ∗ 𝑅𝑒𝑐 / (𝑃𝑟𝑒 +13	

𝑅𝑒𝑐)))	and	False	Positive	Rate	(𝐹𝑃𝑅 = 𝐹𝑃 / (𝐹𝑃 + 𝑇𝑁)).	Metrics	were	aggregated	14	

across	the	20	simulations	and	boxplots	produced	using	the	ggplot2	package	[47].	15	

Session	information	describing	the	packages	used	in	all	analysis	steps	is	included	as	16	

Additional	File	3.	The	code	and	dataset	files	are	available	at	17	

https://github.com/Oshlack/splatter-paper.	18	
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	 36	

File	format:	CSV	1	

Title:	Table	of	MADs	2	

Description:	Table	of	the	Median	Absolute	Deviations	used	to	produce	Figure	4	in	CSV	3	

format.	4	

	5	

File	name:	additional3_sessionInfo.pdf	6	

File	format:	PDF	7	

Title:	Session	information	8	

Description:	Details	of	the	R	environment	and	packages	used	for	analysis.	9	
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