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Abstract

Synaptic interactions structure the phase space of the dynamics of neural circuits and constrain neural computation.
Understanding how requires methods that handle those discrete interactions, yet few exist. Recently, it was
discovered that even random networks exhibit dynamics that partitions the phase space into numerous attractor
basins. Here we utilize this phenomenon to develop theory for the geometry of phase space partitioning in spiking
neural circuits. We find basin boundaries structuring the phase space are pre-images of spike-time collision events.
Formulating a statistical theory of spike-time collision events, we derive expressions for the rate of divergence
of neighboring basins and for their size distribution. This theory reveals that the typical basin diameter grows
with inhibitory coupling strength and shrinks with the rate of spike events. Our study provides an analytical and
generalizable approach for dissecting how connectivity, coupling strength, single neuron dynamics and population
activity shape the phase space geometry of spiking circuits.

Key words: neuronal circuits, dynamics of networks, disordered systems, basins of attraction, high dimensional
systems, pulse-coupled systems, sequence generation
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Computing devices, whether natural or artificial, perform their function by finely orchestrated state changes of
internal dynamical variables. In nervous systems these dynamical variables are physico-chemical states of nerve
cells and synapses that connect them into complex networks called neural circuits. The causal dependencies arising
from the synaptic interactions between cells greatly extend the space of functions computable by the circuit, beyond
that of single neurons.

Mathematical models of neural circuits have been formulated in two fundamentally distinct ways1. Most synaptic
interactions in the brain are driven by sparsely-fired nerve impulses, called spikes, each lasting only a millisecond.
In spiking neural network models this fundamental granularity of neuronal interactions is explicitly represented:
all interactions depend on a discrete set of spike event times. Alternatively, continuous variable models for
neural circuit dynamics are formulated by assuming that a frequency of nerve impulse generation, the firing rate,
represents the information-encoding variable causally relevant for neural circuit computation. Firing rate models
have been commonly used to model neural circuits2, theoretically study their dynamics3,4 and learning5–8, and
are the basis of spectacular advances in artificial computing systems9. Statistical physics has played a role in this
development, e.g. in clarifying the disordered phase space organization10.

From a dynamical systems perspective, attractor states and their basins of attraction play a fundamental role in
theories of neural computation. While analogous in some cases11,12, however, rate models are not equivalent to
temporally coarse-grained versions of spiking neural networks, even if they are closely matched in structure13.
Moreover, low firing rates (not much more than 1 Hz) in the cerebral cortex14 make it hard to imagine how
continuous rate variables associated to single neurons could provide a causally accurate description on behavioral
time scales (hundreds of milliseconds). Developing theory for spiking networks may well require a dedicated
approach. The absence of relevant averages and even a tractable ensemble of spiking trajectories, however, has
thus far limited statistical approaches. Methods to design them15 or to theoretically dissect the associated phase
space organization are only starting to emerge.

Recently it has been discovered that, with dominant inhibition, even randomly wired networks partition their phase
space into a complex set of basins of attraction, termed flux tubes16,17. Here we utilize this setting to develop a
statistical theory of phase space partitioning in spiking neural circuits. We first present a simulation study of
flux tubes, uncovering their shape and revealing it is structured by a spike time collision event. Formulating
these events, we then derive the conditions for and rate of the mutual divergence of neighboring tubes. Our main
calculation is the derivation of the distribution of flux tube sizes, which we obtain from statistics of these events by
leveraging the random connectivity to average over the disorder. Our analytical approach provides a transparent
method to determine how coupling strength, connectivity, single neuron dynamics and population activity combine
to shape the phase space geometry of spiking neural circuits.

