
“main” — 2017/5/7 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Sequence Alignment

LEAP: A Generalization of the Landau-Vishkin
Algorithm with Custom Gap Penalties
Hongyi Xin 1,∗, Jeremie Kim 2, Sunny Nahar 1, Can Alkan 3,∗, and Onur
Mutlu 2, 4,∗

1School of Computer Science, Carnegie Mellon University, Pittsburgh, 15289, USA,
2Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, 15289, USA,
3Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey, and
4Department of Computer Science, ETH Zurich, Zurich, 8092, Switzerland.

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Approximate String Matching is a pivotal problem in the field of computer science. It serves
as an integral component for many string algorithms, most notably, DNA read mapping and alignment.
The improved LV algorithm proposes an improved dynamic programming strategy over the banded Smith-
Waterman algorithm but suffers from support of a limited selection of scoring schemes. In this paper, we
propose the Leaping Toad problem, a generalization of the approximate string matching problem, as well
as LEAP, a generalization of the Landau-Vishkin’s algorithm that solves the Leaping Toad problem under
a broader selection of scoring schemes.
Results: We benchmarked LEAP against 3 state-of-the-art approximate string matching implementations.
We show that when using a bit-vectorized de Bruijn sequence based optimization, LEAP is up to 7.4x
faster than the state-of-the-art bit-vector Levenshtein distance implementation and up to 32x faster than
the state-of-the-art affine-gap-penalty parallel Needleman Wunsch Implementation.
Availability: We provide an implementation of LEAP in C++ at github.com/CMU-SAFARI/LEAP .
Contact: hxin@cmu.edu, calkan@cs.bilkent.edu.tr or onur.mutlu@inf.ethz.ch

1 Introduction
Approximate String Matching, also known as fuzzy string matching,
is a classic problem in the realm of string algorithms. The goal is to
match a search or pattern string to the reference string while allowing
for errors (Navarro [2001]). There are numerous formulations to this
problem, depending on the relative lengths of the pattern and the reference
strings. For similarly sized strings, the problem is often finding the optimal
sequence of operations (called edits) needed to transform the pattern
string into the reference. Common edits include insertions, deletions,
and substitutions, each of which have their own associated penalty score.
Similarity between the pattern and the reference is then quantified by
the total penalty score sum of all edits. The goal of approximate string
matching is to find the optimal sequence of edits that minimizes the total
penalty score incurred in transforming the pattern into the reference. In

the case where the pattern string is much smaller than the reference, the
problem often becomes identifying substrings of the reference that best
match the pattern.

Approximate string matching has a wide array of applications in
computer science. It is one of the core compute units in modern Next-
Generation-Sequencing (NGS) short read aligners (or mappers), such as
MUMmer (Delcher et al. [1999]), BWA (Li and Durbin [2009]), SOAP2
(Li et al. [2009]), mrFAST (Hach et al. [2010], Xin et al. [2013]), SNAP
(Matei et al. [2011]), and Bowtie (Langmead and Salzberg [2012]). The
purpose of sequence alignment is to find the most likely location where
the (read) originated from a given reference. Based on the assumption
that individuals of the same species have highly similar genomes, a
representative reference genome (Flicek and Birney [2009]) is constructed
for a species, and all subsequent intra-species genome sequencing heavily
relies on this reference. DNA reads are matched to the reference genome
to find potential mappings of the read in the target genome under a suitable

© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 2 — #2

2 Xin et al.

error threshold. When the similarity between the read and the reference
segment is high, the mapper concludes (with high probability) that the read
must have been sampled from the same position in the unknown target
genome. These potential locations are subsequently used to determine the
final position of the reads for assembly of the genome.

For short read aligners, approximate string matching computation is
a large percentage of the overall runtime. This is because of two reasons:
complex genome variations and large reference genome sizes. There are
tens of millions of reads which need to be matched to the reference genome,
and each read needs to be checked against a large number of possible
locations in the reference, depending on the mapping strategy. Therefore,
developing a faster and more efficient matching algorithm, that is also
highly parallel, is paramount. This becomes more important as modern
compute infrastructures become increasingly more parallel and SIMD
friendly.

A wide variety of algorithms have been developed to solve the
approximate string matching problem and its variations (Cole and
Hariharan [2002], Ukkonen [1985]). These include optimized bit-vector
implementations (Myers [1999], Baeza-Yates and G. Navarro [1999]) and
algorithms used for alignment (Needleman and Wunsch [1970], Smith and
Waterman [1981]). While these improvements increase the performance
of the algorithm through parallelization, most implementations still follow
the basic dynamic-programming doctrine of filling a partial scoring matrix,
which records the optimal alignment between the strings of the string pair,
through a top-to-bottom, left-to-right manner.

An alternative to the canonical dynamic programming strategy of
filling an L × L matrix, (assuming the two strings are of equal length
L), is to iteratively find the longest matching substrings with an increasing
number of edits. This concept was first proposed by Landau and Vishkin
(Landau and Vishkin [1989]) and is often called the Landau-Vishkin
algorithm (although also called Landau-Vishkin, this is not the Landau-
Vishkin algorithm published in 1986 (Landau and Vishkin [1986])). For
simplicity, we refer to the Landau-Vishkin algorithm (Landau and Vishkin
[1989] as LV for the reminder of this paper. One limitation with LV is that
it was only proposed for Levenshtein distance scoring schemes and it is
not proven to work for more general scoring schemes.

In this paper, we present an extension to the previously proposed
Landau-Vishkin (Landau and Vishkin [1989]) algorithm, which is an
optimization over the Smith-Waterman algorithm specifically for banded
global alignment with Levenshtein distance penalty scores. We show that
the same principle of Landau-Viskhin can be applied not only to global
approximate string matching with Levenshtein distance penalty scores,
but also to any banded global or semi-global approximate string matching
problems with non-negative scoring schemes. To achieve this, we first
propose a generalization of the approximate string matching problem
called the Leaping Toad problem and show that all banded global and
semi-global approximate string matching problems with positive penalty
scores can be transformed into the Leaping Toad problem. Then we propose
LEAP, a general dynamic-programming solution for the Leaping Toad
problem based on the Landau-Vishkin algorithm. Finally we provide a bit-
vectorized de Bruijn sequence based optimization over LEAP. We show
that LEAP is 7.4x faster than the state-of-the-art bit-vector Levenshtein
distance implementations and 32x faster than the state-of-the-art parallel
affine gap penalty Needleman-Wunsch implementations.

