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ABSTRACT
Association mapping (AM) methods are used in genome-wide asso-
ciation (GWA) studies to test for statistically signi�cant associations
between genotypic and phenotypic data. �e genotypic and pheno-
typic data share common evolutionary origins – namely, the evo-
lutionary history of sampled organisms – introducing covariance
which must be distinguished from the covariance due to biological
function that is of primary interest in GWA studies. A variety of
methods have been introduced to perform AM while accounting
for sample relatedness. However, the state of the art predominantly
utilizes the simplifying assumption that sample relatedness is ef-
fectively �xed across the genome. In contrast, population genetic
theory and empirical studies have shown that sample relatedness
can vary greatly across di�erent loci within a genome; this phe-
nomena – referred to as local genealogical variation – is commonly
encountered in many genomic datasets. New AM methods are
needed to be�er account for local variation in sample relatedness
within genomes.

We address this gap by introducing Coal-Miner, a new statis-
tical AM method. �e Coal-Miner algorithm takes the form of a
methodological pipeline. �e initial stages of Coal-Miner seek to
detect candidate loci, or loci which contain putatively causal mark-
ers. Subsequent stages of Coal-Miner perform test for association
using a linear mixed model with multiple e�ects which account for
sample relatedness locally within candidate loci and globally across
the entire genome.

Using synthetic and empirical datasets, we compare the statistical
power and type I error control of Coal-Miner against state-of-the-
art AM methods. �e simulation conditions re�ect a variety of
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genomic architectures for complex traits and incorporate a range
of evolutionary scenarios, each with di�erent evolutionary pro-
cesses that can generate local genealogical variation. �e empirical
benchmarks include a large-scale dataset that appeared in a re-
cent high-pro�le publication. Across the datasets in our study, we
�nd that Coal-Miner consistently o�ers comparable or typically
be�er statistical power and type I error control compared to the
state-of-art methods.
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1 INTRODUCTION
Genome-wide association (GWA) studies aim to pinpoint loci with
genetic contributions to a phenotype by uncovering signi�cant
statistical associations between genomic markers and a phenotypic
trait under study. We refer to the computational methods used in a
GWA analysis as association mapping (AM) methods. Among the
most widely studied organisms in GWA studies are natural human
populations and laboratory strains of house mouse. Recently, GWA
approaches have been applied to natural populations of other organ-
isms sampled from across the Tree of Life. For example, the study
of Consortium [10] published whole genome sequences for over
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a thousand samples from globally distributed Arabidopsis popula-
tions. In combination with phenotypic data, the genomic sequence
data was used in a GWA analysis to pinpoint genomic loci involved
in �owering time at two di�erent temperatures. Other recent GWA
studies such as the study of Porter et al. [47] have focused on bacte-
ria and other microbes (see [9] for a review of relevant literature).

Regardless of sampling strategy – from one or more closely
related populations involving a single species to multiple popula-
tions from divergent species – it is well understood that sample
relatedness can be a confounding factor in GWA analyses unless
properly accounted for. Intuitively, the genotypes and phenotypes
of present-day samples re�ect their shared evolutionary history, or
phylogeny. For this reason, covariance due to a functional relation-
ship between genotypic markers and a phenotypic character must
be distinguished from shared covariance due to common evolu-
tionary origins. EIGENSTRAT [49] is a popular AM method which
accounts for sample relatedness as a �xed e�ect. Other statistical
AM methods have utilized linear mixed models (LMMs) to capture
sample relatedness using random e�ects; these include EMMA [30],
EMMAX [29], and GEMMA [62]. �e question of whether sample
relatedness is be�er modeled using the former or the la�er – i.e.,
using �xed vs. random e�ects – is a ma�er of ongoing debate
[50, 56].

Local variation in functional covariance across the genome is
a crucial signature that AM methods use to uncover putatively
causal markers. In contrast, virtually all of the most widely used
state-of-the-art AM methods assume that covariance due to sample
relatedness does not vary appreciably across the genome. Sample
relatedness is therefore evaluated “globally” across the genome,
eliding over “local” genealogical variation across loci. �e la�er has
been observed by many comparative genomic and phylogenomic
studies (see [16] for a review of relevant literature). It is well un-
derstood now that local genealogical variation within genomes is
pervasive across a range of evolutionary divergence – from struc-
tured populations within a single species to multiple species at
various scales up to the Tree of Life, the evolutionary history of
all living organisms on Earth. Topological incongruence can be
severe: for example, within a range of evolutionary conditions re-
ferred to as the “anomaly zone”, the topology of the most frequently
observed local genealogy can be incongruent with the species phy-
logeny itself [11]. �e evolutionary processes that can contribute
to local genealogical variation include genetic dri� and incomplete
lineage sorting, recombination, gene �ow, positive selection, and
the combination of all of these processes (and others) [16, 18]. �ese
observations are applicable across di�erent GWA se�ings ranging
from traditional studies involving closely related populations repre-
senting a single species to a comparative study involving multiple
species. �e la�er typically involves relatively greater evolution-
ary divergence, which introduces added complexity in terms of
accounting for sample relatedness.

Computational approaches for detecting local genealogical varia-
tion are broadly characterized by their modeling assumptions. One
class of methods makes use of the Four-Gamete Test [24], which
requires the simplifying assumption that sequence evolution can be
described by the in�nite sites model. Methods in this class include
the LRScan algorithm [59]. Another class of parametric methods
make use of �nite sites models of sequence evolution. One example

is RecHMM [61], which applies a sequentially Markovian approxi-
mation [40] to the full coalescent-with-recombination model [21].
More recently, coalescent-based methods have been developed to
infer local coalescent histories and explicitly ascribe local genealog-
ical variation to di�erent evolutionary processes. Examples include
Coal-HMM [15, 20, 37, 38] and PhyloNet-HMM [35].