Methods

We study a tractable instance of the inhibition-dominated regime of neural circuits. N neurons are connected by
an Erdős-Rényi graph with adjacency matrix A = (Amn). Amn = 1 denotes a connection from neuron n to m,
realized with probability, p = K/N . The neurons’ membrane potentials, Vn ∈ (−∞, VT ], are governed by Leaky
Integrate-and-Fire (LIF) dynamics,

τ V̇n(t) = −Vn(t) + In (t) , (1)

for n ∈ {1, . . . , N}. Here, τ is the membrane time constant and In (t) the synaptic current received by neuron n;
when Vn reaches a threshold, VT = 0, neuron n ‘spikes’, and Vn is reset to VR = −1. At the spike time, ts, the
spiking neuron, ns, delivers a current pulse of strength J to its O(K) postsynaptic neurons, {m|Amns = 1}, (s
indexes the spikes in the observation window). The total synaptic current is

In (t) = IExt + τJ
∑
s

Annsδ(t− ts) , (2)
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where IExt > 0 is a constant external current and J < 0 is the recurrent coupling strength. AnO
(

1/
√
K
)

-scaling
of J is chosen to maintain finite current fluctuations at large K and implies that the external drive is balanced by
the recurrent input. As a consequence, firing in this network is robustly asynchronous and irregular18–21. Setting
IExt =

√
KI0, with I0 > 0, and J = −J0/

√
K with J0 > 0, the corresponding stationary mean-field equation

for the population-averaged firing rate, ν̄, is17

ν̄ =
I0
J0τ

+O
(

1√
K

)
. (3)

It is convenient to map the voltage dynamics to a pseudophase representation17,22, ~φ (t), with

φn(t) =
τ

Tfree
ln

[
IExt − VR
IExt − Vn(t)

]
, (4)

where Tfree is the oscillation period of a neuron driven only by IExt. φn (t) evolves linearly in time,

φ̇n (t) = T−1
free , (5)

between spike events, i.e. t /∈ {ts}, and undergoes shifts given by the phase response curve, Z(φ), across input
spike times where φ is the state at spike reception. In the large-K limit, Tfree and Z (φ) simplify to

Tfree ≈ τ

IExt
= (
√
KJ0ν̄)−1 , (6)

Z (φ) ≈ −dφ+ const.

with d : =
|J |
IExt

= (Kν̄τ)−1 , (7)

respectively (see Supplemental Methods for details). The differential phase response, d
dφZ = −d, is essential for

the strongly dissipative nature of the collective dynamics. For J = 0, the dynamics (equation (5)) would preserve
phase space volume. This volume, however, is strongly contracted by spikes received in the post-synaptic neurons.
Consider trajectories from a small ball of initial conditions as they emit the same future spike. The ball of phases at
this spike contracts by a factor 1−d along each of the K dimensions of the subspace spanned by the post-synaptic
neurons. The volume thus contracts by (1− d)K → eλinh per spike, for K � 1, with exponential rate,

λinh ≈ −Kd . (8)

λinh < 0 is responsible for the linear stability of the dynamics given by equations (1) and (2), first shown in
Refs.16,22.

Phase-space partitioning

The phase space volume taken up by an ensemble of nearby trajectories at a given spike is contracted at the spike’s
reception. Larger phase space volumes, however, are not uniformly contracted but torn apart, with the pieces
individually contracted and overall dispersed across the entire traversed phase space volume. The elementary
phenomenon is illustrated in Fig. 1.

We define the critical perturbation strength, ε∗, as the flux tube’s extent out from a given state ~φ0 on the
equilibriated trajectory, ~φt, and in a given orthogonal perturbation direction, ~ξ,

ε∗(~φ0, ~ξ) := sup
{
ε
∣∣∣ lim
t→∞

Dt (ε) = 0
}
. (9)

Here, Dt (ε) is the 1-norm distance,

Dt (ε) :=
1

N

N∑
n=1

|φn,t − φn,t (ε)| , (10)
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between ~φt and the perturbed trajectory, ~φt(ε), evolving freely from the perturbed state, ~φ0 (ε) := ~φ0 + ε~ξ

(reference time t = 0 and ||~ξ|| = 1; see Supplemental Methods for details). ε∗ is the largest value below which
Dt (ε) vanishes in time. Dt initially decays exponentially, but for a supercritical perturbation, ε > ε∗, there exists
a divergence event time, t∗ > 0, defined and obtained as the time at which a sustained divergence in Dt begins
(see Fig. 1a).

