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Abstract

Recent advances in single cell RNA-seq
technologies have provided researchers with
unprecedented details of transcriptomic
variation across individual cells. However, it
has not been straightforward to infer
differentiation trajectories from such data.
Here, we present Finding Orderings Robustly
using K-means and Steiner trees (FORKS),
an algorithm that pseudo-temporally orders
cells and thereby infers bifurcating state
trajectories. FORKS, which is a generic
method, can be applied to both single-cell or
bulk differentiation data. It is a
semi-supervised approach, in that it requires
the user to specify the starting point of the
time course. We systematically benchmarked
FORKS and 6 other pseudo-time estimation
algorithms on 5 benchmark datasets, and
found it to be more accurate, more
reproducible, faster and more
memory-efficient than existing methods for
pseudo-temporal ordering. Another major
advantage of our approach is that the
algorithm requires no hyper-parameter
tuning.
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1 Introduction
Single cell RNA-seq (scRNA-seq) is a novel tech-
nique that allows measurement of transcrip-
tomes at single cell resolution [1, 2, 3, 4, 5, 6, 7,
8]. Such a measurement is a snapshot of ongo-
ing cellular processes. In contrast, bulk-sample
methods only provide population-averaged mea-
surements of gene expression, and therefore fail
to accurately reflect the underlying diversity of
expression phenotypes in the presence of cellular
heterogeneity. For example, only single cell anal-
ysis can differentiate between high expression in
a subset of cells and moderate expression in all
cells. Thus, scRNA-seq is extremely valuable in
unraveling complex biological phenomena such
as cell differentiation, gene expression “noise”
and gene regulatory interactions [9]. In particu-
lar, one common analytical approach has been
to assume that transcriptomic variation across
cells within a population approximates variation
across time within a single lineage [10, 11, 12].

The problem of ordering single cell transcrip-
tomes along continuous trajectories in state (ex-
pression) space, known as pseudo-temporal or-
dering, is typically solved in a lower-dimensional
space that approximates proximity relationships
between cells in the full space of transcript
abundances [13]. Multiple methods have been
used for dimension reduction in this context, in-
cluding Principal Component Analysis (PCA)
[14], Independent Component Analysis (ICA)
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[15], Diffusion maps [16] and t-Stochastic Neigh-
borhood Embedding (t-SNE) [17] are popular
choices among others.

Multiple tools have been developed for pseudo-
temporal ordering, some of which are capable of
discovering branched trajectories. Here, we pro-
vide a brief overview of the techniques currently
being used to achieve the same. Initial release of
Monocle [18] used ICA as dimensionality reduc-
tion technique. Their latest release Monocle2
uses Discriminative Dimensionalty Reduction
Tree (DDRTree) [19] technique to reduce the di-
mensionality. DDRTree solves the dual objective
of finding the linear projection such that clusters
are well separated. Wishbone [20] uses diffusion
maps to create a nearest neighbor graph whereas
Diffusion Pseudo-time (DPT) [21, 22] uses dif-
fusion maps to find the transition probabilities
and hence order the cells based on the diffusion
distance, Waterfall [23] uses PCA, DPT uses dif-
fusion maps, GPfates [24] uses Gaussian process
Latent variable model (GPLVM) to reduce the
dimension and overlapping mixture of gaussian
processes (OMGP) to identify the bifurcations,
TSCAN [25] uses a combination of PCA to re-
duce the dimension and model based clustering
to find the cluster centers, SCUBA [26] models
the developmental trajectory using a stochastic
dynamical model and works in original space or
in some cases reduce the dimension using t-SNE.
DeLorean [27] uses Gaussian process to learn the
gene expression profiles and the pseudo-time as-
sociated with each cell. SLICER [28] first select
the genes then computes alpha hull of the data
to find the optimal nearest neighbors for Lo-
cally Linear Embedding (LLE) [29]. Embeddr
[30] reduces the dimension of data using Lapla-
cian Eigenmaps [31], then fits principal curves to
the manifold and projects onto the curve to es-
timate the pseudo-time. Embeddr cannot faith-
fully recover bifurcating trajectories if present
in the data. Mpath [32] generates a branched
trajectory by joining the cluster centers found
using Hierarchial clustering and then projecting
onto the Minimum Spanning Tree (MST).