This paper makes the following contributions:
• It proposes the Leaping Toad problem, a generalization of

all banded global or semi-global approximate string matching
problems with positive penalty scores. It then shows the detailed
procedure of transforming approximate string matching problems
with Levenshtein distance penalty scores and affine-gap penalty
scores into the Leaping Toad problem.

• It provides a new algorithm, LEAP, an extension of the Landau-
Vishkin’s algorithm, that solves the general Leaping Toad
problem.

• It provides a detailed proof of the optimality of LEAP. The proof
confirms that LEAP captures the minimum-score edit sequence
between the two strings, under any positive penalty scoring
scheme.

• It provides a bit-vectorized, de Bruijn sequence based optimization
over LEAP, which uses a perfect hash function that exploits
properties of de Bruijn sequences to find the position of the most
significant ‘1’ in a bit-vector with simple bit-vector operations.

• It shows that bit-vectorized LEAP is 7.4x faster than the state-of-
the-art Levenshtein approximate string matching implementations
and up to 32x faster than the state-of-the-art affine-gap
approximate string matching implementations.

The rest of the paper is organized as follows; the Background
section provides a detailed explanation of the approximate string matching
problem, as well as past work and analyses of common solutions; the
Methods section describes the Leaping Toad problem, as well as its general
solution, LEAP, and the bit-vector optimization over LEAP; the Results
section compares LEAP against the state-of-the-art Levenshtein distance
implementations as well as affine-gap implementations; the Discussion
section discusses the advantages and limitations of LEAP; and finally, the
Conclusion section summarizes the paper.

2 Background
The Landau-Vishkin (Landau and Vishkin [1989]) algorithm improves
upon the banded-edit distance algorithm. It uses the fact that edit-distance
is conserved along the diagonal for a sequence of matches, so it can simply
traverse along the diagonal to the position of the next error. The length of
the traversal is LCE(i, j) (longest common extension), which is the length
of the longest prefix which si..m and rj..n share.

The Landau-Vishkin algorithm uses a variant matrix for edit-distance
computation: LVd,e stores the maximal row along diagonal d with edit
distance e, where d is calculated as j − i, where i is the row and j is
column in the edit-distance matrix. By conditioning on the last error, the
recurrence for LV follows:

LVd,e =

max

LVd,e−1 + 1 + LCE(LVd,e−1 + 2,LVd,e−1 + d+ 2)︸ ︷︷ ︸
substitution

LVd−1,e−1 + LCE(LVd−1,e−1 + 1,LVd−1,e−1 + d+ 1)︸ ︷︷ ︸
insertion

LVd+1,e−1 + 1 + LCE(LVd+1,e−1 + 2,LVd+1,e−1 + d+ 2)︸ ︷︷ ︸
deletion

3 Methods
Both the global and semi-global Banded Levenshtein Distance Problem
(BLDP) and Banded Affine Gap Distance Problem (BAGDP) can be
generalized as a restricted optimal path finding problem in a directed
acyclic graph. We call this the Leaping Toad problem (LTP). In this
section, we first propose the Leaping Toad problem, and we show how
a general edit-distance problem can be converted to an instance of LTP.
Subsequently we propose an improved dynamic programming algorithm
LEAP as a solution, followed by a proof of its optimality. We discuss
the backtracking process of LEAP. In addition, we provide a de Bruijn
sequence based bit-vector optimization over LEAP. Finally, we discuss
specific optimizations to the algorithm for affine-gap penalties.

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 3 — #3

LEAP 3

Fig. 1. This figure shows a swimming pool setup that is equivalent to the banded
Levenshtein distance problem. In this setup, black edges are forward edges. Black crosses
are hurdles on the edge. Green edges are leap edges. All leaps and hurdles cost +1 energy.
The goal is to find an optimal path from the origin vertex to the destinations while consuming
minimum energy. Both the solid and dashed red lines are legitimate optimal paths for this
swimming pool setup.

3.1 The Leaping Toad Problem

The Leaping Toad Problem (or simply LTP) can be summarized as a
traversal problem in a special directed acyclic graph, where a toad travels
in the weighted graph and the goal is to find a path that connects the origin
and the destination vertices while minimizing the sum of edge costs along
the path.

The directed acyclic graph of LTP is described as follows:

• There is a convex swimming pool that encircles vertices taken from
a 2-dimensional vertex grid, where vertices are aligned in rows and
columns. Vertices in the swimming pool are then organized into
disjoint lanes which are rows in the vertex grid. Inside a lane, each
vertex is connected to the next vertex on its right by a directional
edge, with itself being the source and the vertex on the right being
the destination. We call these edges as forward edges. Forward
edges only exist among vertices inside the swimming pool and do
not exist for vertices outside of the swimming pool.

• A vertex may also have edges pointing to vertices in other lanes.
We call these edges leap edges. In LTP, for a vertex and a separate
lane, there can be at most one leap edge pointing to at most one
vertex in that lane. In other words, there can not be multiple edges
pointing to the same lane from the same vertex. We also require all
the vertices in the same lane share the same types of leap edges: the
same directions and lengths. When visualized, leap edges between
two lanes are an array of parallel arrows. Notice that some leap
edges might have their source and/or destination vertices staying
out of the swimming pool and we call these edges out edges.
Outside of the swimming pool enclosure, out edges continue to
exist, connecting vertices between different lanes.

• Over any edge, there is a non-negative integer weight. Leap
edges sharing the same origin and destination lanes have the same,
positive weight. Forward edges have zero or positive weights. We
call forward edges with positive weights as hurdles. Traveling
across a hurdle is called hurdle crossing. Hurdles may have
different costs.

In the swimming pool, we appoint a number of lanes as origin lanes
and a number of lanes as destination lanes. The set of origin lanes and
destination lanes may overlap. The general goal of the LTP is to find a
path in the directed graph, with minimum sum of edge weights, that starts
at the first vertex (the leftmost vertex in the swimming pool of the lane) of
an origin lane and either travels to the last vertex of a destination lane
or travels out of the swimming pool while exiting onto a destination
lane.

Fig. 2. This is an alternative swimming pool setup. Compare to the pool in Figure 1. In this
pool, each vertex can have leaping edges pointing to all lanes. Furthermore, in this setup,
crossing a hurdle costs +2 energy, leaping a single lane costs +3 energy, and leaping two
lanes costs +4 energy.

For simplicity, we call edge weights as energy costs; we call traveling
along the leaping edge as leaps. Also for the simplicity of developing
a solution, we require all the leaping edges to never point backwards to
vertices in previous columns on the left. A relaxation of this restriction is
discussed in the Discussion section.