A 2D cross-section of the phase space around ~φ0 (Fig. 1b) reveals that the locations of these critical perturbations
form lines which intersect to form polygon-shaped basin boundaries. Before developing a theory for this phase
space organization (caricatured in Fig. 1c), we first analyze two main features of the geometry of a flux tube: the
punctuated exponential decay of its cross-sectional volume and the exponential separation of neighboring tubes.

Punctuated geometry of flux tubes

As expected from the typical phase space volume contraction (see equation (8)), we find along a simulated
trajectory that the orthogonal phase space volume enclosed by the local flux tube exhibits exponential decay.
This decay, however, is punctuated by blowup events. Figure 2a displays the spiking activity produced by the
typical trajectory, ~φt. The neighborhood around ~φt over a time window is visualized in a folded representation
using a fixed, 2D projection of the phase space (Fig. 2b and Supplementary Video; see Supplemental Information
for construction details). The basin of attraction surrounding ~φt (Fig. 2b) consists of lines which remain fixed
between spike times. Across spike times, new lines appear and existing lines disappear. At irregular intervals
breaking up time windows of exponential contraction, large abrupt blowup events take the boundary away from
the center trajectory (Fig. 2b, c), producing jumps in the area enclosed by the boundary. It is important to note that
these events do not mean that the evolving phase space volume from an ensemble of states contained in the tube
would expand. Such volumes only contract and converge to the same asymptotic trajectory. The basin of attraction
itself, however, does not exclusively contract with time. In fact, it should on average maintain a typical size.

The blowup events typically coincide with a divergence event time, t∗ (Fig. 1a), in some perturbation direction.
Two such coincidences are visible in Fig. 2c,d. We conclude that the local basin at any time extends out in phase
space until the perturbed trajectory approaches the pre-image of a divergence event occurring at a future time. Flux
tube shape is then determined by the statistics of such events.

Tube boundary and divergence

We analyzed a set of divergence events from simulations. We find that a collision of a pair of spikes constitutes the
elementary event triggering the divergence of the perturbed trajectory. These pairs, hereon called susceptible spike
pairs, were generated by connected pairs of neurons. Moreover, a perturbation-induced collision of a susceptible
spike pair generated an abrupt spike time shift in one or both of the connected neurons’ spike times. We found
that the nature of the spike time shift depends on the motif by which the two neurons connect. We denote the
backward-connected pair motif ns∗ ← ns′ , where s∗, the decorrelation event index, is the spike index of the
earlier of the pair (note that t∗ ≡ ts∗ ), and s′ > s∗ labels the later spike in the pair.

For ε . ε∗, the presynaptic spike time, ts′=s∗+1, is advanced with increasing ε relative to the postsynaptic spike
time, ts∗ , until the two spikes collide (see Fig. 3). At collision (ε = ε∗), the pulsed inhibition and the rate of
approach to voltage threshold cause an abrupt delay of ts∗ by ∆tjump. Using equation (3), we obtain

∆tjump = τ ln [1 + d] ≈ τd = (Kν̄)
−1 (11)

for d � 1. Further details and the other two motifs (forward-connected and symmetrical) are discussed in the
Supplementary Notes.

For each spike in the network sequence, the rate of its susceptible spike partners is
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λsus = p/∆t = Kν̄ , (12)

where ∆t = (Nν̄)
−1 is the average distance between successive spikes. Since ∆tjump ≈ λ−1

sus, the spike time
of neuron ns∗ is shifted forward typically as far as its next nearest susceptible partner spike. Thus, one collision
event will typically induce another in at least one of the O (K) neurons to which the involved pair of neurons are
presynaptic. A cascade of collision events then follows with near certainty (see Supplemental Notes for details).