To address this methodological gap, we recently introduced Coal-
Map, a new AM method that accounts for local genealogical vari-
ation across genomic sequences. Coal-Map performs statistical
inference under a linear mixed model (LMM). �e LMM utilizes
�xed e�ects to account for global sample relatedness and, depending
upon whether the test marker is located within a locus containing
putatively causal markers, local sample relatedness as well. �e lat-
ter condition is evaluated using model selection criteria. Coal-Map
required local-phylogeny-switching breakpoints as input. We vali-
dated Coal-Map’s performance using simulated and empirical data.
Our performance study demonstrated that Coal-Map’s statistical
power and type I error control was comparable or be�er than other
state-of-the-art methods that account for sample relatedness using
�xed e�ects.

2 METHODS
2.1 Overview of Coal-Miner algorithm
We begin by introducing the high-level design of Coal-Miner, our
new algorithm for statistical AM which accounts for local variation
of sample relatedness across genomic sequences. �e input to the
Coal-Miner algorithm consists of: (1) ann byk multi-locus sequence
data matrix X , (2) a phenotypic character y, and (3) `∗, the number
of “candidate loci” used during analysis, where a candidate locus
is a locus that is inferred to contain one or more putatively causal
SNPs. �e output consists of an association score for each site
x ∈ X .

Coal-Miner’s statistical model captures the relationship between
genotypic data X and the phenotypic character y in the form of a
linear mixed model (LMM). �e LMM incorporates multiple e�ects
to capture the phenotypic contributions of and local genealogical
variation among multiple candidate loci. A candidate locus is repre-
sented by a �xed e�ect, and a random e�ect is included to capture
“global” sample relatedness as measured across all loci in X . Ideally,
the set of candidate loci identi�ed during a Coal-Miner analysis is
identical to the set of causal loci (i.e., loci containing causal SNPs)
for the trait under study; in practice, the set of candidate loci are
inferred as part of the Coal-Miner algorithm, which we discuss in
greater detail below. �e LMM takes the following form (in the
notation of Zhou and Stephens [62]):

y =Wα + xβ + Zu + ϵ

u ∼ MVNm (0, λτ−1Kglobal)

ϵ ∼ MVNn (0,τ−1In )

�e �xed e�ects are represented by covariates W with coe�-
cients α , which include covariates that capture local sample re-
latedness within each candidate locus, and the test SNP x with
e�ect size β . Global sample relatedness (i.e., sample relatedness as
measured across all loci in the genotypic data X ) is speci�ed by the
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relatedness matrix Kglobal. �e random e�ects u and ϵ account for
global sample relatedness and residual error, respectively. Each of
the two random e�ects follows an m − dimensional multivariate
normal distribution (abbreviated “MVN”) with mean 0. �e random
e�ectsu have covariance λτ−1Kglobal and the random e�ects ϵ have
covariance τ−1In , where λ is the relative ratio between the two, In
is the identity matrix, and the residual errors have variance τ−1. Z
is the design matrix corresponding to random e�ects u.

�e design of the Coal-Miner algorithm takes the form of a
methodological pipeline. We now discuss each pipeline stage in
turn.

2.2 Stage one of Coal-Miner: inferring
local-phylogeny-switching breakpoints

�e input to the �rst stage of Coal-Miner is the genotypic data
matrixX . �e output consists of a set of local-phylogeny-switching
breakpoints b which partition the sites in X into loci {Xi }, where
1 ≤ i ≤ ` and ` is the number of loci. We require that `∗ ≤ `. (�e
ratio of `∗ and ` depends upon the genomic architecture of the trait
corresponding to character y.)

�e general approach to address this computational problem
is to infer local coalescent histories under an appropriate exten-
sion of the multi-species coalescent (MSC) model [22, 31, 58], and
then to assign breakpoints based upon gene tree discordance. Each
pair of neighboring breakpoints delineates a locus for use in down-
stream stages of the Coal-Miner pipeline. �e speci�c choice of
model/method depends upon the relevant evolutionary processes
involved in multi-locus sequence evolution, particularly regarding
the source(s) of local genealogical discordance.

In this study, we use one of two di�erent methods, depending
upon assumptions about biomolecular sequence evolution. In the
simulation study, the simulations make use of the in�nite sites
model. We therefore used the LRScan algorithm [59] to compute
local-topology-switching breakpoints based upon the Four Gamete
Test (FGT) [24]. In the empirical study, we did not make use of
the in�nite sites model and its assumptions about sequence evolu-
tion. Furthermore, multiple evolutionary processes were known
to be involved in multi-locus sequence evolution, including ge-
netic dri�/incomplete lineage sorting (ILS), recombination/gene
conversion, gene �ow/horizontal gene transfer (HGT), and natural
selection. Breakpoint inference under the corresponding extended
MSC model is suspected to be a computationally di�cult problem.
Existing methods for this problem (e.g., PhyloNet-HMM [35]) did
not have su�cient scalability for the dataset sizes examined in our
study. As a more feasible alternative, we inferred local-topology-
switching breakpoints using Rec-HMM [61]. Rec-HMM performs
�xed-species-phylogeny inference of local genealogies under a sta-
tistical model that combines a �nite-sites substitution model and a
hidden Markov model which is meant to capture intra-sequence
dependence (such as arises from recombination and other evolu-
tionary processes).

2.3 Stage two of Coal-Miner: identifying
candidate loci

�e input to the second stage of Coal-Miner consists of the geno-
typic data matrix X , the set of breakpoints b which partition X

into loci {Xi }, where 1 ≤ i ≤ ` and ` is the number of loci, the
phenotypic character y, and `∗, the number of candidate loci to
identify. �e output is a set of candidate loci {X ∗j } ⊆ {Xi } where
1 ≤ j ≤ `∗.