Cannondt et. al. [33], provides a broad overview
of many existing pseudo-time estimation algo-
rithms. While evaluating these methods, we dis-
covered that most suffered from a major limi-
tation: the default parameter settings were not
robust. As a consequence, they required adjust-
ment of multiple hyper-parameters for each new
dataset. We also found that some of the algo-
rithms designed to detect branching trajectories
performed poorly when the underlying biological
process was unbranched. Moreover, non-linear
embeddings were not necessary for inferring dif-
ferentiation trajectories. In fact, linear methods
such as PCA yielded at par or better results
than non-linear methods.

In order to address the above challenges in
pseudo-temporal ordering, we developed FORKS,
a method that accurately infers bifurcating tra-
jectories when present, and linear trajectories
otherwise with no hyper-parameter tuning. The
key idea behind FORKS is that similar cell types
form clusters when embedded in a low dimen-
sional manifold. As one traverses this manifold
from a starting point or origin, gene expression
changes and a pseudo-time can be assigned to
individual cells based on their distance from the
origin. FORKS relies on generalization of MST
known as Steiner Trees to create robust and bi-
furcating trajectories. As previously noted [25],
the MST of the entire set of cells may not be
robust, since it could be substantially altered by
a small perturbation in the data. FORKS there-
fore reduces the complexity of the problem and
ameliorates measurement noise by finding the
Steiner Points which can be thought of as clus-
ter centers in case of k-means but connected via
an MST. Another advantage of this approach
is that FORKS is scalable to thousands of cells
and genes. In order to compare the performance
of FORKS against existing methods, we per-
formed the first systematic benchmarking ex-
ercise for pseudo-temporal ordering algorithms,
involving 7 algorithms in total and 4 transcrip-
tomic datasets for which the true time stamps
known.
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2 Results
2.1 Trajectory Inference
In order to robustly infer single cell differentia-
tion trajectories FORKS assumes the following
facts about the data:
1 Differentiation is a continuous process and

the data points represent samples on the
manifold.

2 Different cell types form clusters in low di-
mensional space.

3 Cells are distributed normally around the
line joining the two Steiner Points.

2.1.1 Data preprocessing
scRNA-seq gene expression matrix suffers from
high technical variability which might result
from various factors with the prime cause being
the amplification process from a small quantity
of RNA content in the cell. Thus, it is imperative
to discard low quality cells and genes in order to
achieve a robust ordering. After the preprocess-
ing step, we reduce the dimensionality of data
using PCA and finally, order the cells on the re-
duced dataset using FORKS.

2.1.2 Dimensionality reduction
Even after preprocessing, we are left with thou-
sands of genes, thus leaving us with the task
of solving the ordering problem in high dimen-
sion. Despite the high dimensional nature of
data, most of the information lies close to a
low dimensional manifold. We reduce the dimen-
sionality of the original data matrix denoted by
Xo ∈ RN×D to Xr ∈ RN×d using PCA, where
N is the number of cells or data points, D is
the number of genes after preprocessing and d
is the reduced dimension. We compare various
manifold learning/dimensionality reduction al-
gorithms like PCA [14], ISOMAP [34], Multi-
Dimensional Scaling (MDS) [35, 36], Spectral
Embedding (SE) [37, 38], Random Forest (RF)
[39] and t-SNE [17] to learn a reduced dimen-
sional structure in the data. Contrary to prevail-
ing biases towards using non-linear dimensional-
ity reduction methods like Diffusion maps [22],
our experiments demonstrate the eminence of

PCA over these techniques. This empirical study
indicates that most of the interactions between
the genes tend to be linear in nature and only
a few non-linear interactions may be required
for differentiation process. Other advantages of
PCA includes its computation speed, scalability
and the fact that the number of dimensions to
project the data on can be calculated using the
energy or the variance captured in each compo-
nent. Other techniques are highly sensitive to
other parameters like kernel width as in case of
Gaussian kernel for kernel PCA [40] or diffusion
maps, perplexity in case of t-SNE and number
of nearest neighbors in case of ISOMAP, Locally
Linear Embedding (LLE) or any other method
based on k-nearest neighbor graph.