The shift in ts∗ by ∆tjump is carried forward to all future spike times of ns∗ , so that ns∗ becomes a source
of collision events. The total collision rate is then λsus multiplied by the number of source neurons, which
approximately increments with each collision in the cascade. Averaging over realizations of the cascade (reference
time t∗ = 0), the average number of collisions, m̄, grows as d

dtm̄ = λsusm̄. Finally, since each collision produces
a jump in distance of equal size, we obtain the pseudoLyapunov exponent, λp = λsus from its implicit definition,
D̄t = D̄0 exp [λpt] (see Supplemental Notes), as the exponential rate at which flux tubes diverge.

Statistical theory of flux tube diameter

The geometry of a flux tube is captured by the flux tube indicator function, 1FT (ε) = Θ
(
ε∗(~φ0, ~ξ)− ε

)
, evaluated

across network states, ~φ0, of its contained attracting trajectory and perturbation directions, ~ξ. Using the Heaviside
function, Θ(x), 1FT (ε) = 1 for perturbations remaining in the tube (ε < ε∗), and 0 otherwise. The average of
1FT (ε) over ~φ0 and ~ξ ,

Ŝ (ε) = [1FT (ε)]ρ(~φ0,~ξ) , (13)

is the survival function: the probability that an ε-sized perturbation does not lead to a divergence event later in the
perturbed trajectory, i.e. ε < ε∗, and is formally defined as Ŝ (ε) := 1−

∫ ε
0
ρ (ε∗) dε∗, with ρ (ε∗) the transformed

density over ε∗. Ŝ (0) = 1 and decays to 0 as ε → ∞. The scale of this decay defines the typical flux tube
size. Calculating Ŝ (ε) requires two steps: firstly, establishing a tractable representation of ε∗(~φ0, ~ξ) and secondly,
performing the average in equation (13). Both of these in general pose intricate problems. However, as we will
see next, both substantially simplify when generic properties of the asynchronous, irregular state are taken into
account.

Perturbed spike intervals are obtained using the spike time deviations, δts (ε) := ts (ε)− ts (0), s = 1, 2, . . . ,

∆ts (ε) = ts(ε)− ts−1(ε) = ∆ts (0) + δts (ε)− δts−1 (ε) , s ≥ 2. (14)

In a linear approximation we find,

δts (ε) ≈ −Casε , (15)

where C = Tfree√
N

converts network phase deviation to spike time deviation and as is a dimensionless susceptibility
that depends on the adjacency matrix,A = (Amn), derivatives of the phase response curve evaluated at the network
states at past spike times, {~φs′ = ~φts′} for s′ < s, and the perturbation direction ~ξ (see Supplemental Notes for its
derivation). Substituting equation (15) into equation (14) gives

∆ts (ε) ≈ ∆ts − C∆asε , (16)

with ∆ts = ∆ts (0). Note that ∆ts (ε) can have a zero, i.e. a spike time collision only when ∆as = as−as−1 > 0.

To obtain the scaling behavior of the flux tube geometry it is sufficient to examine the statistics of flux tube borders
using the corresponding divergence events generated by collisions of backward-connected susceptible spike pairs
in the perturbed trajectory (Fig. 3). In these cases, the perturbation strength ε → ε∗ as the network spike interval
∆ts∗ (ε) → 0 for Ans∗ns∗+1

= 1. In fact, the latter condition serves in these cases as an implicit definition of ε∗

and s∗.
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According to equation (16), Ŝ (ε) in principle depends on the adjacency matrix, A = (Amn), of the network
realization. Removing this dependence by averaging over the ensemble of graphs, PA ((Amn)), simplifies the
calculation of the survival function,

S (ε) =
[
Ŝ (ε)

]
PA((Amn))

. (17)

Evaluating the right-hand side of equation (17) using the perturbed spike intervals, linearized in ε, requires
knowledge of the joint probability density of all variables present in equation (16),