Our general approach to this problem consists of a search among
possible sets of candidate loci {X ∗j } using optimization under a
“null” version of Coal-Miner’s LMM, where we do not consider a
test SNP (i.e., β = 0 in Coal-Miner’s LMM) and the phenotypic
contributions from causal SNPs in each candidate locus X ∗j is cap-
tured by covariates {w j } ⊆W . Since we compare ��ed LMMs that
may have varying �xed e�ects, we use LMM log-likelihood as our
optimization criterion (reproduced from equation (3) in [62]):

L (λ,τ ,α , β ) =
n

2 log(τ ) − n

2 log(2π ) − 1
2 log |H |

−
1
2τ (y −Wα − xβ )TH−1 (y −Wα − xβ )

whereG = ZKglobalZ
T andH = λG+In . Due to the computational

di�culty of this optimization problem, numerical optimization
procedures are typically used. We obtained estimates of λ in the
range of [10−5, 1] using the optimization heuristic implemented in
the GEMMA so�ware library [62], which combines Brent’s method
[8] and the Newton-Raphson method.

For each candidate locus X ∗j , sample relatedness was evaluated
using principal component analysis (PCA) [27] of X ∗j – similar to
techniques that are widely used by AM methods to account for
global sample relatedness as �xed e�ects [49]. �e phenotypic con-
tribution of candidate locus X ∗j was represented using covariates
{w j } which consisted of the top �ve principal components. (�e zth
principal component corresponds to the sample covariance matrix
eigenvector with the zth largest eigenvalue.) For added computa-
tional e�ciency, we substituted the following search heuristic in
place of set-based search among all possible `∗-size sets of candi-
date loci. For each locus Xi , we used MLE to �t an equivalent LMM,
except that the covariatesW included only the covariates {wi } for
locus Xi (as computed using the above PCA-based procedure). �e
output set of candidate loci consists of the top `∗ loci based upon
��ed LMM likelihood.

2.4 Stage three of Coal-Miner: SNP-based
association testing

�e input to the third stage of Coal-Miner consists of the genotypic
data matrix X , the set of breakpoints b which partition X into loci
{Xi }, where 1 ≤ i ≤ ` and ` is the number of loci, the phenotypic
character y, and the set of candidate loci {X ∗j }. �e output of this
stage is Coal-Miner’s �nal output.

Each test SNP x is tested for association under Coal-Miner’s
LMM. Variation in local sample relatedness across candidate loci
{X ∗j } is captured by covariates inW : speci�cally, if the test SNP x

is located within a candidate locus X ∗j , the covariatesW include a
corresponding covariatew j which consists of the top principal com-
ponent from PCA applied to X ∗j (see above discussion of previous
stage), and otherwise not. (Stages two and three of the Coal-Miner
pipeline utilize di�erent covariatesW due to the absence or pres-
ence of a test SNP e�ect in their respective LMMs.) �e LMM is
��ed using the likelihood-based numerical optimization procedures
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that are also used in stage two of Coal-Miner, and the association
score is computed using a likelihood ratio test.

2.5 Simulation study
Experiments involving quantitative traits with varying ge-
nomic architectures. Neutral simulations of multi-locus sequence
data were based upon either tree-like or non-tree-like evolutionary
scenarios. �e evolutionary scenarios shared a species phylogeny
that we used in a prior simulation study (shown in Supplementary
Figure S1 panels (a) and (b)). We used ms [23] to simulate coales-
cent histories (and embedded gene trees) under an extension of the
coalescent model [31] which allows instantaneous unidirectional
admixture (IUA) [14]. Under this model, the parameterization of
the model phylogeny includes an admixture proportion γ . Appro-
priate choices of γ allow us to explore the impact of tree-like and
non-tree-like evolution in our simulation study, where we utilized
a γ of 0.0 and 0.5, respectively. Each replicate dataset sampled 10
independently and identically distributed loci and 1000 individuals;
taxa A, B, and C were represented by 250, 250, and 500 samples,
respectively. Bi-allelic sequence evolution was simulated under the
in�nite sites model to obtain 250 bp per locus, resulting in total
sequence length of 2.5 kb per replicate dataset.

As a means to investigate the impact of the genomic architecture
of phenotypes, we simulated phenotypic characters using the ap-
proach from our previous work [19]. For each synthetic multi-locus
sequence dataset in the neutral simulations, we randomly selected
either 10%, 20%, or 30$ of loci as causal. Twenty causal SNPs were
then randomly selected from causal loci such that each causal locus
contained at least one causal SNP and causal SNPs had minor allele
frequency between 0.1 and 0.3. Given a set of causal SNPs δ , we
sampled character y under an extension of the quantitative trait
model used by Long and Langley [36] and Besenbacher et al. [6].
�e trait value for the ith individual is represented as:

yi = π
∑
j ∈ω

Qi, j

|δ |
+ (1 − π )N (0, 0.01)

where π speci�es the ratio between the genotypic contribution
and an environmental residual, Q is 1 if sample i has the derived
allele at the jth causal SNP and 0 otherwise, and the environmental
residual is normally distributed with mean 0 and standard deviation
0.01. Our simulations utilized a ratio π of 0.5.

Our simulation study also included non-neutral simulations that
incorporated positive selection. We used msms [17] to conduct
forward-time coalescent simulations of genotypic sequence evolu-
tion (in place of an otherwise equivalent neutral backward-time
coalescent simulation using ms), where causal loci were evolved un-
der deme-dependent positive selection with a �nite sites mutation
model and all other loci evolved neutrally (as discussed above in
the neutral simulation procedure). We used a selection coe�cient
of s = 0.56, which is in line with estimates from prior studies of
positive selection in natural Mus populations [54]. �antitative
traits with between one and three causal loci were simulated using
the above procedure.

�e simulation study experiments involving quantitative traits
with varying genomic architectures included 12 di�erent model
conditions in total. To recap, the model conditions di�ered in

terms of the number of causal loci (between one and three), model
phylogeny (either tree-like or non-tree-like), and the presence or
absence of positive selection. For each model condition, we repeated
the simulation procedure to obtain 20 replicate datasets.