Once a lower dimensional embedding has been
found, we use approximate Eucledian Steiner
Minimal Tree (ESMT) to find the Steiner points
or cluster centers and then join them by a Min-
imum Spanning Tree (MST). The ESMT prob-
lem, as it is called, finds the shortest tree con-
necting N data points with K Steiner points,
where K � N . ESMTs have been successfully
applied to the areas of very large integrated cir-
cuits (VLSI), printed circuit boards, in the field
of agriculture, telephony and in optimizing the
building layouts. Application of ESMTs in the
domain of genomics is the bridge we try to fill
through our work.

Steiner Minimal Trees (SMTs) are hard to
find as the number of Steiner points are not
known a priori and for a given number of Steiner
points, one has to determine the correct topol-
ogy with respect to the other data points. It
has been shown that computation of SMTs is
NP-complete [41]. A work around these prob-
lems is to first set the number of Steiner points
and then solve an optimization problem to deter-
mine the approximate location of Steiner points.
ESMT problem has a strong connection with K-
means and Minimum Spanning Tree (MST). We
propose a gradient based optimization approach
to solve the NP-complete problem. Though we
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may not find the optimal solution to the prob-
lem, we try to reach as close to the optimal
solution. ESMT finds Steiner points or cluster
centers such that total length of spanning tree
formed by joining the Steiner Points is mini-
mum. In many cases its solution is very similar
to the solution of k-means but in case of noisy
data, it finds robust solutions as compared to K-
means. Once the MST joining the cluster centers
is found, we project the cells onto the tree back-
bone or MST joining the cluster centers. FORKS
uses a ”starting cell” to commence the ordering.
It finds the cluster center closest to the ’start-
ing cell’ and start the ordering from that center
which we call as root of the tree. A starting
cell is necessary because a completely unsuper-
vised method may choose any of the points of
MST to start the ordering, which might result in
an incorrect ordering. Distances along the tree
backbone starting from the root Steiner point
now acts as a proxy for pseudo-temporal order-
ing.

Using the Steiner points to construct the MST,
our algorithm thus can find bifurcations us-
ing small linear segments. When cross validated
with multiple stratified folds of the datasets, we
find that FORKS is superior to the other eight
competing algorithms. It requires O(NK) mem-
ory for storage of distance matrix hence can be
scaled to large datasets. The name FORKS is an
abbreviation for Finding Ordering Robustly us-
ing K-means and Steiner tree as it aptly finds
a robust pseudo-temporal trajectory with the
combination of K-means and Steiner Tree.

2.2 Datasets
We use 6 different datasets in the paper namely
Arabidopsis [42], Deng 2014 [43], Guo 2010 [44],
Klein [45], LPS [46] and Preimplant [47]. Among
these datasets [42] is microarray dataset, [44] is
Reverse transcription polymerase chain reaction
(RT-PCR) dataset, and the rest are single cell
RNA-seq datasets. These datasets cover a whole
spectrum of techniques that have been used in
gene expression analysis. The knowledge of ob-
served cell time for each of the cell enables us

to benchmark FORKS with other state-of-the-
art algorithms that infer the pseudo-time tra-
jectory. The details of datasets are presented in
Table 1. To our knowledge this is the first com-
prehensive benchmarking with such a varied set
of algorithms and datasets. The projection of
individual datasets on the the first two princi-
pal components after the preprocessing step is
shown in Figure 1 (1a-1f)

2.3 Comparison with other algorithms
We compared FORKS with eight other state-
of-the-art algorithms namely DPT, GPfates,
kmeans-R (used in [25]), Monocle2, SCUBA,
SLICER and waterfall. The description of the
algorithms used, viz., the dimensionality reduc-
tion techniques, trajectory modeling framework,
scalability and their ease of use is mentioned in
Tables 2 and 3. As a preprocessing step we use
pQ normalization [57] for scRNA-seq datasets
and data spherization (zero mean and unit vari-
ance transformation) for microarray and RT-
PCR datasets. The data was then divided us-
ing stratified k-fold technique used in scikit [48]
such that each fold contains similar distribution
of true cell times as original data. The value of k
varies with dataset due to difference in number
of cells sequenced. Keeping the folds and the
dataset same, all the algorithms were bench-
marked. We calculate the Spearman correlation
[49] between the pseudo-time computed by algo-
rithm and the true time for each fold. Table ??
shows the (mean ± standard deviation) Spear-
man correlation for each of the algorithm. Mono-
cle2, SCUBA, TSCAN, kmeans-R and waterfall
do not require information about the ”starting
cell” of the pseudo-time. Hence, we run all these
algorithm for a forward pass and a backward
pass from their internal random starting point.
For providing a more competitive environment
to FORKS, we take the absolute values of cor-
relation for these algorithms. [1]