ρT = ρ({∆as} , {∆ts} ,M, ~φ0| ~ξ, (Amn)) ρ(~ξ) PA ((Amn)) , (18)

where we have chosen the perturbation direction, ~ξ, to be statistically independent of the state, ~φ0, being perturbed
at t = 0. Here, the unperturbed spike pattern is represented by two random variables: M , the number of spikes in
the time interval [0, T ] after the perturbation, and {∆ts}, the set of all M − 1 inter-spike intervals in this window.
It is well understood that in the large-system limit in a sparse graph, 1� K � N , the currents driving individual
neurons in the network converge to independent, stationary Gaussian random functions23. For low average firing
rates, this implies that the pattern of network spikes (M, {∆ts}) resembles a Poisson process24. Furthermore, the
susceptibility becomes state-independent in this limit. Neglecting the weak dependence between the distribution
of network spike patterns and A = (Amn), the full density, ρT (equation (18)), approximately factorizes,

ρT ∼ PAmn (Amn)PT (M)
M∏
s=2

ρt (∆t) 2Θ(∆as)ρa (∆as) , (19)

with distribution of a single adjacency matrix element, PAmn (Amn = 1) = p, PAmn(Amn = 0) = 1 − p, count
distribution of spikes in the observation window, PT (M), and distribution of single inter-spike interval ρt (∆t).
The latter is exponential with rate ∆t. With these approximations (see Supplementary Notes for details), all
dependencies on the distribution of perturbation direction are mediated by the susceptibilities, {∆as}. For any
isotropic ρ(~ξ) having finite-variance, ρa (∆as) has zero mean and standard deviation proportional to exp

[
λinh

N s
]
,

with the average contraction rate per neuron, λinh

N = −KdN = −pd, due to the inhibition. The factor 2Θ(∆as)
places support only positive values of ∆as as required.

As ρT factorizes, so does S (ε),

S (ε) = lim
T→∞

[
M∏
s=1

Ss (ε)

]
P (M)

=
∞∏
s=1

Ss (ε) , (20)

where Ss (ε) is the probability that a perturbation of strength ε does not lead to a collision event involving the sth

spike. With the above simplifications,

Ss(ε) =
[
Θ (∆t− C∆asε)

Amn
]
ρt(∆t)ρa(∆as)PAmn (Amn)

. (21)

Evaluating equation (21) (see Supplementary Notes for the derivation), we find

Ss(ε) = 1 + p (Erfcx [xs]− 1) , (22)

where xs = C
∆t
e
λinh
N sε ≤ ε/

√
p, and Erfcx [x] = ex

2
(

1− 2√
π

∫ x
0
e−y

2

dy
)

is the scaled complementary error
function. Erfcx [xs]− 1 ≈ −xs for ε/

√
p� 1, so that finally

S (ε) ≈
∞∏
s=1

(
1− Cλsuse

λinh
N sε

)
,

where we have identified λsus = p

∆t
. Employing the logarithm and Cλsusε ∝

√
pε� 1,
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S (ε) ≈ exp

[
λsus

λinh

N

Cε

]
= exp

[
− ε

ε∗

]
(23)

with

ε∗ =
1

C

∣∣λinh

N

∣∣
λsus

=

√
N

Tfree

pd

p/∆t
=
√
N∆t

d

Tfree

=
√
N∆t

|J | /IExt

τ/IExt
=
√
N∆t

|J |
τ

=

√
N

τ

∣∣∣−J0/
√
K
∣∣∣

Nν̄
(24)

ε∗ =
J0√
KNν̄τ

, (25)

where we have used equations (6) and (7) in the second line and note the cancellation of p and IExt. Equation (23)
shows for 1 � K � N that the basin diameter, ε∗, is exponentially distributed and so completely determined by
its characteristic scale, ε∗ (equation (25)), that is smaller for larger network size, higher average in-degree, higher
population activity, and larger membrane time constant, τ . ε∗ grows, however, with the synaptic coupling strength,
J0. In Fig. 4b, we see quantitative agreement in simulations between the definition of Ŝ (ε) (equation (13) using
the definition of ε∗, equation (9)) and its approximate microstate parametrization (equations (20), (21)). These
also confirm the exponential form of our reduced expression (equations (23), (25)) and a scaling dependence on
J0 (Fig. 4c). The latter holds until J is no longer of size O

(
1/
√
K
)

. The other scalings were reported in Ref.17.