Figure 1 shows an example setup of the swimming pool as well as the
optimal path to cross the pool (in red). In this setup, as the figure shows,
the toad starts at the first vertex in the middle lane on the left side of the
pool and the goal is to travel to the last vertex of the middle lane on the
right side of the pool. In a lane, black crosses are placed on the hurdle
edges.

In this particular setup, the toad can only leap to neighboring lanes,
as the arrow shows. The leaping edges are set differently depending on
whether the lane is 1) the middle lane, 2) above the middle lane or 3)
below the middle lane. If it is in the middle lane, leaping edges are tilted
by 45 degrees pointing to the vertex in the next column as they point to
neighboring lanes. For other lanes, leap edges are vertical when they point
towards the center lane and are tilted by 45 degrees when they point away
from the center lane. Here we also set the energy cost of hurdles as well
as leaps as 1. The red line depicts an optimal path for the toad to travel
across the pool. Notice that there can be multiple optimal paths with the
same total energy cost (shown as dashed red lines).

There are many alternative setups to LTP. For an alternative setup, a
number of settings could be changed:

1. The energy cost of overcoming different hurdles can be different.
2. There can be leap edges pointing to more lanes.
3. The energy cost of leaps can be random and lane specific.

Figure 2 shows an alternative setup.

3.2 Conversion of Approximate String Matching to the
Leaping Toad problem

Both the banded Levenshtein and the banded affine gap string matching
problems can be converted to an instance of LTP. To convert both problems
into LTP, we first convert both string matching problems into an optimal
path finding problem in a directed graph. Then we show that the optimal
path problem in the converted directed graph is indeed an instance of LTP.

The Banded Levenshtein Distance Problem (BLDP) can be easily
converted into an optimal path finding problem in a directed graph. For
simplicity, in this paper we assume BLDP takes a pair of equal-length
strings, such as strings r, s of length L. For the (L+ 1)× (L+ 1) edit-
distance matrix D, we assign each element Di,j of the matrix a unique
vertex vi,j . Using the edit-distance recurrence function, a directional edge
is drawn from vertexvi,j tovi′,j′ if and only ifvi,j 6= vi′,j′ and i′−i ≤ 1

and j′ − j ≤ 1 (an edge to the right, bottom and bottom-right element).
On each edge (vi,j , vi′,j′), we place an integer weight w, where w = 0

if i′ = i+ 1, j′ = j + 1, and si = rj , or w = 1 otherwise. An example
of the directed graph representation of the Levenshtein distance problem

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 4 — #4

4 Xin et al.

Fig. 3. This figure shows the directed graph representation of the dynamic-programming
method of the banded Levenshtein distance problem. Each vertex in the graph represents a
element in the DP matrix. The red line outlines the optimal path traveling from the top-left
vertex to the bottom-right vertex.

is shown in Figure 3. The objective function of BLDP becomes an optimal
path finding problem where we want to find a path with minimum total
edge weight within the edit-distance threshold e from v0,0 to vL,L.

For BLDP, the equivalent swimming pool directed graph setup is shown
in the example in Figure 1. We call this the Levenshtein Leaping Toad setup.
In general, given a (N + 1)× (N + 1) LDP matrix and a maximum edit-
distance threshold e, we formulate the equivalent Levenshtein Leaping
Toad setup as the following:

The swimming pool has 2e + 1 lanes. The lane l contains L − |l|
vertices, specifically the set of vertices vi,j such that i−j = l. As Figure 1
shows, the right-end of all lanes are aligned while the left-end of the lanes
forms a wedge shape. Each lane in the swimming pool corresponds to
a diagonal in the edit-distance matrix by construction: the center lane
represents the central diagonal and the kth lane above or below the center
lane represents the kth diagonal above or below the central diagonal.

After mapping vertices and edges accordingly, we can observe that a
hurdle is placed in the lane l between the kth and the k+ 1st vertex if the
corresponding edge in the BLDP graph has nonzero weight. Also for each
lane in the pool, there are leap edges pointing to neighboring lanes. For
the center lane (l = 0), leap edges are always tilted by 45 degrees. When
they are on any other lane, leap edges are vertical when they are pointing
towards the center lane and are tilted by 45 degrees when they are pointing
away from the center lane. All hurdles and leaps cost 1 unit of energy.

After converting BLDP to the Levenshtein Leaping Toad setup, the
goal becomes:

1. Determine if the toad can swim from the first vertex of the center
lane to the last of the center lane while spending at mostE energy.

2. If it can, then find the path that costs the minimum amount of
energy. While there is slightly different from the goal of LTP,
which allows traveling out of the swimming pool and allows
terminating on the center lane but outside of the swimming pool,
we will show later that for BLDP with small edit distance budget
E, the result path of LTP is either the same with BLDP, or can be
easily transformed into the path of BLDP. For now, we the goal
of LTP is equivalent to the goal of BLDP.

The equivalence between the two directional graphs of LTP and BLDP
can be visualized in Figure 4. For the vertex at the kth column of the lth
lane above (or below) the center lane in the swimming pool, we assign
its equivalent vertex in the Levenshtein direction as the vertex of element
Ex,y in the edit-distance matrix E, where x = k − l and y = k (or
x = k and y = k − l). For example, the red, green, and blue vertices
highlighted in both figures are equivalent between the two graphs, as well
as their inbound and outbound edges. It’s worth noting that vertices in

Fig. 4. This figure shows the equivalence between the directed graph in Figure 3 and the
Leaping Toad setup in Figure 1. Notice that the red vertices, the yellow vertices and the
blue vertices are equivalent between the two graphs. The purple line outlines the equivalent
vertices in the directed graph of an entire column of vertices of the swimming pool.

the same column in the swimming pool forms a mirrored “L” shape in
the BLDP graph (highlighted as purple lines in both graphs in the figure),
with the vertex of the center lane on the corner. Also, no leap edges point
backwards. All leap edges point either to vertices in the same column or
in the next column.

For semi-global alignment, the objective function of BLDP changes
from finding an optimal path from the top-left element of the matrix to
the bottom-right element of the matrix (global alignment), to finding an
optimal path from any element of the first column of the matrix to any
element of the last column of the matrix (semi-global alignment), we
simply need to reflect the same changes in LTP. Therefore for semi-global
alignment, the objective function in the Leaping Toad setup changes to
finding an optimal path from the first vertex of bottom half lanes to the
destination of top half lanes with minimum energy cost.

