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Abstract

Motivation: Advances in next-generation sequencing technologies and phylogenomics have reshaped our
understanding of evolutionary biology. One primary outcome is the emerging discovery that interspecific
gene flow has played a major role in the evolution of many different organisms across the Tree of Life.
To what extent is the Tree of Life not truly a tree reflecting strict “vertical” divergence, but rather a more
general graph structure known as a phylogenetic network which also captures “horizontal” gene flow?
Results: The answer to this fundamental question not only depends upon densely sampled and divergent
genomic sequence data, but also computational methods which are capable of accurately and efficiently
inferring phylogenetic networks from large-scale genomic sequence datasets. Recent methodological
advances have attempted to address this gap. However, in a recent performance study, we demonstrated
that the state of the art falls well short of the scalability requirements of existing phylogenomic studies.
The methodological gap remains: how can phylogenetic networks be accurately and efficiently inferred
using genomic sequence data involving many dozens or hundreds of taxa? In this study, we address this
gap by proposing a new phylogenetic divide-and-conquer method which we call FastNet. Using synthetic
and empirical data spanning a range of evolutionary scenarios, we demonstrate that FastNet outperforms
state-of-the-art methods in terms of computational efficiency and topological accuracy.
We predict an imminent need for new computational methodologies that can cope with dataset scale
at the next order of magnitude, involving thousands of genomes or more. We consider FastNet to be
a next step in this direction. We conclude with thoughts on the way forward through future algorithmic
enhancements.
Keywords: phylogenomics; phylogenetic network; gene flow; inference; divide and conquer; simulation
study; computational runtime; topological accuracy
Contact: kjl@msu.edu
Supplementary information: Supplementary data are available at https://gitlab.msu.edu/liulab/FastNet.data.scripts.

1 Introduction
Recent advances in biomolecular sequencing (Metzker, 2010) and
phylogenomic modeling and inference (Edwards, 2009; Nakhleh, 2013)
have revealed that interspecific gene flow has played a major role in the
evolution of many different organisms across the Tree of Life (McInerney

et al., 2008; Keeling and Palmer, 2008; Abbott and Rieseberg, 2012),
including humans and ancient hominins (Green et al., 2010; Reich et al.,
2010), butterflies (The Heliconious Genome Consortium, 2012), and mice
(Liu et al., 2015). These findings point to new directions for phylogenetics
and phylogenomics: to what extent is the Tree of Life not truly a tree
reflecting strict vertical divergence, but rather a more general graph
structure known as a phylogenetic network where reticulation edges and
nodes capture gene flow? And what is the evolutionary role of gene
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flow? In addition to densely sampled and divergent genomic sequence
data, one additional ingredient is critically needed to make progress on
these questions: computational methods which are capable of accurately
and efficiently inferring phylogenetic networks on large-scale genomic
sequence datasets.

Recent methodological advances have attempted to address this
gap. In particular, Solís-Lemus and Ané proposed SNaQ (Solís-Lemus
and Ané, 2016), a new statistical method which seeks to address the
computational efficiency of species network inference using a pseudo-
likelihood approximation, and the method of Yu and Nakhleh (2015)
(referred here as MPL, which stands for maximum pseudo-likelihood)
substitutes pseudo-likelihoods in the optimization criterion used by MLE
(which stands for maximum likelihood estimation). We recently conducted
a performance study which demonstrated the scalability limits of SNaQ,
MPL, MLE, and other state-of-the-art phylogenetic methods in the context
of phylogenetic network inference (Hejase and Liu, 2016). The scalability
of the state of the art falls well short of that required by current phylogenetic
studies, where many dozens or hundreds of divergent genomic sequences
are common (Nakhleh, 2013). The most accurate phylogenetic network
inference methods performed statistical inference under phylogenomic
models (Yu et al., 2014a, 2012; Solís-Lemus and Ané, 2016) that extended
the multi-species coalescent model (Kingman, 1982; Hein et al., 2004).
SNaQ was among the fastest of these methods while the probabilistic multi-
locus inference method of Yu et al. (2014b) that performs full likelihood
calculations was the most accurate. None of the aforementioned statistical
phylogenomic inference methods completed analyses of datasets with 30
taxa or more after many weeks of CPU runtime. The other methods fell
into two categories: split-based methods (Bandelt and Dress, 1992; Bryant
and Moulton, 2004) and the parsimony-based inference method of Yu et
al. (Yu et al., 2011) (which we refer to as MP in this study). Both classes of
methods were faster than the statistical phylogenomic inference methods
but less accurate.