A derivation of only the characteristic scaling of ε∗, but not depending on the Poisson spiking assumption, is given
in the Supplemental Notes.

The geometry of phase space partitioning

Figure 5 presents the phase space organization of these spiking circuits as we have revealed it, replacing the
caricature of Fig. 1c. For a perturbation made to a stable trajectory, the geometry of the determining collision
event is shown in Figure 5a, in a folded representation. The pre-images of this event determine the flux tube
boundary back to the perturbation. Our results also provide a global, i.e. non-folded geometry of the partitioning
(Fig. 5b(left)). Susceptible spike collisions are edges of the N -dimensional unit hypercube of phases where the
corresponding voltages of two connected neurons both approach threshold. The Poincare section obtained by
projecting the dynamics orthogonal to the trajectory (since no motion exists orthogonal to this subspace) then
reveals the intrinsic partition. Here, the polygon basin boundaries arise as the pre-images of the projections of
susceptible edges lying nearby the trajectory at future spike times (Fig. 5b(right)).

Discussion

We have developed a theory of phase space partitioning in spiking neural circuits, exemplified using the
phenomenon of flux tubes. Importantly, the approach yields the dependence on various control parameters.
We find the flux tube diameter contracts with the rate of volume contraction per neuron, λinh/N = (Nν̄τ)−1,
due to the inhibition received across the post-synaptic subspace of each spike. This contraction is punctuated,
however, by collision events between susceptible spikes, i.e. those from pairs of connected neurons, occurring at
rate λsus = (Kν̄)−1 and across which the basin volume expands out to a pre-image of the next collision event.
For some neighboring tube, this collision event sets off a cascade of such events with exponential rate, λsus that is
responsible for their mutual divergence. Using these collision events to identify the spiking trajectories lying on
flux tube boundaries, we were able calculate the size distribution of these basins. The average size is controlled by
the ratio of these two exponential rates. Leaving out a factor converting shifts in spike time to shifts in state,

ε∗ ∝ |J |
Nν̄
≡ stabilizing inhibitory coupling strength

destabilizing rate of spikes
.
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The final scaling, ε∗ = J0/
(√

KNν̄τ
)

, thus combines the contraction from the single neuron dynamics
responsible for the dissipative dynamics, with the overall rate of spikes, which appears since each spike can be
involved in a destabilizing collision event. Both contracting and expanding rates scale with the probability of
connection, p, so we intuitively expect p to appear in ε∗ only implicitly through J and, reassuringly, p indeed
cancels out.

Our framework motivates a variety of extensions. Our calculations can be performed for different disordered
connectivity ensembles (e.g. correlated entries from annealed dilution processes25 and structured second-order
statistics26), different activity regimes (e.g. non-Markovian spike interval processes27), and different single neuron
models (e.g. any threshold neuron with known phase response curve). We have applied the theory to an instability
caused by abrupt changes in spike time due to an inhibitory input near voltage threshold, a scenario that can also
be analyzed in neuron models with smooth thresholds (e.g. the rapid theta-neuron28 that has the LIF neuron as a
limit). The theory may also apply to other, as yet unknown instabilities involving spike collision events. Finally,
while the linear stability of the dynamics precludes finite, asymptotic (Kolmogorov-Sinai) entropy production,
the partition refinement picture we provide in Fig. 5b suggests a transient production of information about the
perturbation on timescales of the order of the divergence event time, t∗. Making this connection to ergodic theory
more precise is an interesting direction for future research.