For Banded Affine Gap Distance Problem (BAGDP), or in general
for any banded custom-gap-penalty string-matching problem (with a
maximum insertion or deletion threshold k, a maximum energy budget
E and positive gap penalties for different gap lengths), as now the toad
can take an arbitrary length insertion or deletion (within the insertion limit
k) and each insertion length has its own penalty score, we modify the
swimming pool setup as each lane can have leap edges pointing to up
to k lanes above and below the lane. Leap edges having the same origin
but different destinations will have different energy costs. Figure 2 shows
the leaping toad setup for a global BAGDP with a specific affine gap
penalty scheme, where mismatches are penalized with +2, gap openings
are penalized with +3 and gap extensions are penalized with +1.

3.3 LEAP: The general solution of the Leaping Toad
Problem

Similar to approximate string matching problems, the Leaping Toad
Problem can be solved through dynamic-programming. Since we restrict
the toad from ever going backward, the toad can only reach a vertex from
another vertex that is from the same or previous column. Therefore, for
each new column, we can find the optimal paths leading to its vertices, as
well as the minimum traveling energy, by reusing the optimal path results
from previous columns: for each new vertex, we find all prior-vertices
that can reach to the target vertex in one step, then pick the prior-vertex
that requires the least amount of combined energy of both reaching to the
prior-vertex and the intermediate move. We repeat this process until either
we have reached a destination vertex, or no vertices in a column is still
within the energy budget.

A major drawback of the above naïve dynamic-programming solution
of the Leaping Toad Problem, as with the naïve dynamic-programming
solution of the edit-distance problem, is that for each new vertex, we have
to compare all of its previous-step vertices, then pick the vertex with the
minimum overall energy cost. Similarly in backtrack, as we move one step

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 5 — #5

LEAP 5

backward at a time, we have to once again resolve the previous-step vertex
for each and every vertex along the optimal path.

Inspired by the Landau-Vishkin algorithm for the edit-distance
problem, we propose an improvement over the naïve solution of the
Leaping Toad problem. We only consider switching lanes at vertices that
are right before a hurdle. When there is no hurdle, we always let the toad
swim forward; therefore avoid frequently checking possibilities of leaping
from other lanes. We name this algorithm LEAP.

LEAP is developed upon a key observation that among all possible
optimal paths with minimum energy costs, there must exist at least one
optimal path that the toad either never leaps or only leaps right before
a hurdle or only leaps through out edges.

Theorem 1. Among all optimal paths of the Leaping Toad problem, there
must exist one path in which the toad either never switches lanes or only
switches right before hurdles.

Before proving the theorem, we first define some terminology: we
refer to a path from the origin vertex to the destination vertex simply as a
path. The path may or may not have any lane switches. Whenever there
is a lane switch, we call it a leap. Between two leaps, the toad only goes
forward and we call such straight segments of the path as segments. We
further categorize segments into two groups: segments that end with the
destination vertex or a hurdle as complete segments and segments that
do not end with such conditions as incomplete segments. We call the
operation that extends the incomplete segment until it either reaches a
destination vertex or a hurdle as completing the segment. Equipped with
this terminology, we are now ready to prove the stepping-stone lemma of
Theorem 1:

Lemma 1. For a path with an incomplete segment S, there must exist
an alternative path that shares the same moving sequence before S, while
completing S into Sc and have at most the same cost.

Proof. To prove the lemma, we need to find an alternative path that
supports the claim. Assume in the original path, afterS, the path continues
with a series of leaps and segments, denoted as a moving sequence, [L1,
S1, L2, L3, S2, …], where Si is the ith segment after S while Lj is the
jth leap after S. Note that between two leaps there can be either zero or
one segment, while between two segments there has to be at least a single
leap.

Assuming that Sc is d vertices longer than S (|Sc| = |S| + d), we
propose an alternative path that shares the same segments and leaps before
S, followed by Sc, and then continues with the same sequence of leaps
[L1, …, Lt], while skipping all the segments from S1 to Sk−1, where∑k−1
i=1 |Si| < d ≤

∑k
i=1 |Si|, and Lt is right before Sk in the original

moving sequence.
If d <

∑k
i=1 |Si|, which suggests that after taking [L1, …, Lt], the

alternative path merges with the original path somewhere in Sk , then we
also add the latter half of Sk after the merge point. The alternative path is
then completed with the same moving sequence after Sk .

If original path does not have enough segments after S to match the
length ofd, then the alternative path simply takes the remaining leaps while
skipping all the remaining segments. In this special case, the toad will take
the out edges and leap out of the pool to finish the leaping sequence.

Compared to the original path, the alternative path is guaranteed to
have at most the original energy cost. This is because:

1. The energy cost before S in the original path and before Sc in
the alternative path are identical as they take identical moving
sequences.

2. The energy costs of the two paths after the merge point (if they
do merge) are also identical, as the two paths also take identical
moving sequences.

Fig. 5. This figure illustrates the procedure of Lemma 1. In this example, we have a random
optimal path in red (ρ1). We claim that by extending the first incomplete segment of the
red path, S, into a complete segment, Sc , we are guaranteed to find another optimal path
(ρ2 , in blue) with the same or smaller energy cost.

3. The energy cost of the leaping sequence after Sc and before the
merge point of the alternative path is at most the energy cost
of the moving sequence after S and before the merge point in
the original path. This is because the original path takes the
same leaping sequence [L1,…,Lt] (hence consumes the same
amount of leaping energy) but the other segments skipped by the
alternative path may contain hurdles and hence cost extra.

4. The energy costs of S and Sc are identical since Sc is only a
completion of S, and by construction the extension is free of
hurdles so it costs zero energy.

Figure 5 depicts an example of converting a segment S in the original
path (red) intoSc with an alternative path (blue) using the above procedure.
Compared to the red path, the blue path consumes less energy as the red
path contains segments with hurdles which are skipped by the blue path.
With Lemma 1, we are now ready to proof Theorem 1. We prove through
contradiction:

Proof. Assume there exist no optimal paths that either never leap or only
have complete segments. Then for any optimal path, it must take at least
one leap and have at least one incomplete segment.

We arbitrarily pick an optimal path ρ1 and find the first incomplete
segment S1 in the path. Following the procedure in Lemma 1, we can find
an alternative path ρ2 without the incomplete segment S1 with the same
energy cost (ρ2 cannot have a smaller energy cost; otherwise ρ1 is not
optimal). ρ2 is also an optimal path, so by assumption, it must contain
another incomplete segment S2. We subsequently repeat the procedure.

The above process can only iterate a finite number of times since the
procedure in Lemma 1 does not introduce any new segments, as completing
S into Sc maintains that segment, and the procedure skips the segment
sequence [S1,…,Sk−1] and may either shorten or skip Sk , depending on
the position of the merge point. Hence each iteration removes a incomplete
segment. Given that there are finite number of incomplete segments, there
can only be finite number of iterations. The final product after all iterations
is a path with no incomplete segments with the same energy cost as ρ1.
However, according to our assumption, such path does not exist. Hence,
this leads to a contradiction, which proves Theorem 1.