Experiments involving alternative evolutionary scenarios.
Multi-locus sequence evolution in the above simulations is impacted
by genetic dri� and incomplete lineage sorting, admixture, positive
selection, and combinations of these processes. Our simulation
study also included additional model conditions that involved al-
ternative models of multi-locus sequence evolution. Each model
condition was an extension of the above neutral model condition
with 10% causal loci. One set of model conditions varied split time
t1 in the above model tree (i.e., γ = 0). Another set of model condi-
tions varied admixture time t1 in the above model phylogeny where
γ = 0.5. �e impact of recombination was explored in a model
condition which made use of the coalescent-with-recombination
model [21]. �e simulations generated 2.5 kb alignments under a
�nite-sites model of recombination with per-generation crossover
probability between adjacent sites of 10−9.85, which is 1-2 orders
of magnitude smaller than estimates for mouse, rat and human
[26]. We further explored the impact of gene �ow using a model
condition which substituted the isolation-with-migration model
[44] in place of the IUA model.

Open data access, methods, and performance evaluation.
Detailed so�ware commands and instructions for accessing sim-
ulation study datasets under an open license are provided in the
SI.

�e other methods in our study consisted of Coal-Map, GEMMA,
and EIGENSTRAT. We followed the procedure from our original
study [19] to obtain FGT-based local-phylogeny-switching break-
points and run Coal-Map analyses. For consistency with the other
LMM-based AM methods in our study, we ran GEMMA using an
IBS kinship matrix as our measure of global sample relatedness and
MLE and LRT to obtain association scores. EIGENSTRAT was run
with default se�ings using the top ten principal components from
the genotypic data matrix X , following the recommendations of
Price et al. [49]. Detailed so�ware commands are listed in the SI.

We evaluated performance based on statistical power, type I
error, and AUROC. To compare AUROC, we performed Delong
et al. tests [12] using the Daim v. 1.1.0 package [48] in R [51].
Custom scripts were used to conduct the simulation study; all
scripts are provided under an open source license (see SI for details
and download instructions).

2.6 Empirical study
Arabidopsis dataset. �e dataset consists of whole genome sequence
(WGS) data and phenotypic data for two quantitative traits: �ower-
ing time at 10 ◦C and 16 ◦C. A total of 1,135 samples from natural
populations across the globe are represented. �e phylogeny shown
in Supplementary Figure S16 depicts the geographic origins of and
evolutionary relationships among the samples. �e dataset was
originally published and analyzed by Consortium [10], and we ob-
tained genomic sequences and quantitative trait data from the 1001
Genomes Project database [10] (accessible at www.1001genomes.
org); the former includes both assembled WGS data and variant
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calls for a total of 10,707,430 biallelic SNPs. (Details about sequenc-
ing, assembly, �ltering, quality controls, and variant calling are
described in [10].)

Stage one of the Coal-Miner pipeline made use of RecHMM [61]
to infer local-phylogeny-switching breakpoints. For computational
e�ciency, the breakpoint inference utilized a subset of taxa rather
than the full set of taxa. �e subset was chosen to maximize evolu-
tionary divergence and was comprised of one sample from each of
the following geographic regions: Spain, Sweden, USA, and Russia.
For chromosomes 1 through 5, the analysis in stage one resulted in
1876, 991, 783, 559, and 913 loci with an average locus length of 16
kb, 19 kb, 30 kb, 33 kb, and 29 kb, respectively.

Using the loci obtained in stage one as input, the second stage
of Coal-Miner was run on both trait characters. �e 10 ◦C analysis
identi�ed 179, 99, 108, 109, and 95 candidate loci in chromosomes
1 through 5, respectively. �e 16 ◦C analysis identi�ed 115, 42, 88,
65, and 89 candidate loci in chromosomes 1 through 5, respectively.
Coal-Miner also requires that `∗, the number of candidate loci, be
provided as an input parameter. We followed the general approach
of Solı́s-Lemus and Ané [53] to determine a suitable value for `∗.
Speci�cally, we calculated the likelihood score of the ��ed “null”
LMM for each locus (see above), and we examined the distribution
of likelihood scores (Supplementary Figure S15). We then assigned
`∗ based on the distribution’s in�ection point.

�e inputs to the third stage of Coal-Miner consisted of the set
of candidate loci, a quantitative trait character (�owering time at
either 10 ◦C or 16 ◦C), and the genotypic sequence data matrix
which consisted of sites with minor allele frequency threshold of
0.3. �e third stage of Coal-Miner was run using the same se�ings
as in the simulation study.

Heliconius erato dataset. We re-analyzed data from the study of
Supple et al. [57]. �e dataset includes 45 H. erato samples collected
from four hybrid zones located in Peru, Ecuador, French Guiana,
and Panama. Each sample exhibits one of two red phenotypes –
postman and rayed – where 28 samples had the postman phenotype
and 17 samples had the rayed phenotype. �e genotypic data were
sequenced from the 400 kb genomic region referred to as the D
interval in H. erato. �e D interval spans 56,862 biallelic SNPs and is
known to modulate red phenotypic variation. Coal-Miner was run
on theH. erato dataset using the same approach as in theArabidopsis
dataset analysis (see above). �e �rst stage of Coal-Miner identi�ed
seven loci and the second stage inferred a single candidate locus.

Burkholderiaceae dataset. Bacteria belonging to the Burkholderi-
aceae are of interest given their importance in human and plant dis-
ease, but also given their role as plant and fungal endosymbionts and
their metabolic capacity to degrade xenobiotics. Fully sequenced
(closed) genomes belonging to Burkholderiaceae were selected and
downloaded from the PATRIC web portal (www.patricbrc.org/) [60].
Supplementary Table S5 lists sampled species names along with
other information (IDs, groups, and pathogenicity). We chose to
maximize phylogenetic and ecological diversity in this sampling, so
we included available genomes belonging to free-living, pathogenic,
and endosymbiotic species spanning across the genera Burkholderia,
Ralstonia, Pandoraea, Cupriavidus, Mycoavidus, and Polynucleobac-
ter. A total of 57 samples were included, of which 52 samples were
free-living and 5 were endosymbionts. Genomes ranged in size
from 1.56 Mb to 9.70 Mb and spanned between 2,048 and 9,172

coding DNA sequences (CDS). �e so�ware package Proteinortho
[32] was run using default parameters to detect single copy or-
thologs in the selected genomes. A total of 549 orthologs were
recovered in the Proteinortho analysis. We analyzed a phenotype
that identi�ed each sample’s status as either an animal pathogen or
non-animal pathogen. Coal-Miner was used to analyze the genomic
sequence data and phenotypic character using the same approach
as in the other empirical analyses (see above). �e initial stages
of Coal-Miner identi�ed 55 candidate loci. Genes with signi�cant
associations based upon the Coal-Miner analysis were further clas-
si�ed based upon their Gene Ontology [3] and KEGG [28] pathway
assignments.