Applying our approach in a relatively idealized context allowed for a tractable assessment of phase space
organization. Despite its simplicity, however, the LIF neuron accurately captures many properties of cortical
neurons, such as their dynamic response29. We have also neglected heterogeneity in many properties. For
instance, in contrast to the locally stable regime studied here, mixed networks of excitatory and inhibitory neurons
can instead be conventionally chaotic30. This chaos can nevertheless be suppressed in the ubiquitous presence
of fluctuating external drive31,32 or with spatially-structured connectivity33, suggesting a generality to locally
stable dynamics and phase space partitioning in neural computation. Our approach, in particular the way we
have quantified the ensemble of perturbed spiking trajectories, can inform formulations of local stability in these
more elaborate contexts. Of particular interest are extensions where a macroscopic fraction of tubes remain large
enough to realize encoding schemes tolerant of intrinsic and stimulus noise. For example, extensions to random
dynamical systems34,35 could provide theoretical control over spiking dynamic variants of rate network-based
learning schemes to generate stable, input-specific trajectories7.

Recent advances in experimental neuroscience have allowed for probes of the finite-size stability properties of
cortical circuit dynamics call for in vivo. For example, simultaneous intra- and extra-cellular recordings in the
whisker motion-sensing system of the rat reveal that the addition of a single spike makes a measurable impact on
the underlying spiking dynamics of the local cortical area36. Indeed, rats can be trained to detect perturbations to
single spikes emitted in this area37. Representative toy theories, such as the one we provide, can guide this work by
highlighting the features of spiking neural circuits that contribute to phase space partitioning. The combined effort
promises to elucidate the dynamical substrate for neural computation at the level at which the neuronal interactions
actually operate.
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Figure 1 Finite-size perturbation instability and phase space partitioning in spiking networks. The three panels display
the same slightly subcritical and supercritical perturbation of strength ε∗ ± δ, δ & 0, respectively, applied once at t = 0 and
in a random direction away from an equilibriated trajectory. (a) Temporal responses of the system. Top: The corresponding
distance time series, Dt(ε), between the perturbed and unperturbed trajectories (gray: sub-critical, blue: super-critical; arrows
in all three panels indicate the respective the perturbation). The divergence of Dt(ε

∗ + δ) begins at t∗ ≈ 3 ms, and saturates
at the average distance between randomly chosen trajectories, D̄ (dashed line) 17, while Dt(ε

∗ − δ) only decays exponentially.
Middle: The spike times as vertical ticks of the first 50 randomly labeled neurons from the network. The unperturbed sequence
is shown in black. Bottom: The subthreshold voltage time course of an example neuron. The spike sequence and membrane
potentials of the sub and supercritical trajectories decorrelate after t∗. (b) A 2D cross-section (δφ1, δφ2) of the pseudophase
representation of the phase space, orthogonal to and centered on the unperturbed trajectory from (a) at t = 0 (see also Ref. 15).
The black dot at the origin indicates the latter, whose attractor basin is colored gray. The other colors distinguish basins in the
local neighborhood. The two perturbed trajectories from (a) were initiated from (δφ1, δφ2) = (0, ε∗ ± δ), respectively (shown
as gray and blue dots, respectively, in the inset, in (a,Top and Bottom), and in (c)). (c) Schematic phase space caricature of two
neighboring flux tubes with subcritical perturbations decaying on the order of the membrane time constant, τ , and typical basin
diameter, ε∗. The pseudoLyapunov exponent, λp, is the rate at which neighboring tubes separate from each other (parameters:
N = 200, K = 50, ν̄ = 10 Hz, τ = 10 ms, J0 = 1).
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Figure 2 The basin boundary contracts towards and can blowup away from the stable trajectory within it. (a)
Spike times from all neurons of the simulated trajectory, ~φt, in a 150 ms window. (b) 2+1D folded phase space
volume, (δφ1, δφ2, t), centered around ~φt located at (0, 0, t) (black line) and extended in two fixed, random
directions, ~δφ1 and ~δφ2. The center tube is filled gray in this volume, and the two cross-sections, (δφ1, δφ2, 0)
and (δφ1, δφ2, 150), are shown. (c) Cross-sectional area of the center tube from (b) versus time. The area decays
exponentially but can undergo abrupt expansions at blow-up times, e.g. at spikes s1 and s2 (note the logarithmic
scale on the ordinate). (d) The absolute time of the next divergence event, t∗ (see Fig. 1a, top), versus time, for
perturbations along ~δφ1. Note the step increase coincident with the blowup events seen in (b,c) (vertical, dashed
lines). (Same parameters as Fig. 1.)
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Figure 3 The collision of a susceptible spike pair causes an abrupt change in spike time. (a) A schematic
illustration of the collision event for the backward-connected pair motif (shown in inset). For this motif, the
interval vanishes as ε → ε∗ from below. Perturbation strength, ε, is plotted versus time, where the timings of
spikes for every perturbation strength are indicated as ticks on lines. The spike times shift continuously for ε < ε∗.
As the next input spike time, ts∗+1 (ε∗ − δ), is advanced over ts∗ (ε∗ + δ)A discontinuous jump of size ∆tjump