[1]All the tests were performed on a machine with
Intel core-I5 2nd Gen processor with 6GB DDR2
RAM
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(a) 2D PCA plot of Arabidopsis data
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(b) 2D PCA plot of Guo 2010 data
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(c) 2D PCA plot of Deng 2014 data after pre-
processing
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(d) 2D PCA plot of LPS data after preprocessing
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(e) 2D PCA plot of Klein data after preprocess-
ing
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(f) 2D PCA plot of Preimplant data after pre-
processing

Figure 1: 2D PCA plot of Arabidopsis (mi-
croarray), Guo 2010 (RT-PCR), Deng 2014
(sc RNA), Klein (sc RNA), LPS (sc RNA) and
Preimplant (sc RNA), the legend shows the var-
ious time points present in the datasets
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Index Dataset Name Data type Original dimen-
sion (cells X
genes)

Dimension after
preprocessing
(cells X genes)

Time
points

Dataset description Bifurcations

1 Arabidopsis microarray 24 × 150 24 × 117 4 Microarray data of the response of Arabidopsis thaliana to infection by nectropic
fungal pathogen Botrytis cinerea

No

2 Deng 2014 scRNA-seq 293 × 1000 253 × 994 9 scRNA-seq embyonic developmental data from mouse preimplantation ranging
from zygote to blastocyst

No

3 Guo 2010 RT-PCR 438 × 48 438 × 48 7 RT-PCR data quantifying developmental stages (1-cell to 64-cell blastocyst) from
early stage mouse embryo

Yes

4 Klein scRNA-seq 2717 × 24174 2717 × 323 4 Droplet sequencing of mouse embryonic stem cells upon leukemia inhibitory factor
(LIF) removal

Yes

5 LPS scRNA-seq 306 × 27723 268 × 3910 4 scRNA-seq bone marrow derived dendritic cell samples after simulating with
lipopolysaccharide (LPS)

No

6 Preimplant em-
bryo

scRNA-seq 1529 × 24444 1329 × 5490 5 scRNA-seq human preimplantation embryo dataset collected from 88 embryos
ranging from day 3 to day 7

No

Table 1: Six datasets from multiple methods involving microarray, RT-PCR and scRNA-seq are
used in the experiments

Figure 2 (2a-2f) shows the box plots of Spear-
man correlation for various folds on different
datasets. Figure 2 show that FORKS outper-
form other algorithms in terms of Spearman cor-
relations with known cell times in which median
spearman correlation is greater than 0.9 in 5 out
of 6 datasets.

Running times of various algorithms were also
compared. Figures 3 (3a-3f) displays the box
plots of run times in seconds, for various al-
gorithm. Although it may not be fair to com-
pare the run times of various algorithms as they
are written in multiple programming languages.
FORKS is completely coded in Python [50], and
uses NumPy [51], SciPy [52] and Pandas [53] in-
ternally. FORKS has a higher run times than al-
gorithms whose back-end is written in C or C++
for certain datasets. Still considering all these
factors, FORKS is competitive in run times to
other algorithms and in multiple instances where
the dataset sizes are large it is faster than most.
Figure 5 (5a-5b) shows the mean and standard
deviation run times of all algorithms. We find
that FORKS is third fastest in terms of run time
and fourth in terms of robustness with respect
to run times.