With Theorem 1, we now transform the general Leaping Toad problem
of finding an optimal path with minimum cost to a sub-problem that finds an
optimal path which only contains complete segments. As we have proven
in Theorem 1, the resulting optimal path of the sub-problem must also be
an optimal path of the general Leaping Toad problem.

LEAP solves the above sub-problem through an optimized dynamic-
programming method that can be viewed as an extension of the Landau-
Vishkin algorithm. LEAP can be summarized into four steps:

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 6 — #6

6 Xin et al.

1. LEAP iterates through all intermediate energy costs from 0 to E
and for each energy cost, LEAP iterates through all lanes.

2. For an intermediate energy cost e and a lane l, LEAP finds the
furthest vertex v in l that is reachable at precisely the energy cost
e from either a leap or a hurdle-crossing.

3. LEAP extends the segment at v (if permitted) until the segment
hits a hurdle.

4. LEAP repeats step 2) and 3) until either a lane has reached to
the destination vertex or all intermediate energy levels have been
exhausted. The path that leads to the destination vertex is reported
as the result.

To summarize, LEAP uses a core recurrence function shown below:

start[l][e] = min
∀l′∈lanes

end[l′][e− P (l′, l)] + F (l′, l)

end[l][e] = start[l][e] + VtH(l,start[l][e])

where P (l′, l) returns the penalty of leaping from lane l′ to l, F (l′, l)

returns the number of columns the toad moves forward when it leaps
from lane l′ to l, and VtH(l,start_column) (abbreviated for Vertices
to Hurdle) returns the number of vertices until next hurdle from
start_column in lane l. When l = l′, P (l, l′) is simply the energy
cost of the next hurdle and F (l, l′) = 1.

The detailed pseudo-code of LEAP is shown in Algorithm 1.

Theorem 2. The result path returned by LEAP is indeed the optimal
path of the sub-problem.

We validate the correctness of Theorem 2 using two arguments. First,
all segments in the result path of LEAP is guaranteed to be complete,
because in step 3, LEAP always extends a segment until it reaches a hurdle.
Second, for any energy cost e and any lane l, the last vertex extended in
step 3 (if any) marks the furthest vertex that the toad can reach to in l using
precisely e energy. Combining both arguments, we can conclude that if
LEAP can find a path that reaches to the destination vertex with energy
cost e < E while the toad cannot reach the destination with energy cost
e′ < e, then the energy cost of the optimal path of the Leaping Toad
sub-problem must be e (otherwise, according to the second argument, for
a smaller energy, the toad would have already reached the destination) and
the result path returned by LEAP must be an optimal path.

Proof. The first argument is obvious. The second argument can be proven
through induction:

Base case: When e = 0, since any leap or hurdle-crossing would
consume a non-zero amount of energy, the furthest vertex the toad can
reach in a lane with zero energy cost would be the last vertex in the lane
before hitting a hurdle. Therefore, the second argument holds true for the
base case.

Induction step: Assume for all intermediate energy costs e′ < e, and
for all lanes, the second argument holds true. That is, for any lane l′, the
last vertex end[l′][e′] reached by step 3 in LEAP marks the furthest vertex
the toad can reach in l′ while consuming precisely e′ amount of energy.

Now, because both hurdle crossings and leaps cost positive amount of
energy, to get to a vertex with e 6= 0 energy cost in lane l, the toad has
to either leap from a vertex in another lane or cross a hurdle in the same
lane from a vertex in which the the total energy cost to get to that vertex
is less than e . Since LEAP has already calculated the furthest vertices of
all lanes for all energy levels e′ < e (based on our assumption), we can
conclude that step 2 of LEAP will find the furthest vertex in l such that it
is reachable from either a leap or a hurdle-crossing at precisely e energy
cost.

Finally the only remaining method for the toad to get to a vertex while
costing e energy, is to swim straight, without running into a hurdle, from

Algorithm 1: LEAP
Input: E, destination_lanes, origin_lanes
Output: pass; final_lane; final_energy;
Initialization: end[l][e] = start[l][e] = −MAX_INT, ∀(l, e);
final_energy = MAX_INT
Functions:
VtH(l, pos): computes the number of vertices until the next hurdle
from column from pos in lane l.
Pseudocode:
// Initialization

for l in [−k...+ k] do
if l in origin_lanes then

start[l][0] = origin_lanes[l];
length = VtH(l,start[l][0]);
end[l][0] = start[l][0] + length;

// Iterate through all energy levels

for e = 1 to E do
// Finds the furthest starting position

// after a leap or a hurdle-crossing

for l in [−k...+ k] do
for l′ in [−k...+ k] do
e′ = e− P (l′, l);
if e′ ≥ 0 ∧ end[l′][e′] then

candidate_start = end[l′][e′] + F (l′, l);
if candidate_start > start[l][e] then

start[l][e] = candidate_start;

// Find how long the toad can travel

// without running into a hurdle

length = VtH(l,start[l][e]);
end[l][e] = start[l][e] + length;
if end[l][e] ≥ destination_lanes[l] then

if e < final_energy then
final_lane = l;
final_energy = e;

pass = final_energy < E;

a previous e-energy vertex. This vertex is also captured by LEAP in step
3. Therefore, the argument is correct for the induction step.

Conclusion: After step 3, LEAP always reflects the furthest vertex the
toad can reach in the target lane l under the target energy cost e.3.4 Backtracking in LEAP

The pseudo-code of the backtracking method of LEAP is shown in
Algorithm 2.