The methodological gap remains: how can phylogenetic networks be
accurately and efficiently inferred using genomic sequence data involving
many dozens or hundreds of taxa? In this study, we address this question
and propose a new method for this problem. We investigate this question
in the context of two constraints. First, we focus on dataset size in terms
of the number of taxa in the species phylogeny. We note that scalability
issues arise due to other dataset features as well, including population-
scale allele sampling for each taxon in a study and sequence divergence.
Second, we follow a trend in emerging methodologies and performance
studies (Davidson et al., 2015; Solís-Lemus and Ané, 2016; Leaché et al.,
2013) and focus our attention on a specific classes of gene flow events.
We focus on paraphyletic and monophyletic gene flow, which have been
the subject of several recent high-profile studies (Liu et al., 2015; The
Heliconious Genome Consortium, 2012), and ancestral gene flow deeper
in the species phylogeny.

2 Approach
One path forward is through the use of divide-and-conquer. The general
idea behind divide-and-conquer is to split the full problem into smaller
and more closely related subproblems, analyze the subproblems using
state-of-the-art phylogenetic network inference methods, and then merge
solutions on the subproblems into a solution on the full problem. Viewed
this way, divide-and-conquer can be seen as a computational framework
that “boosts” the scalability of existing methods (and which is distinct
from boosting in the context of machine learning). The advantages
of analyzing smaller and more closely related subproblems are two-
fold. First, smaller subproblems present more reasonable computational
requirements compared to the full problem. Second, the evolutionary
divergence of taxa in a subproblem is reduced compared to the full set

of taxa, which has been shown to improve accuracy for phylogenetic tree
inference (Huelsenbeck and Hillis, 1993; Felsenstein, 1978; Liu et al.,
2009). We and our collaborators have successfully applied divide-and-
conquer approaches to enable scalable inference in the context of species
tree estimation (Liu et al., 2009, 2012; Mirarab et al., 2015).

Here, we consider the more general problem of inferring species
phylogenies that are directed phylogenetic networks. A directed
phylogenetic networkN = (V,E) consists of a set of nodesV and a set of
directed edgesE. The set of nodes V consists of a root node r(N) with in-
degree 0 and out-degree 2, leavesL(N) with in-degree 1 and out-degree 0,
tree nodes with in-degree 1 and out-degree 2, and reticulation nodes with
in-degree 2 and out-degree 1. A directed edge (u, v) ∈ E is a tree edge if
and only if v is a tree node, and is otherwise a reticulation edge. The edges
in a network N can be labeled by a set of branch lengths `. A directed
phylogenetic tree is a special case of a directed phylogenetic network which
contains no reticulation nodes (and edges). An unrooted topology can be
obtained from a directed tree by ignoring edge directionality.

The phylogenetic network inference problem consists of the following.
One input is a partitioned multiple sequence alignment A containing data
partitions ai for 1 ≤ i ≤ k, where each partition corresponds to the
sequence data for one of k genomic loci. Each of the n rows in the
alignment A is a sample representing taxon x ∈ X , and each taxon is
represented by one or more samples. Similar to other approaches (Yu et al.,
2014a; Solís-Lemus and Ané, 2016), we also require an input parameter cr
which specifies the number of reticulation nodes in the output phylogeny.
Under the evolutionary models used in our study and others (Yu et al.,
2014a; Solís-Lemus and Ané, 2016), we note that increasing cr for a
given input alignment A results in a solution with either better or equal
model likelihood. For this reason, inference to address this and related
problems is coupled with standard model selection techniques to balance
model complexity (as determined by cr) with model fit to the observed
data. The output consists of a directed phylogenetic networkN where each
leaf in L(N) corresponds to a taxon x ∈ X .