In order to check the accuracy and robustness
of each method, we compute the mean and stan-
dard deviation of mean Spearman correlations
for multiple instances of re-sampling of datasets
which we call as data folds. Knowing the true
cell times, we use stratified k-fold techniques
to generate folds for each dataset. For an ac-
curate and robust algorithm, its mean correla-
tion across folds should be close to 1 and its

standard deviation should be close to 0. The
results are shown in Figure 4(4a-4b). FORKS
has the highest median of the mean correlation
among all the algorithms. Figure 4 indicate that
FORKS has 10% higher median than its near-
est competitor kmeans-R which is at 0.81. Using
such an algorithm whose median correlation lies
near 0.9 can faithfully recover the true trajec-
tory for most of the datasets. FORKS also ex-
hibits robust behavior across multiple datasets
as the mean standard deviation achieved by the
algorithm is the smallest at 0.02.

3 Discussion and Conclusion
We developed FORKS (Finding Orderings Ro-
bustly using K-means and Steiner trees), a
method that infers cellular trajectories from var-
ious gene expression datasets. Having the high-
est average Spearman correlation and smallest
mean standard deviation of Spearman correla-
tion with known cell times, than other algo-
rithms, FORKS is able to robustly and accu-
rately discover branching trajectories if present
in the data. One of its biggest strength is mini-
mal user interference in tuning all the parame-
ters, an advantage which is not possessed by its
competitor algorithms.

3.1 Using PCA as manifold learning algorithm of
choice

An interesting observation we found which is
contrary to what has been previously established
is that fact that non-linear embeddings are not
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(b) Box plot of Spearman correlations for
Guo 2010
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(c) Box plot of Spearman correlations for
Deng 2014
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(d) Box plot of Spearman correlations for Klein
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(e) Box plot of Spearman correlations for LPS
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(f) Box plot of Spearman correlations for Preim-
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Figure 2: Box plots showing the correlations
with given cell times for various algorithms for
Arabidopsis (nfolds=4), Guo 2010 (nfolds=8),
Deng 2014 (nfolds=5), Klein (nfolds=10),
LPS (nfolds=8) and Preimplant (nfolds=10)
datasets, the legend shows the various algo-
rithms being compared. Values at the top of
each figures are the median values
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(a) Box plot of Run time (s) for Arabidopsis
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(b) Box plot of Run time (s) for Guo 2010
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(c) Box plot of Run time (s) for Deng 2014
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(d) Box plot of Run time (s) for Klein
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(e) Box plot of Run time (s) for LPS
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Figure 3: Box plots showing the run times (s)
with given cell times for various algorithms for
Arabidopsis (nfolds=4), Guo 2010 (nfolds=8),
Deng 2014 (nfolds=5), Klein (nfolds=10),
LPS (nfolds=8) and Preimplant (nfolds=10)
datasets, the legend shows the various algo-
rithms being compared. Values at the top of
each figures are the median values
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(a) Box plot of mean of Spearman correlations
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Figure 4: Box plots of means and standard
deviation of Spearman correlations among all
the datasets shows highly accurate and robust
behavior of FORKS to change in folds and
datasets. Values at the top of each figures are
the median values
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(a) Box plot of mean of run times (s)
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Figure 5: Box plots of means and standard devi-
ation of run times among all the datasets shows
FORKS is highly competitive. Values at the top
of each figures are the median values

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132811doi: bioRxiv preprint 

https://doi.org/10.1101/132811
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sharma et al. Page 10 of 15

Index Name
Dimensionality reduction Pseudo-time Trajectory

Manifold Learning Clustering Graph Path finding Cell ordering
1 SCUBA t-SNE Principal Curve Projection on Principal curve
2 SLICER LLE k-NN Shortest path from origin found

by algorithm
Detect branches using geodesic
entropy

3 TSCAN PCA Mclust Longest path in MST Project cells onto MST connect-
ing cluster centers

4 waterfall PCA kmeans MST connecting the cluster cen-
ters from origin found by algo-
rithm

Project cells onto MST connect-
ing cluster centers

5 kmeans-R PCA kmeans MST connecting the cluster cen-
ters from origin found by algo-
rithm

Project cells onto MST connect-
ing cluster centers

6 Diffusion Pseudo-Time Diffusion maps Diffusion pseudo-time from ori-
gin using accumulated transition
probabilities

Detect branches using random
walks over cells

7 GPfates B-GPLVM B-GPLVM OMGP
8 Monocle 2 DDRTree Principal curves for each branch Project cells onto principal

curves
9 FORKS PCA Steiner tree MST from starting cell Projects cells onto path

Table 2: Pseudo-temporal ordering methods have many commonalities in their framework. As with
all the methods, the first step being dimensionality reduction, then clustering or graph based analysis
helps to easily model the trajectory, various methods are then utilized to find the ordering.