3 RESULTS
In this study, we introduce Coal-Miner, a new statistical AM method
which advances the state of the art in terms of its statistical power
and type I error control. Coal-Miner’s performance advantage de-
rives primarily from two factors. First, Coal-Miner utilizes a new
LMM with multiple e�ects to explicitly capture the genomic ar-
chitecture of a phenotype, where both genotypic and phenotypic
characters are the product of a complex evolutionary history which
can cause sample relatedness to vary locally across genomic loci.
�e LMM captures global sample relatedness as a random e�ect,
in contrast to the �xed-e�ect approach used by Coal-Map. Second,
the pipeline-based design of Coal-Miner incorporates an interme-
diate stage to infer candidate loci for use in the new LMM. We
validated the performance of Coal-Miner using two di�erent types
of datasets: synthetic datasets and empirical datasets sampled from
natural populations of non-model organisms – each from a di�er-
ent kingdom. �e synthetic datasets were simulated under a range
of evolutionary scenarios that included multiple causes of local
genealogical variation (see Methods for more details).

3.1 Simulation study
Experiments involving varying genomic architecture of a quantita-
tive trait. We conducted experiments that varied the proportion
of causal loci as a means to investigate the impact of the genomic
architecture of a trait on AM method performance. �e model condi-
tions utilized simulations with between 10% and 30% causal loci and
either neutral or non-neutral evolution on either tree-like or non-
tree-like model phylogenies. �e methods under study included
Coal-Miner, our new AM method, as well as representative meth-
ods from di�erent classes of state-of-the-art methods: Coal-Map, a
LMM-based AM method that accounts for local and global sample
relatedness as �xed e�ects, GEMMA, a LMM-based AM method
that accounts for global sample relatedness as a random e�ect (but
does not account for local sample relatedness), and EIGENSTRAT,
an AM method that accounts for global sample relatedness as a
�xed e�ect (but does not account for local sample relatedness). We
compared the statistical power and type I error control of each
method using receiver operating characteristic (ROC) curves (Sup-
plementary �gures S2 through S5), and Table 1 1 compares the area
under ROC curve (AUROC) of each method.

Regardless of the proportion of causal loci and the evolutionary
scenario explored in these model conditions, Coal-Miner’s AUROC
was signi�cantly be�er than the next best method in our study
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(either Coal-Map or GEMMA) based upon the corrected test of
DeLong et al. [12] (Table 1). A similar observation was made when
measuring performance using true positive rate (TPR) at a false
positive rate (FPR) of 0.1 (Supplementary Table S2), except that Coal-
Miner’s performance advantage over the next best method was even
more pronounced. �e TPR di�erence was 0.158 on average and
ranged as high as 0.248. Across these model conditions, we observed
a consistent ranking of AM methods by AUROC (with two minor
exceptions): Coal-Miner �rst, Coal-Map second, GEMMA third, and
EIGENSTRAT fourth. �e minor exceptions involved the two lowest
AUROC values on the neutral, non-tree-like model condition with
10% or 20% causal loci, where GEMMA and EIGENSTRAT swapped
rankings. We noted that Coal-Map’s AUROC was second best on
model conditions with the smallest proportion of causal loci, but its
performance tended to degrade as the proportion increased. Coal-
Map’s AUROC was only marginally be�er than GEMMA on model
conditions with the highest proportion of causal loci.

�e impact of varying the proportion of causal loci was similar
for all methods: AUROC tended to degrade as the proportion of
causal loci increased from 10% to 30%. However, Coal-Miner’s
performance advantage relative to the other AM methods was �at
or improved as the proportion of causal loci increased.

�e model conditions included di�erent combinations of genetic
dri�/incomplete lineage sorting and/or gene �ow – evolutionary
processes which can generate local variation in sample related-
ness. Note that model conditions with non-tree-like model phylo-
genies incorporated all of these evolutionary processes (including
genetic dri�/incomplete lineage sorting). �e impact of the di�erent
evolutionary processes di�ered across the methods. Coal-Miner’s
AUROC tended to be larger on model conditions involving both
dri�/ILS and gene �ow as sources of local genealogical variation,
and Coal-Map’s AUROC was similarly a�ected. On the other hand,
GEMMA’s AUROC was comparable (within 0.01) based on this
comparison, with the exception of non-neutral model conditions
involving 10% or 20% causal loci.

A comparison of model conditions that di�ered only with re-
spect to neutral versus non-neutral evolution revealed the impact
of positive selection on AM method performance. We note that,
in our experiments, causal loci evolved di�erentially compared to
non-causal loci since positive selection acted only upon the former
but not the la�er. Coal-Miner and Coal-Map returned comparable
AUROC (within 0.025) regardless of neutral versus non-neutral evo-
lution. GEMMA and EIGENSTRAT performed similarly, although
slightly greater variability (within 0.035) was observed. For LMM-
based methods, there was no obvious trend in terms of direction
of change when comparing neutral versus non-neutral experiment
results. �ere was an apparent trend for EIGENSTRAT, however:
positive selection tended to reduce EIGENSTRAT’s AUROC, with
one exception (model conditions with a tree-like model phylogeny
and 10% causal loci).