3 Methods

3.1 The FastNet algorithm

We now describe our new divide-and-conquer algorithm, which we refer
to as FastNet.

Step zero: obtaining local gene trees. FastNet is a summary-based
method for inferring phylogenetic networks. Each subsequent step of the
FastNet algorithm therefore utilizes a set of gene treesG as input, where a
gene tree gi ∈ G represents the evolutionary history of each data partition
ai. The simulation study includes “boosting” experiments to evaluate the
performance of FastNet relative to the base method that is being “boosted”
(see below); all methods in these experiments (including FastNet) make use
of true gene trees. In all other simulation study experiments and empirical
analyses, we use FastTree (Price et al., 2010) to estimate gene trees as
input to the summary-based methods (including FastNet). See below for
details regarding FastTree inference.

Step one: obtaining a guide phylogeny. The subsequent subproblem
decomposition step requires a guide phylogeny N0. With the goal
of constraining evolutionary divergence of taxa in a subproblem, the
phylogenetic relationships in the guide phylogeny are used to measure
evolutionary relatedness. The phylogenetic relationships need not be
completely accurate. Rather, the guide tree needs to be sufficiently
accurate to inform subsequent divide-and-conquer steps. Another essential
requirement is that the method used for inferring the guide phylogeny must
have reasonable computational requirements.

For these reasons, we utilized ASTRAL (Mirarab and Warnow, 2015;
Mirarab et al., 2014a), a state-of-the-art phylogenomic inference method
that infers species trees, to infer a guide phylogeny that was a tree
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rather than a network. A primary reason for the use of species tree
inference methods is their computational efficiency relative to state-of-the-
art phylogenetic network inference methods. While ASTRAL accurately
infers species trees for evolutionary scenarios lacking gene flow, the
assumption of tree-like evolution is generally invalid for the computational
problem that we consider. As we show in our performance study, our
divide-and-conquer approach can still be applied despite this limitation,
suggesting that FastNet is robust to guide phylogeny error. Another
limitation of using ASTRAL in this context is that it effectively infers an
unrooted and undirected species tree. To obtain a rooted guide phylogeny,
our study made use of an outgroup taxon and the ASTRAL-inferred tree
was rooted on the leaf edge corresponding to the outgroup taxon.

Step two: subproblem decomposition. The rooted and directed guide
phylogeny N0 is then used to produce a subproblem decomposition D.
The decomposition D induces a partitioning of the set of taxa X into
disjoint subsets Di for 1 ≤ i ≤ q where

⋃
1≤i≤q

Di = D. We refer

to each subset Di as a “bottom-level” subproblem, which refers to the
subproblem decomposition technique.

Our study made use of guide phylogenies that were strictly trees,
which simplifies the subproblem decomposition procedure. Since the
guide phylogeny is a tree and contains no reticulation edges, removal
of any single edge will disconnect the phylogeny into two subtrees; the
leaves of the two subtrees will form two subproblems. We extend this
observation to obtain decompositions with two or more subproblems. The
subproblem decomposition D is a set of nodes in the guide phylogeny
N0, where each node d ∈ D induces a subproblem consisting of the taxa
corresponding to the leaves which are reachable from d inN0. Of course,
not all decompositions are created equal. In this study, we explore the use
of two criteria to evaluate decompositions: the maximum subproblem size
cm and a lower bound on the number of subproblems. We addressed the
resulting optimization problem using a greedy algorithm. The algorithm
is similar to the Center-Tree-i decomposition used by Liu et al. (Liu
et al., 2009) in the context of species tree inference. The main difference
is that we parameterize our divide-and-conquer based upon a different
set of optimization criteria. The input to our decomposition algorithm
is the rooted directed tree N0 and the parameter cm, which specifies the
maximum subproblem size. Our decomposition procedure also stipulates a
minimum number of subproblems of 2. The initial decomposition consists
of the root node r(N0). A current decompositionD is iteratively updated
as follows: each iteration greedily selects a node d ∈ D for which no
larger subproblem exists in D, the node d is removed from the set D and
replaced by its children. Iteration terminates when both decomposition
criteria (the maximum subproblem size criterion and the minimum number
of subproblems) are satisfied. If no decomposition satisfies the criteria, then
the search is restarted using a maximum subproblem size of cm − 1. In
practice, the parameter cm is set to an empirically determined value which
is based upon the largest datasets that state-of-the-art methods can analyze
accurately within a reasonable timeframe (Hejase and Liu, 2016). The
output of the search algorithm is effectively a search treeN top