Index Name Branching Extra inputs
reg. data

Hyper-
parameters
to be tuned by
user

Scalability w.r.t.
cells

1 SCUBA No No No Yes
2 SLICER Yes Yes Yes No
3 TSCAN Yes No No Yes
4 waterfall Yes No Yes Yes
5 kmeans-R Yes No No Yes
6 Diffusion PseudoTime Yes Yes Yes yes
7 GPfates Yes No No Yes
8 Monocle 2 Yes Yes Yes No
9 FORKS Yes Yes No Yes

Table 3: Table describes the scalability and amount of user interference required

necessarily required. For comprehensive empir-
ical analysis we compared pseudo-temporal or-
dering on multiple datasets using various mani-
fold learning like ISOMAP, MDS, PCA, Ran-
dom Forest and t-SNE along with clustering
algorithms like k-means, k-medoids, FORKS
(Steiner tree with k-means as warm start) and
Steiner tree with k-medoids as warm start.

The effect of various embeddings on average
Spearman correlation for various datasets using
k-means clustering are shown as box plots in
Supplementary Figure 1 (1a-1f). We find that
PCA has the highest median correlation on 5
out of 6 datasets. The run times for k-means
clustering are shown in Supplementary Figure 2
(2a-2f). In this case PCA has the fastest median
time for 3 out of 6 datasets.

Supplementary Figures 3 ( 3a-3b) and 4 ( 4a-
4b) displays that PCA has the highest median
correlation for all the datasets. It is highly ro-
bust with smallest standard deviation of median

correlation and is comparable to ISOMAP and
MDS in run times.

The correlations and time for k-medoids clus-
tering are presented respectively, in Supplemen-
tary Figures 5 (5a-5f) and 6 (6a-6f).

Supplementary Figures 7 ( 7a-7b) and 8 ( 8a-
8b) displays that ISOMAP has the highest me-
dian correlation for all the datasets. A pitfall
with ISOMAP is the fact that median correla-
tion is small and the embedding is non robust.

For FORKS (Steiner tree with k-means warm
start), the correlations and run time are shown
in Supplementary Figures 9 (9a-9f) and 10 (10a-
10f).

Supplementary Figures 11 (11a-11b) and 12 (
12a-12b) displays that PCA has the highest me-
dian correlation for all the datasets. It is highly
robust with smallest standard deviation of me-
dian correlation.
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Finally, for Steiner tree with k-medoids warm
start, the correlations and run times are pre-
sented in Supplementary Figures 13 (13a-13f)
and 14 (14a-14f).

Supplementary Figures 15 ( 15a-15b) and 16
( 16a-16b) shows that PCA has the highest
median correlation for all the datasets while
ISOMAP has fastest running time. Although t-
SNE displays the most robust behavior it lags
considerably in median correlation and run-
times.

We find that PCA has the best average
Spearman correlations for k-means clustering,
Steiner tree with k-medoids warm start and
FORKS (Steiner tree with k-means warm start).
ISOMAP has the best average Spearman cor-
relation for k-medoids clustering. The average
spearman correlation for PCA as an embedding
is much higher than that of ISOMAP which be-
comes the basis of choosing PCA as the choice
of manifold learning.

3.2 Using Steiner-Tree with k-means as
clustering algorithm of choice

From Supplementary Figures 21 (21a -21d), we
see that k-means and FORKS have similar av-
erage Spearman correlations, but FORKS has a
smaller median standard deviation (0.058 com-
pared to 0.065) across various algorithms and
datasets. Hence we have a method that performs
robustly.