Experiments involving alternative evolutionary scenarios. Our
simulation study also included additional experiments that explored
other neutral evolutionary scenarios. �ese model conditions �xed
the proportion of causal loci to 10%. Supplementary Table S1 shows
an AUROC comparison of Coal-Miner and the other AM methods
on the additional model conditions.

For model conditions that varied divergence time, involved re-
combination, or incorporated an isolation-with-migration (IM) model
of gene �ow, Coal-Miner returned signi�cantly improved AUROC
compared to the next best method based upon the test of DeLong
et al. [12], and the other AM methods were ranked similarly to the
experiments which varied the proportion of causal loci. A similar
ranking was obtained when performance was measured using TPR
at an FPR of 0.1 (Supplementary Table S3). Coal-Miner returned
a comparable AUROC (within 0.027) as the divergence time t1 in-
creased from 1.0 to 2.9. �e other methods performed similarly,
except that the AUROC di�erence was larger (within 0.031). In the
IM-based model condition, all methods returned AUROC that was
comparable relative to experiments using the IUA model that were
otherwise equivalent.

For IUA-based model conditions that varied the admixture time
t1, Coal-Map and Coal-Miner had comparable AUROC which was
be�er than GEMMA and EIGENSTRAT. When comparing TPR
at an FPR of 0.1, Coal-Miner returned a signi�cant performance
improvement relative to Coal-Map and the other AM methods
(Supplementary Table S3). As seen in Supplementary Figures S8
and S9, Coal-Miner’s TPR was be�er than Coal-Map when the
false positive rate was 0.1 or less; the reverse was true only for
large false positive rates (greater than around 0.15 for the t1 = 1.0
model condition and greater than around 0.2 for the t1 = 2.9 model
condition). Among the AM methods in our study, Coal-Miner’s
AUROC was least impacted by the choice of admixture time and
di�ered by at most 0.029 as the time t1 increased from 1.0 to 2.9. �e
AUROC of the other AM methods became smaller as the admixture
time became more ancient, and the AUROC di�erence was relatively
greater than Coal-Miner (as much as 0.086).

3.2 Empirical study
To demonstrate the �exibility of the Coal-Miner framework, we
conducted Coal-Miner analyses of three empirical datasets which
spanned a range of GWAS se�ings. Each of the three datasets sam-
pled taxa from a di�erent kingdom and ranged from well-studied
organisms to relatively novel organisms about which li�le is known.
Speci�cally, the datasets sampled (1) natural populations of a single
plant species, (2) multiple closely related bu�er�y species where
gene �ow is a countervailing force versus genetic isolation, and (3)
divergent bacterial species where horizontal gene transfer is sus-
pected to be rampant. �e datasets also varied in terms of the evolu-
tionary processes with �rst-order impacts upon genome/phenotype
evolution. �e empirical analyses served two purposes: method-
ological validation using positive and negative controls based upon
previous literature, and generation of new hypotheses for future
study.

Arabidopsis dataset. We used Coal-Miner to re-analyze an Ara-
bidopsis dataset which the 1001 Genomes Consortium published
in Cell this past summer [10]. �e dataset includes samples from
1,135 high quality re-sequenced natural lines adapted to di�erent
environments with varying local climates [2, 10]. �e sampled data
included whole genome sequences and quantitative trait data for
two traits: �owering time under high and low temperature – 16 ◦C
and 10 ◦C, respectively.
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Model condition AUROC
Neutral vs. Model Percentage of
non-neutral phylogeny causal loci (%) Coal-Miner Coal-Map GEMMA EIGENSTRAT q-value

Neutral Non-tree-like 10 0.962 0.939 0.866 0.871 < 0.00001
20 0.921 0.899 0.849 0.859 < 0.00001
30 0.904 0.882 0.847 0.832 < 0.00001

Neutral Tree-like 10 0.943 0.922 0.87 0.833 0.0053
20 0.904 0.847 0.843 0.813 < 0.00001
30 0.904 0.853 0.844 0.799 0.00003

Non-neutral Non-tree-like 10 0.959 0.933 0.896 0.836 < 0.00001
20 0.926 0.897 0.856 0.847 < 0.00001
30 0.894 0.863 0.832 0.816 < 0.00001

Non-neutral Tree-like 10 0.954 0.922 0.856 0.841 < 0.00001
20 0.89 0.85 0.832 0.796 0.00003
30 0.879 0.836 0.83 0.783 0.0007

Table 1: �e impact of the genomic architecture of a quantitative trait on the performance of Coal-Miner and the other AM
methods. Multi-locus sequences were simulated under neutral or non-neutral evolution on tree-like or non-tree-like model
phylogenies, and quantitative traits were simulated using causal markers sampled from 10%, 20%, or 30% of loci (see Methods
section for more details). �e performance of each AM method was evaluated based on the area under its receiver operating
characteristic (ROC) curve, or AUROC. We report each method’s average AUROC across twenty replicate datasets for each
model condition. Coal-Miner’s AUROC is shown in boldwhere it signi�cantly improved upon theAUROCof themost accurate
of the other AM methods, based upon the test of DeLong et al. [12] (n = 20; α = 0.05). We corrected for multiple tests using
the approach of Benjamini and Hochberg [5], and corrected q-values are shown. (�e corresponding ROC plots are shown in
Supplementary Figures S2 through S5.)

A key component of the study of the 1001 Genomes Consortium
was a GWA analysis of the genomic sequences and quantitative
trait data using EMMAX [29], another state-of-the-art statistical
AM method (see [62] for a comparison of EMMAX and other state-
of-the-art statistical AM methods examined in our study). A major
focus of the analysis was a set of �ve genes which are known to reg-
ulate �owering and contribute to �owering time variation at 10 ◦C
in Arabidopsis [2, 25, 41]: FLOWERING LOCUS T (FT), SHORT
VEGETATIVE PHASE (SVP), FLOWERING LOCUS C (FLC), DELAY
OF GERMINATION 1 (DOG1), and VERNALIZATION INSENSI-
TIVE 3 (VIN3). Plants rely on both endogenous and environmental
(e.g. temperature and photoperiod) cues to initiate �owering [1, 2].
�ese �ve genes encode major components of the vernalization
(exposure to the prolonged cold) and autonomous pathways known
to regulate the initiation of �owering in Arabidopsis. Allelic and
copy number variants (CNV) for many of these genes, including
FLC, are known to serve important roles in generating novel varia-
tion in �owering time and permit plants to adapt to new climates
[39, 42, 45].