A remaining issue with LEAP, or LTP in general, is that it allows
the toad to leap out of the swimming pool (recall the LTP and BLDP
equivalent-goal assumption we made in Section 3.2). According to the
LTP problem definition, as long as the toad reaches to a destination lane,
even if the destination vertex is outside of the pool, the path is still
acceptable. Translated back to approximate string matching problems,
this sometimes leads to awkward results, since inserting or deleting letters
(counterparts of leaps in the approximate string matching notion) beyond
the end of the string is undefined. For instance, assume we are computing
the global alignment between strings “AAAAAC” and “AAAAAG” with a
simple scoring scheme: mismatches are penalized with +5, single letter
gap is penalized with +4, double letter gap is penalized with +2 (this gap
penalty might not make sense for DNA alignment, as here single letter
gap is more costly than double letter gap). For this particular string pair,
the correct edit sequence would be, M-3I-2D-2, which translates to, “3
matches, inserting 2 letters, then deleting 2 letters”. The minimum edit
cost would be +4. When subjected to LEAP, this string pair will instead

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 7 — #7

LEAP 7

Algorithm 2: Backtrack
Input: final_lane; final_energy; origin_lanes
Output: path; path_count
Pseudocode:
// Initialization

l = final_lane;
e = final_energy;
path[0].start=start[l][e];
path[0].end=end[l][e];
path_count= 1;
// Stop when reached origin

while start[l][e] 6= origin_lanes[l] do
path[path_count].start=start[l][e];
path[path_count].end=end[l][e];
for l′ in [−k, . . . ,+k] do
e′ = e− P (l′, l);
if end[l′][e′] + F (l′, l) == start[l][e] then
l = l′;
e = e′;
break;

path_count++;

generate an edit sequence of M-4I-2D-2. We have M-4 simply because
LEAP does not consider taking a leap before running into a hurdle, which
in approximate string matching notion, is the C-Gmismatch. Although the
energy cost of the LEAP path is still +4, the edit sequence clearly does not
make sense since one cannot delete two letters after 4 matches when there
is only a single letter C left. We can easily correct backtracking sequences
from the out-of-bound LEAP backtrack sequences. Our work assumes that
forward edges without hurdles always cost 0 energy. This corresponds to
matches in approximate string matching and alignment. Hence, we can
remove matches from the out-of-bound LEAP backtrack sequence until
the length matches the intended length. This transformation maintains the
total energy cost. For the above example, the intended sequence length is
7. So we have to simply remove one match, and we can remove the last
M and transform M-4I-2D-2 to M-3I-2D-2, which is an optimal edit
sequence.

3.5 De Bruijn Sequence Optimization

While LEAP can drastically reduce the number of comparisons in the
dynamic-programming solution of the Leaping Toad problem, step 3 of
LEAP still involves a costly loop that searches for the next hurdle.

By encoding the hurdle information as bit-vectors, we can significantly
improve the performance of step 3 using de Bruijn sequences and bit-vector
operations. The detailed technique is described in Leiserson et al. [1998].
Here we provide a brief summary of the technique.

First, we encode the sequence of all forward edges (edges that go
straight) of a lane as a bit-vector, where ‘0’ denotes an edge that does not
have a hurdle in between the two connected vertices while ‘1’ denotes an
edge that does. For example, the middle lane in Figure 1 can be represented
as ‘0001111110’.

Counting the number of edges before the next hurdle after the ith vertex
is equivalent to counting the number of 0’s from the ith bit until we hit a
1. After shifting the bit-vector i bits to the left, the problem then becomes
finding the position of the most significant 1 in the resulting bit-vector,
which is equivalent to counting the number of trailing 0’s of the reverse
bit-vector.

First proposed in the paper of Leiserson et al. [1998], counting the
number of trailing 0’s in a bit-vector can be carried out through a hash-
table lookup with a perfect hash function. Assume the machine word has

000 0
001 1
010 6
011 2
100 7
101 5
110 4
011 3

Table 1. The de Bruijn sequence LSB lookup table for 8 bit words.

a length of 2n bits. The least significant 1 of a vector b can be singled out
by b ANDed with its two’s complement number b̄ (computed through
NOT(b) + 1). For example for a machine of word size of 23 = 8

bits, the least significant 1 of a vector b = 01001000 can be singled
out by b AND b̄ which is bLSB = 01001000 AND (10110111 + 1) =

01001000 AND 10111000 = 00001000 (LSB stands for least significant
bit). Then the number of trailing 0’s can be computed by multiplying
bLSB with a pre-computed de Bruijn sequence dBseq of 2n bits (in our
example, n = 3 and subsequently dBseq = 00011101). Because bLSB
must be power of two, bLSB×dBseq essentially translates to shifting bLSB
to the left m times, where m is the number of trailing zeros. By taking
the most significant n bits of the product (carried out through shifting
the product to the right 2n − n bits), we have then produced a unique
number, a key, between [0, … ,2n − 1]. Finally, we can use the key
to query a pre-computed lookup table of 2n entries, which returns the
pre-computed number of trailing 0’s in bLSB. The example lookup table
for dBseq = 00011101 is provided below in Table 1. The pseudo code
of finding the next hurdle is shown in Algorithm 3.

Algorithm 3: Vertices To Hurdle
Input: l; start_pos
Output: V_num
Internal Variable: bit_vec: hurdle encoded binary bit-vectors;
dBseq : de Bruijn sequence of 2n bits
Functions: reverse_bits(bitvec): reversing the bit-vector
sequence
lookup(key): lookup the precomputed de Bruijn sequence table
Pseudocode:
// Initialization

shift_bit_vec = bit_vec[l]� start_pos;
rev_bit_vec = reverse_bits(shift_bit_vec);
b_LSB = rev_bit_vec ∧(¬(rev_bit_vec) + 1);
key = (b_LSB ×dBseq)� 2n − n;
V_num = lookup(key)

3.6 LEAP variant for affine gap penalty

Similar to the Needleman-Wunsch, LEAP can also be modified to more
efficiently support affine gap penalties using separate insertion I and
deletion D matrices. Instead of tracking leaps from all possible lanes,
with affine gap penalty we maintain an I and a D matrix separately for
each lane to track the furthest column the toad can reach to from a leap,
under different energy costs. Specifically, I[l][e] and D[l][e] stores the
furthest column that the toad can arrive to, from an upward or downward
leap, respectively, while consuming precisely e energy.

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 8 — #8

8 Xin et al.

With I and D arrays, we modify the core recurrence function as
follows:

I[l][e] = max

{
I[l][e− gap_ext_cost] + F (l− 1, l)

end[l][e− gap_open_cost] + F (l− 1, l)

D[l][e] = max

{
D[l][e− gap_ext_cost] + F (l + 1, l)

end[l][e− gap_open_cost] + F (l + 1, l)

start[l][e] = max

I[l][e]

D[l][e]

end[l][e− mismatch_cost] + 1

end[l][e] = start[l][e] + VtH(l,start[l][e])

whereF (l−1, l) = 0 if lane l is above the center lane andF (l−1, l) = 1

otherwise, and F (l + 1, l) = 0 if lane l is below the center lane and
F (l− 1, l) = 1 otherwise.