occurs in the spike time of the post-synaptic neuron, ns∗ (light to dark blue) from ts∗ (ε∗ − δ) to ts′>s∗ (ε∗ + δ),
δ & 0. (b) Schematic illustration of the voltage of the ns∗ neuron versus time for ε∗ ± δ. The inhibitory kick of
size J = −J0/

√
K (not shown to scale) delays the spike time by an amount ∆tjump ∼ (Kν̄)

−1.
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Figure 4 The flux tube indicator function, once expressed with microstate variables and averaged, gives the
survival probability to remain in the containing flux tube. (a) Spike-time deviations, δts (ε) (dots), as a function of
perturbation strength up to the positive and negative critical strength, ε∗− and ε∗+, respectively, for s = 1, . . . , 15
(colors) with their linear approximation (lines) given by equation (15). Inset: δts (ε) as a function of s (shown
for ε = 0.2ε∗±, 0.4ε∗±, 0.6ε∗±, 0.8ε∗±) decays exponentially at a rate near the maximum and mean Lyapunov
exponent, λmax (black line) and λmean (black-dashed line) respectively17. (b) The survival probability function
S (ε) from simulations (dots, equation (13); bars are standard error), theory (line, equations (20),(21)), and the

simplified theory at large K, exp
[
−ε/ε∗

]
(dotted line, equation (23)), where ε∗ =

(√
KNν̄τ/J0

)−1

. (c) S (ε)

from simulations (dots) and exp
[
−ε/ε∗

]
(lines) for J0 = 2n, n = −2,−1, 0, 1, 2. (Same parameters as Fig. 1

except N = 104, K = 103.)
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Figure 5 Flux tube boundaries are the pre-images of future susceptible spike collisions. (a) A folded phase
space representation of a susceptible spike collision. Spikes (ticks) occur at a rateNν̄ in the unperturbed trajectory
(black line). For an example spike (blue tick), its susceptible spike partners (red ticks) occur at lower rate Kν̄.
Small perturbations (gray arrows) lead to trajectories (gray) exhibiting spike time deviations that decay over time
(tick alignment). A larger perturbation (example just beyond the critical perturbation strength: blue arrow) can
push a spike and one of its susceptible partner spikes in the subsequent trajectory (blue and red, respectively) to
collide, generating a divergence event at spike s∗. The indicator function, 1FT (ε), has support (dark gray) only
over the local tube. (b) Constructing the local flux-tube partition in the non-folded phase space. Left: Susceptible
spikes are represented by susceptible edges (thick green lines) of the unit hypercube having ~1 = (1, . . . , 1) (black
dot) as an endpoint. An intrinsic random partition (thin green lines) is generated by projecting these edges onto
the hyper-plane orthogonal to ~1 (light gray). A given trajectory (labeled sequence of small dots) and its local
neighborhood (within black dashed lines) is shown. Right: The flux tube partition for this trajectory at a given
spike (here s1) is obtained from back-iterating the intrinsic partition from all future spikes (here only partitions
from s2, s3, and s4 are back-iterated; dashed lines). The partition at sufficiently distant future spikes (here the
gray edge at s4) will no longer refine the partition in the local neighborhood at s1, since the expansive backwards
dynamics maps the projected edges outside the neighborhood. A concrete example obtained from simulations is
presented in the Supplemental Notes.
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