0 with a root
corresponding to r(N0), leaves corresponding to d ∈ D, and the subset
of edges in N0 which connect the root r(N0) to the nodes d ∈ D in N0.
The decomposition is obtained by deleting the search tree’s corresponding
edge structure in N0, resulting in q sub-trees which induce subproblems
as before.

Step three: gene flow detection and inferring phylogenies on
subproblems. Assuming that a reasonable subproblem decomposition
can be obtained, tree-based divide-and-conquer approaches reduce
evolutionary divergence within subproblems by effectively partitioning
the inference problem within parts of the true phylogeny. Within each part
of the true phylogeny corresponding to a subproblem, the space of possible
sub-tree topologies contributes a smaller set of distinct bipartitions (each

corresponding to a possible tree edge) that need to be evaluated during
search as compared to the full inference problem. The same insight can
be applied to reticulation edges as well, except that a given reticulation is
not necessarily restricted to a single “bottom-level” subproblem. Another
possibility is that reticulation edges can span two distinct subproblems. We
therefore construct additional “pairwise” subproblems Cj for 1 ≤ j ≤(q
2

)
, where each pairwise subproblemCj contains the taxa from a distinct

pair of bottom-level subproblems Dk and Dl (i.e., Cj = Dk ∪ Dl).
Furthermore, to account for reticulations that are ancestral to bottom-level
subproblems, we also form a “top-level” subproblem Ctop by randomly
sampling a single taxon from each bottom-level subproblem Di. The
augmented decomposition D′ consists of D ∪ {Cj} ∪ {Ctop}.

The following inference problem uses the augmented decomposition
D′ to detect gene flow (or lack thereof) within and/or between
subproblems. Additional inputs to the problem include the guide
phylogeny N0 and the parameter cr which specifies the number of
reticulation nodes in the final phylogeny. Furthermore, we include the
gene treesG inferred using alignment A as input rather than the sequence
data itself, since we utilize summary-based approaches to address this
problem. Let Gs be the restriction of the gene trees G to the set of
subproblem taxa for s ∈ D′. The output consists of a subproblem subset
D′′ ⊆ D′, for use in the subsequent subproblem inference and merge
steps of the FastNet algorithm, and a function ∆(·) that assigns each
subproblem s to an integer in [0, cr], where ∆(s) is the estimated number
of reticulation nodes for the phylogeny corresponding to subproblem s

(i.e., the number of reticulations that were detected in a subproblem in the
augmented decomposition) and the total number of reticulation nodes is
subject to the constraint

∑
s∈D′

∆(s) = cr .

To address this problem, we utilize a greedy algorithm which makes use
of existing statistical summary-based methods for phylogenetic network
inference. Let Ξ be such a method which infers species networks under
an evolutionary model with parameters Θ. In this study, the choices for Ξ

consist of several state-of-the-art summary-based methods. One suitable
choice which was shown to be accurate in our previous performance study
(Hejase and Liu, 2016) is the maximum likelihood estimation method of
Yu et al. (2014a), which we refer to as PhyloNet-MLE. Let FΞ,Θ(Gs, k)

be the species network with k reticulation nodes which is inferred by
method Ξ under its model with parameters Θ and subproblem input Gs.
Let LΞ,Θ(Gs, k) be the corresponding model likelihood of the inferred
network.