4 Results
We implemented LEAP for both banded Levenshtein distance and banded
affine gap penalties. For each scoring scheme, we compare LEAP against
three state-of-the-art approximate string matching implementations,
including: an in-house vanilla Landau-Vishkin implementation (LV);
an implementation of Gene Myer’s bit-vector algorithm from SeqAn
(SeqAn) (Döring et al. [2008]) and finally a SIMD implementation of
banded global Needleman-Wunsch algorithm (NW-SIMD) (Daily [2016]).
Additionally, in order to benchmark the benefit of the de Brujin sequence
based bit-vector optimization, we implemented two versions of LEAP: one
with (LEAP-BV) and one without (LEAP), the bit-vector optimization.

To benchmark the performance of the above implementations, we
augmented a popular aligner, bowtie2, to dump all read and reference
pairs into a separate file as ASCII string pairs, during the mapping
procedure. For comprehensiveness, we gathered reads from six read
files from the 1000 Genomes Project (1000 Genomes Project Consortium
[2010]), ERR240726_1, ERR240726_2, ERR240727_1, ERR240727_2,
ERR240728_1, ERR240728_1. Each read file is mapped against the
human reference genome version 37 with bowtie2 under default settings.
All reads in the above read files are 100-bp long. For banded Levenshtein
distance, we benchmarked all six implementations with different edit-
distance thresholdsE ranging from 1 to 5. For banded affine gap penalties,
we set the matching score as 0; the mismatch penalty as +2; gap open
penalty as +3 and gap extend penalty as +1. We set the total affine gap
penalty threshold to be 3× E.

Finally, we conducted two separate tests. In the first test, shown
in Table 2, we benchmarked all read and reference pairs from bowtie2
on all 6 implementations. In the second test, shown in Table 3, we
only selected read-reference pairs that have at most five edits. While the
first test evaluates the performance of different implementations under a
realistic mapper environment, the second test evaluates how fast can each
implementation find the optimal alignment in a highly similar string pair.

From both tables, we can observe that LEAP-BV is the fastest in both
Levenshtein distance setup and affine gap setup. For Levenshtein distance,
compared to SeqAn, LEAP-BV achieves up to 7.4x speedup underE = 1

and 1.6x speedup under E = 5. For affine gap, compared to NW-SIMD,
LEAP-BV achieves even greater performance, with up to 32x speedup
under E = 1 and 2.3x speedup under E = 5. Notice that even though
both vanilla LV and SeqAn are reasonably fast under Levenshtein distance
settings, neither support affine gap penalties due to their tight coupling
with Levenshtein distance scores.

Furthermore, we observe that the performance of LV and LEAP are
very similar. This is expected since under Levenshtein scores, LEAP

e LEAP-BV LEAP LV NW-SIMD SeqAn
Levenshtein 1 0.84 1.28 1.25 38.81 6.21

2 1.48 2.07 2.03 38.91 6.66
3 2.39 3.14 3.11 38.61 6.28
4 3.35 4.50 4.45 38.38 6.59
5 4.60 6.01 6.04 38.46 6.88

Affine Gap 1 1.18 1.72 N/A 38.75 N/A
2 3.10 4.01 N/A 38.15 N/A
3 6.39 7.77 N/A 38.64 N/A
4 10.91 13.31 N/A 38.66 N/A
5 16.91 20.74 N/A 38.51 N/A

Table 2. Mixed DNA String Pairs (seconds / 10 million pairs). This table shows
runtime for a suite of Approximate String Matching algorithms normalized to
seconds per 10 million read/reference pairs. String pairs in this benchmark are
generated by bowtie2 with default parameters. While LEAP uses a simple for
loop to find the next hurdle, LEAP-BV (LEAP-Bit-Vector) uses the de Bruijn
sequence based bit-vector algorithm to locate the next hurdle.

e LEAP-BV LEAP LV NW-SIMD SeqAn
Levenshtein 1 0.84 1.31 1.33 38.55 5.81

2 1.54 2.15 2.14 38.77 6.19
3 2.36 3.31 3.42 38.84 6.52
4 3.39 4.66 4.73 38.08 6.93
5 4.55 6.22 6.21 38.63 7.73

Affine Gap 1 1.20 1.78 N/A 38.46 N/A
2 3.09 4.11 N/A 38.75 N/A
3 6.35 7.92 N/A 38.75 N/A
4 10.96 13.46 N/A 38.86 N/A
5 16.91 21.13 N/A 38.42 N/A

Table 3. Highly Similar DNA String Pairs (seconds / 10 million pairs). This
table shows runtime for a suite of Approximate String Matching algorithms
normalized to seconds per 10 million read/reference pairs. String pairs in this
benchmark are a subset of the ones in Table 2. String pairs in this set have at
most 5 edits in total between the two strings.

reduces to LV. We also observe that the performance of both LEAP and
LEAP-BV decreases with increasingE. This is also expected, since under
a greater E, LEAP checks more lanes and iterates through more energy
levels.

Last but not the least, compared to LEAP, LEAP-BV provides on
average 39% improvement.

Overall, LEAP performs best under small edit-distance thresholds,
while its performance quickly decreases as the edit-distance threshold
increases. Nonetheless, from our experiments, LEAP-BV is still faster
than other implementations even under moderate edit-distances.

5 Discussion
While we required the toad to never move backwards while it leaps in the
original definition of the Leaping Toad Problem, this requirement is not a
necessity for LEAP. Both Theorem 1 and Theorem 2 hold true even if the
toad is allowed to move backward as it leaps. The key premise in proving
both theorems is that all leaps and hurdles cost positive amounts of energy
while moving forward without running into a hurdle costs zero energy.

However, when the toad is allowed to move backward during a leap, the
naïve column-by-column dynamic programming method stops working,
since a toad could leap from a “future column” that has not yet been
calculated. LEAP, on the other hand, remains intact and functional under
such conditions. This makes LEAP a broader solution for a more general

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

“main” — 2017/5/7 — page 9 — #9

LEAP 9

Leaping Toad problem compared to the naïve dynamic-programming
method.

A major limitation of LEAP, in spite of its advantages, is that it cannot
handle both negative energy bonuses and positive penalty schemes. In
terms of approximate string matching, this translates to not supporting
negative scores for matches along with positive penalties for mismatches
and gaps (or vice versa). It only supports positive penalties for mismatches
and gaps with no penalty/bonus for matches. As a result, LEAP cannot
handle local alignment.

Nonetheless, LEAP shows great potential to be composed with NGS
mappers where seed-and-extend methods are often used and strings are
often compared with global or semi-global alignment.

Overall, LEAP provides three major benefits:

• LEAP reduces the frequency of calling the recurrence function,
fromO(E×N) times toO(E2) times (for the Levenshtein edit-
distance case).