3.3 Conclusion
In this paper we presented FORKS, an al-
gorithm that finds a robust pseudo-temporal
ordering of cells with no tuning of hyper-
parameters. We compared FORKS with sev-
eral state-of-the-art algorithms and showed its
supremacy over them. We demonstrated that
FORKS can be used with any kind of gene ex-
pression dataset till the dataset is in a tabu-
lar numeric form of cells × genes. We empiri-
cally proved our claim that the task of pseudo-
temporal ordering does not require non-linear

embeddings as is the general notion prevalent in
the bio-informatics community. Finally, we in-
corporated the ideas from VLSI domain in the
form of steiner tree and solved its approximate
version using gradient descent to device FORKS.
With ever increasing dataset size and quality,
methods that scale up will have a certain edge
over algorithms that do not. FORKS was cre-
ated with such an ideology. Being closely related
to k-means and using PCA as dimensionality re-
duction technique both of which can be solved
stochastically, FORKS can be scaled up to large
datasets. There is always scope of improving
the current algorithm. Gene selection is an im-
portant step in any downstream analysis. For
the purposes of this paper, we have used only
the highly expressed and varying genes. For the
problem at hand, using the marker genes can
certainly improve the ordering. Also, to make
the run times more smaller, the code can be
cythonized or be completely coded in hardware
friendly languages like C or C++. Also, one
can try other clustering algorithms like Gaus-
sian Mixture models (GMMs) [54], DBSCAN
[55] and kernel-kmeans [56] to find the cluster
centers and measure its performance.

4 Online Methods
4.1 Data Preprocessing:
Such dissimilitude of data presents us with the
challenge of adopting the right preprocessing
for each kind of dataset. We first highlight the
common steps followed for all the datasets. The
genes and cells containing all zero elements and
the duplicated genes and cells present in the
data were removed. Since marker gene informa-
tion is not available in all the datasets and in the
light of making the algorithm largely free from
human intervention, we incorporated a gene se-
lection step. Only a few genes who are expressed
faithfully are responsible for the trajectory infer-
ence in the cells. We find the median and stan-
dard deviation of all the non-zero genes present
in the data, by forming a one dimensional array.
We discard low quality genes whose individual
median gene expression in the expressed cells is
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below a certain multiple of the overall median.
For the single-cell RNA sequencing datasets
namely, (Klein [45], LPS [46], Deng 2014 [43],
Preimplant [47]), we performed pseudo-counted
Quantile (pQ) normalization [57]. It is well
known that single cell RNA-sequencing datasets
have inherent technical variability and high bio-
logical noise [58, 59, 60]. pQ normalization is a
recently proposed technique build upon Quan-
tile (Q) normalization [61] that reduces the tech-
nical bias, which is empirically found to be di-
rectly proportional to the number of detected
genes [62]. pQ normalization homogenizes the
expression of all genes below a fixed rank in each
cell. Finally, for non-single cell RNA seq datasets
(Guo 2010 [44] and Arabidopsis [42]), we found
that sphering the dataset improves the pseudo-
time estimation. However pQ normalization de-
grades the performance.

4.2 Overview of FORKS algorithm:

It is known that only a few interactions are re-
sponsible for a particular problem like cell cycle
or differentiation. In case of scRNA-seq, lowly
expressed genes contribute largely to technical
bias. Hence, it is imperative to reduce the di-
mension to capture the most meaningful inter-
actions.
Dimensionality reduction: The algorithm
begins by dimensionality reduction. Reducing
the dimension, diminishes the complexity of
problem at hand and reduces the noise present
in higher dimensions. We use Principal Compo-
nent Analysis (PCA) [14] to reduce the dimen-
sion of the data. PCA offers a graceful solution
to problem of selecting the required number of
dimension, by using the energy content in each
of the principal components (PCs). We select
the PCs such that the total energy content is
at least 90%. There are other approaches to
do so, for example, by eyeballing the curve to
get the knee point. However, due to the lack of
mathematical justification, this approach was
discarded. PCA is a linear manifold learning
technique many other pseudo-temporal ordering

methods use various non-linear manifold learn-
ing techniques, and pay the cost of tuning mul-
tiple hyper-parameters, thereby increasing the
complexity of training. If the parameters are
not chosen correctly, one might end up learning
erroneous manifold thereby deducing incorrect
pseudo-time. PCA in this regards provides an
excellent solution.