Under a conservative Bonferroni-corrected threshold [7], Coal-
Miner identi�ed signi�cant peaks associated with �owering time
under high and low temperature (16 ◦C and 10 ◦C, respectively). In
particular, Coal-Miner identi�ed signi�cantly associated markers
in all �ve genes (FT, SVP, FLC, DOG1, and VIN3) for both the
16 ◦C dataset and the 10 ◦C dataset (Supplementary Figure S12).
Within the �ve genes, Coal-Miner analyses returned peaks which
largely agreed across the 10 ◦C and 16 ◦C datasets. Some di�erences
involved association scores that were borderline signi�cant in one
dataset but not the other.

Table 2 compares the Coal-Miner analysis with similar analyses
using two other state-of-the-art statistical AM methods. �e EM-
MAX analysis in the study of Consortium [10] identi�ed signi�cant
associations for three of the genes at 10 ◦C, and association score
peaks were marginally below a Bonferroni-corrected threshold in
the other two genes (SVP and FLC). Furthermore, signi�cant peaks
were only detected in DOG1 at 16 ◦C, but no signi�cant peaks were
detected in the other four genes for this dataset. DOG1 is known
to be involved in determining seasonal timing of seed germination
and in�uences �owering time in Arabidopsis [25]. (See Figure 2 in
[10] for the original Manha�an plot.) GEMMA’s performance was
qualitatively similar to EMMAX (Supplementary Figure S13). At
10 ◦C, GEMMA recovered signi�cant associations in three of the
genes but not in the remaining two (SVP and FLC); at 16 ◦C, no
signi�cant peaks were detected in three genes, a peak just above
the threshold of signi�cance was detected in FT, and another peak
was detected in DOG1.

Heliconious dataset. Supplementary Figure S14 displays the Man-
ha�an plot generated a�er applying Coal-Miner on the H. erato
dataset across the D interval. We identi�ed two signi�cant peaks
ranging from 502 kb to 592 kb and 658 kb to 682 kb, respectively.
�e second peak is located at the 3′ of the optix transcription factor,
a gene previously shown to be behind the red phenotype variation
in Heliconius [57]. �e �rst peak is located in a noncoding region
more distant from the 3′ of the optix transcription factor.

Burkholdericeae dataset. We applied Coal-Miner on an empirical
dataset of complete genomes of bacteria belonging to the Burkholde-
riaceae and spanning a diversity of ecological states including ani-
mal and plant pathogens. Supplementary Table S4 shows the genes
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Signi�cantly associated markers detected?
Dataset Positive control gene Coal-Miner EMMAX GEMMA
10 ◦C FLOWERING LOCUS T (FT) Yes Yes Yes
10 ◦C SHORT VEGETATIVE PHASE (SVP) Yes No* No
10 ◦C FLOWERING LOCUS C (FLC) Yes No* No
10 ◦C DELAY OF GERMINATION 1 (DOG1) Yes Yes Yes
10 ◦C VERNALIZATION INSENSITIVE 3 (VIN3) Yes Yes Yes
16 ◦C FLOWERING LOCUS T (FT) Yes No Yes
16 ◦C SHORT VEGETATIVE PHASE (SVP) Yes No No
16 ◦C FLOWERING LOCUS C (FLC) Yes No No
16 ◦C DELAY OF GERMINATION 1 (DOG1) Yes Yes Yes
16 ◦C VERNALIZATION INSENSITIVE 3 (VIN3) Yes No No

Table 2: A comparison of Coal-Miner and two other state-of-the-art statistical AM methods based upon analyses of the two
Arabidopsis datasets. �e other AM methods are GEMMA and EMMAX, the statistical AM method used in the study of Con-
sortium [10]. We evaluate whether the three AM methods detected signi�cantly associated markers in �ve genomic regions
centered on positive control genes which are known to regulate �owering time in Arabidopsis. We use a Bonferroni-corrected
threshold for signi�cance. For two of the �ve genomic regions in the 10 ◦C dataset, EMMAX returned association scores that
were near the threshold of signi�cance (marked using an asterisk). �e corresponding Manhattan plots for the Coal-Miner
and GEMMA analyses are shown in Supplementary Figures S12 and S13, respectively. �e corresponding Manhattan plot for
the EMMAX analysis is shown as Figure 2 in [10].

inferred by Coal-Miner to be associated with human pathogenic-
ity, along with their inferred KEGG pathway and gene ontology
assignments. In total, we identi�ed 16 genes associated with hu-
man pathogenicity in Burkholderia. Four of these genes have been
implicated in pathogenicity by others, and in some cases validated
through gene knockout and experimental evolution experiments.
For example, the cell division protein FtsK that Coal-Miner asso-
ciated with human pathogenicity was found to be one of three
genes under positive selection in Burkholderia multivorans during
a 20-year cystic �brosis infection [52]. Modi�cations of another
gene identi�ed by Coal-Miner, DNA gyrase subunit A, are well
known to be implicated with virulence and antibiotic resistance to
quinolone and cipro�oxacin in pathogenic Burkholderia [4, 55]. For
example, Lieberman et al. [34] found that the DNA gyrase subunit
A gene was under positive selection during a Burkholderia dolosa
outbreak among multiple patients with cystic �brosis [34]. Another
gene identi�ed by Coal-Miner, Excinuclease ABC subunit A, has
been shown to bind to previously published vaccine targets [43].
Coal-Miner also associated the protein dihydrofolate synthase with
animal pathogenicity. Point mutations leading to nonsynonymous
base changes in the dihydrofolate reductase gene have previously
been demonstrated to be associated with trimethoprim resistance in
cystic �brosis patients infected by Burkholderia cenocepacia [13, 33].