• LEAP incorporates a de Brujin sequence based hash-table
optimization, which further speeds up the computation of the
Leaping Toad problem.

• LEAP enables greater parallelization in solving global and semi-
global alignment problems.

Unlike traditional Needleman-Wunsch and Smith-Waterman parallel
implementations, which focus on exploiting parallelism between elements
on the same anti-diagonal line in the dynamic programming matrix, LEAP
enables a more efficient parallelization approach. As we have discussed
in the de Bruijn sequence optimization subsection, LEAP utilizes hurdle-
encoded bit-vectors to calculate the position of the next hurdle. In the realm
of Approximate String Matching, the bit-vector of each lane is simply the
letter-wise XOR between the two strings after shifts. For the center lane,
the bit-vector is indeed the letter-wise XOR between the pattern and the
reference string; while for the ith lane above (or below) the center lane is
the same letter-wise XOR but after shifting the pattern (or the reference)
to the right i times. Given that we can further encode each letter with
log2(σ) bits, the entire operation of preparing all bit-vectors can be done
in (

E×L×log2(σ)
w

) XORs, where w is the length of the machine word
in bits. Under the parallel random-access machine model (PRAM), all
the XORs can be calculated in parallel for lanes under the same energy
budget e. Lanes with different energy budgets however share dependency.
Nonetheless, since the outer loop only iterates up to E times, (compared
to the parallel Smith-Waterman or Needleman-Wunsch, whose outer loop
is often iteratedL times) LEAP still can provide a greater parallel speedup
under the PRAM model.

6 Conclusion
Approximate string matching is an important and widely studied problem,
and its use in critical components for a large number of applications
has created a need to develop faster, efficient, and highly parallelizable
solutions.

In this paper, we analyzed existing approximate matching algorithms
such as the Smith-Waterman and Needleman-Wunsch algorithms. We
reviewed the Landau-Vishkin algorithm, an fast method for calculating
Levenshtein distance. We then proposed the Leaping Toad problem, a
generalization of the approximate string matching problem, as well as
LEAP, a generalization of the Landau-Vishkin algorithm that solves the
Leaping Toad problem under a broader selection of scoring schemes. We
provided a detailed proof that LEAP solves the Leaping Toad problem.

We compared LEAP against 3 state-of-the-art approximate string
matching implementations. We showed that when using a bit-vectorized de

Bruijn sequence based optimization, LEAP achieved a 7.4x speedup over
the state-of-the-art bit-vector Levenshtein distance implementation and
was up to 32x faster than the state-of-the-art affine-gap-penalty parallel
Needleman Wunsch Implementation.

7 Acknowledgements
We thank Carl Kingsford for his valuable input into this work.

References
1000 Genomes Project Consortium. A map of human genome variation from

population-scale sequencing. Nature, 467:1061–1073, 2010.
Baeza-Yates and R. G. Navarro. Faster approximate string matching. Algorithmica,

23(2):127–158, 1999.
R. Cole and R. Hariharan. Approximate string matching: A simpler faster algorithm.

SIAM Journal on Computing, 31(6):1761–1782, 2002.
J. Daily. Parasail: SIMD C library for global, semi-global,

and local pairwise sequence alignments. BMC Bioinformatics,
17:81, 2016. doi: 10.1186/s12859-016-0930-z. URL
http://dx.doi.org/10.1186/s12859-016-0930-z.

A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.
Alignment of whole genomes. Nucl. Acids Res., 1999.

A. Döring, D. Weese, T. Rausch, and K. Reinert. Seqan an efficient, generic c++
library for sequence analysis. BMC Bioinformatics, 9:11, 2008. doi: 10.1186/1471-
2105-9-11. URL http://dx.doi.org/10.1186/1471-2105-9-11.

P. Flicek and E. Birney. Sense from sequence reads: methods for
alignment and assembly. Nature methods, 6(11 Suppl):S6–S12,
Nov. 2009. ISSN 1548-7105. doi: 10.1038/nmeth.1376. URL
http://dx.doi.org/10.1038/nmeth.1376.

F. Hach, F. Hormozdiari, C. Alkan, F. Hormozdiari, I. Birol, E. E. Eichler, and S. C.
Sahinalp. mrsfast: a cache-oblivious algorithm for short-read mapping. Nature
methods, 7(8):576–577, 2010.

G. M. Landau and U. Vishkin. Introducing efficient parallelism into approximate
string matching and a new serial algorithm. In Proceedings of the Eighteenth
Annual ACM Symposium on Theory of Computing, STOC ’86, pages 220–230, New
York, NY, USA, 1986. ACM. ISBN 0-89791-193-8. doi: 10.1145/12130.12152.
URL http://doi.acm.org/10.1145/12130.12152.

G. M. Landau and U. Vishkin. Fast parallel and serial approximate string matching.
Journal of algorithms, 10(2):157–169, 1989.

B. Langmead and S. L. Salzberg. Fast gapped-read alignment with bowtie 2. Nature
Method, 9:357–359, 2012.

C. E. Leiserson, H. Prokop, and K. H. Randall. Using de bruijn sequences to index
a 1 in a computer word. Available on the Internet from http://supertech. csail. mit.
edu/papers. html, 1998.

H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics, 25:1754–1760, 2009.

R. Li, C. Yu, Y. Li, T. W. Lam, S.-M. Yiu, K. Kristiansen, and J. W. 0004. SOAP2:
an improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966–
1967, 2009.

Z. Matei, B. W. J., C. Kristal, F. Armando, P. David, S. Scott, S. Ion, K. R. M., and
S. Taylor. Faster and more accurate sequence alignment with snap. eprint arXiv,
2011.

G. Myers. A fast bit-vector algorithm for approximate string
matching based on dynamic programming. J. ACM, 46(3):395–
415, 1999. ISSN 0004-5411. doi: 10.1145/316542.316550. URL
http://doi.acm.org/10.1145/316542.316550.

G. Navarro. A guided tour to approximate string matching. ACM computing surveys
(CSUR), 33(1):31–88, 2001.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 1970.

T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.
Journal of Molecular Biology, 147:195–195, 1981.

E. Ukkonen. Algorithms for approximate string matching. Information and control,
64(1-3):100–118, 1985.

H. Xin, D. Lee, F. Hormozdiari, S. Yedkar, O. Mutlu, and C. Alkan. Accelerating
read mapping with fasthash. BMC genomics, 14(1):S13, 2013.

.CC-BY 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 7, 2017. ; https://doi.org/10.1101/133157doi: bioRxiv preprint

https://doi.org/10.1101/133157
http://creativecommons.org/licenses/by/4.0/