Finding number of clusters: Initial release
of Monocle used minimum spanning tree (MST)
based on the complete data and then found the
longest path present in the MST. One major is-
sue with this approach was the fact that MST
on such a large dataset is not stable. Clustering
the cells first and choosing cluster centers as the
proxy for data is one way to mitigate problem.
Once the dimension is reduced, next we choose
the number of clusters that might be present in
the data using Silhouette scores [63]. When the
data labels are not known, the cluster evaluation
should be performed using the model itself. The
Silhouette Coefficient is composed of two scores
for each sample:

1 a : The mean distance between a sample
and all other points in the same class.

2 b : The mean distance between a sample and
all other points in the next nearest cluster

The Silhouette Coefficient (s) per sample is cal-
culated as:

s =
b− a

max(a, b)
(1)

The Silhouette Coefficient for a set of samples
is given as the mean of the Silhouette Coeffi-
cient for each sample. The best value is 1 and
the worst value is −1. Values near 0 indicate
overlapping clusters. Negative values generally
indicate that a sample has been assigned to the
wrong cluster. We calculate the silhouette scores
for the cluster centers ranging from 4 to 10. The
number of cluster centers which gives the best
average Silhouette Coefficient are selected.
ESMT: Let the number of cluster centers/steiner
points be K � N . The cluster centers/steiner
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points are denoted by x ∈ Rd and data points
by p ∈ Rd. Let r ∈ RN×K be the matrix de-
noting the cluster center data point is assigned
to. The problem of finding the euclidean steiner
minimal tree (ESMT) can be written as:

min
x

∑
i,j∈MST

‖xi−xj‖2+C
N∑

n=1

K∑
k=1

(
rnk‖pn−xk‖2

)
(2)

where, MST denotes the minimum spanning
tree formed by steiner points.
The ESMT problem given as eq. (2) is non-
convex as the second part of the objective func-
tion is the same as that of k-means, which is not
a convex function [64]. Hence, optimization leads
to a local minima. We use gradient descent to
update the steiner points. As mentioned in the
section 2, finding the Steiner tree is a NP-hard
problem. We use approximate ESMT where we
fix the number of clusters a priori. The initial
number of cluster centers are calculated using
Silhouette method and their initial values are
computed using the solution of k-means. The
hyper-parameter C is set to 1 in all our exper-
iments. FORKS, which is mathematically writ-
ten as eq. (2) can be interpreted as finding the
steiner points such that the total length of min-
imum spanning tree formed joining the steiner
points is minimum. We run the algorithm for 100
epochs keeping track of the best cost function
values. The values of steiner points for which
the cost function is minimum is returned.
Ordering: We divide the points belonging to
each cluster and then use the methodology men-
tioned in TSCAN [25] for pseudo-temporal or-
dering. We first select a ”starting cell” based
on user input. For our experiments in order to
demonstrate a proof of concept, we select the
first cell belonging to the initial time as the
starting cell.
Selecting a starting cell is important and this is
where we have an edge over TSCAN or other

methods which do not have a provision of se-
lecting a starting cell. The proposed method of
finding the longest path [25] in the MST can lead
to erroneous results as it can be seen through the
Figure 2 where TSCAN does not preform well.
For bifurcating trajectories as in case of Figure
1b, where initial stage cell population may lie in
the between the later stages of cell population,
selecting the starting cell for ordering as one of
the ends of the longest path is incorrect.
The ordering begins from the steiner point k1
closest to the starting cell. Cells belonging to
steiner point k1 are assigned to edge k1 − k2.
For, the intermediate steiner points ki, (i =
2, . . . ,K − 1), the cells belonging to cluster ki
are divided into t parts where, t is the number
of immediate neighbors of ki in the MST. Once
the assignment of cells is finished for each edge
ej ∈ MST in MST, the cells are projected on
their respective edges. The cell closest to k1 is
assigned a pseudo-time of 0. All the other cells
are assigned values equal to the order of sorted
projection value onto the edge ei added with the
last value of its preceding edge.

Code
The code for FORKS along with three of the datasets used in the

paper can be found at the following github repository

https://github.com/macsharma/FORKS.
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