4 DISCUSSION
4.1 Simulation study
For the model conditions that varied the proportion of causal loci
with neutral or non-neutral evolution on tree-like or non-tree-like
model phylogenies, Coal-Miner had be�er performance than all of
the other state-of-the-art methods in our study, as measured using
AUROC and TPR at an FPR of 0.1. �is suggests that Coal-Miner’s
performance advantage is robust to the speci�c proportion of causal
loci that contribute genetic e�ects to a quantitative trait, which

relates to trait architecture, as well as the evolutionary processes
involved. We note that, as even more causal loci are added be-
yond the proportions explored in our study, the e�ects contributed
by any individual locus becomes more di�use, and global sample
structure will become a more reasonable approximation of di�erent
causal loci with di�erent local sample structures. In general, we
found traits with “di�use” genomic architecture (i.e., traits with
a relatively high proportion of causal loci) to be challenging for
all methods. Coal-Miner tended to cope be�er with the challenge
relative to the other methods in our study, which we a�ribute
to the design of the second stage in the Coal-Miner pipeline (i.e.,
candidate locus detection). Consistent performance trends were
observed when comparing neutral versus non-neutral simulations.
�is suggests that, for the selection coe�cients explored in our
study, Coal-Miner’s performance is robust to the presence or ab-
sence of positive selection. A similar outcome was observed when
comparing IUA model-based experiments involving two di�erent
types of model phylogenies – tree-like and non-tree-like.

�e other model conditions in our simulation study explore
alternative evolutionary scenarios where the proportion of causal
loci was �xed. In these model conditions, Coal-Miner retained
its performance advantage relative to the state-of-the-art, with
one exception: Coal-Miner and Coal-Map had comparable AUROC
on model conditions involving neutral evolution on non-tree-like
model phylogenies and 10% causal loci, although Coal-Miner’s TPR
at an FPR of 0.1 was a signi�cantly be�er than Coal-Map’s. �ese
model conditions involved the smallest proportion of causal loci
in our study. We note that Coal-Map’s performance tended to
degrade more rapidly than Coal-Miner as the proportion of causal
loci increased, and the relative performance of the two methods
may have changed for model conditions with higher proportions
of causal loci that are otherwise equivalent.

Taken together, the model conditions included multiple sources
of local genealogical variation, including genetic dri�/ILS, gene
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�ow, recombination, positive selection, and combinations thereof.
We note that gene �ow was not a necessary prerequisite for Coal-
Miner’s performance advantage, so long as the other processes
were involved (e.g., dri�/ILS). �e speci�c evolutionary processes
contributing to local genealogical variation did not seem to ma�er
as much as the presence of local genealogical variation, and Coal-
Miner’s performance advantage was not necessarily predicated
on speci�c evolutionary cause(s) of local genealogical discordance.
�ese �ndings seem to suggest that Coal-Miner’s model and al-
gorithm may be generalized to other evolutionary scenarios, so
long as the breakpoint inference method used in stage one of the
Coal-Miner pipeline suitable accounts for evolutionary processes
with �rst-order contributions to genome evolution.

4.2 Empirical study
�e empirical datasets in our study were more challenging than
the simulated datasets because the former likely involved more
complex evolutionary evolutionary scenarios compared to the lat-
ter. Additional evolutionary processes which may have played an
important role include other types of natural selection and other
demographic events (e.g., �uctuations in e�ective population size).

For both of the Arabidopsis datasets, Coal-Miner was able to
detect signi�cant associations in all �ve positive control regions.
In contrast, neither GEMMA nor EMMAX – the statistical AM
method used by Consortium [10] – were able to do the same. �e
vernalization requirement for �owering in Arabidopsis suggests that
the �owering response at 16 ◦C presents a greater AM challenge
than at 10 ◦C. Our �ndings were consistent with a need for more
statistical power for the former as compared with the la�er as well
as the overall �ndings in the simulation study, which suggested that
Coal-Miner o�ered improved statistical power relative to the state
of the art. Coal-Miner also correctly analyzed positive and negative
controls in the other empirical datasets. Furthermore, Coal-Miner
analyses of the Arabidopsis and Burkholdericeae datasets identi�ed
putatively novel markers (i.e., markers which were not �agged
using other AM methods). Additional comparative and functional
analyses are needed to interpret these �ndings.

5 CONCLUSIONS
Across the range of genomic architectures and evolutionary scenar-
ios explored in our study, Coal-Miner had comparable or typically
improved statistical power and type I error control compared to
state-of-the-art AM methods. �e scenarios included di�erent evo-
lutionary processes such as genetic dri� and ILS, positive selection,
gene �ow, and recombination – all of which can generate local
genealogical variation that di�ers from the true species phylogeny.
More work needs to be done to explore additional evolutionary
processes which have �rst-order impacts on genome evolution (e.g.,
gene duplication and loss, other genome rearrangement events,
etc.). As more divergent samples are included in a GWA study,
more evolutionary processes potentially will become relevant to
AM analysis. We fully expect that more algorithmic development
will need to be done in this case, particularly regarding the break-
point inference stage of Coal-Miner.

We conclude with our thoughts on future work. As an alternative
to the pipeline-based design of Coal-Miner, simultaneous inference

of local coalescent histories and AM model parameters will avoid
error propagation across di�erent stages of a pipeline-based algo-
rithm. Furthermore, viewed through the lens of evolution, genotype
and phenotype are arguably two sides of the same coin. �e same
could be said of “intermediate-scale” characters (e.g., interactomic
characters). A combination of the extended coalescent models and
LMMs could be used to capture evolutionary relatedness of and
functional dependence between heterogeneous biological charac-
ters across multiple scales of complexity and at higher evolutionary
divergences.
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