The greedy algorithm requires a ranking of all valid assignments ∆,
which we compute as follows. First, we enumerate all valid assignments
∆ given the augmented decompositionD′ and the number of reticulation
nodes cr . For each possible assignment ∆, we use method Ξ to
analyze each subproblem s ∈ D′ to obtain the subproblem network
FΞ,Θ(Gs,∆(s)) and the corresponding likelihood LΞ,Θ(Gs,∆(s)).
For more speed, we constrained the number of network topology searches
for Ξ to 1000 for subproblems containing more than 8 taxa; for
subproblems containing more than 14 taxa, we used pseudo-likelihood
approximations to full model likelihood calculations given that datasets of
this size exceed the scalability limits of full likelihood models (Hejase and
Liu, 2016). We then rank the ∆ assignments using a probabilistic criterion
which is based on a full model likelihood LΞ,Θ(·, ·). For more speed, we
relaxed the full likelihood calculation and instead optimized the product
of subproblem likelihoods

∏
s∈D′

LΞ,Θ(Gs,∆(s)). This calculation is

an approximation since it effectively assumes that subproblems are
independent, although they are correlated through connecting edges in
the model phylogeny.

Given the ranked ∆ assignments, we perform the following greedy
search starting from the top-ranked ∆ assignment. Let D′′ be the current
candidate set of subproblems for use in the subsequent subproblem
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inference and merge steps of the FastNet algorithm; initially, D′′ is
the empty set ∅. Furthermore, let N ′′ be a “greedy pairwise merge”
phylogeny, initially set to a star tree on the full set of taxa X . (1) We
greedily select the subproblem s′ = arg max

s
∆(s) that has the largest

number of estimated reticulations according to the current ∆ assignment
and that has not yet been processed during this step. We add the greedily
chosen subproblem s′ toD′′ if s′ has a corresponding estimated phylogeny
FΞ,Θ(G′s,∆(s′)) that can be “merged” with N ′′, in the sense that there
exists a network N ′′′ defined on taxa (

⋃
d∈D′′

d) ∪ {s′} such that N ′′′

displays FΞ,Θ(s′,∆(s′)); we correspondingly updateN ′′ to be identical
toN ′′′ in this case. (The top-level subproblemCtop is merged differently
compared to the other subproblems; see below for details). In principle,
finding N ′′′ is possible using brute force but inefficient; in practice (and
by design), the subproblem decomposition {Di} obtained in step two of
FastNet tends to result in an augmented decomposition with corresponding
subproblem phylogenies which are (nearly) monophyletic for eachDi. (2)
We repeat the first step until either

⋃
d∈D′′

d = X or no suitable candidates

s′ remain (i.e., all subproblems in the augmented decomposition have been
processed). (3) If

⋃
d∈D′′

d = X , then terminate and return D′′, ∆, and

N ′′ as output. Otherwise, repeat the greedy search from the first step with
the next-ranked ∆ assignment.

In the experiments in our study, a satisfying ∆ assignment was always
found. In principle, a (very) complicated model phylogeny may necessitate
relaxing some search constraints, such as reducing cr .

Step four: merge subproblem phylogenies into a phylogeny on
the full set of taxa. The ranking criterion in step three effectively
assumes that the phylogenetic relationships connecting the bottom-level
subproblem phylogenies NCi

= FΞ,Θ(GDi
,∆(Di)) consist of a star

tree (N1 : δ,N2 : δ, . . . , Nq : δ); with branch length δ past saturation.
The FastNet algorithm resolves the “top-level” structure of the output
phylogeny using the phylogeny inferred on Ctop and the other outputs
of step three, including the optimal assignment ∆. For each bottom-level
subproblem Di, the rooted network FΞ,Θ(GDi

,∆(Di)) replaces the
corresponding leaf in the “top-level” phylogeny FΞ,Θ(GCtop ,∆(Ctop).

For each pairwise subproblem Cj formed from two distinct bottom-level
subproblemsDk andDl, we utilized the following merge procedure which
is designed to account for the (relatively rare) case that the corresponding
subproblem phylogeny FΞ,Θ(GCj

,∆(Cj) lacks monophyly for Dk or
Dl. We retain the two outgoing edges incident upon the root node of the
pairwise subproblem phylogeny FΞ,Θ(GCj

,∆(Cj) but replace the root
node with two “dangling” nodes (i.e., nodes with in-degree zero and out-
degree one) – one for each outgoing edge; each outgoing edge will “attach”
to the “top-level” phylogeny FΞ,Θ(GCtop ,∆(Ctop) by replacing one

leaf edge corresponding to either bottom-level subproblemDk orDl. The
criteria for replacement is based upon the bottom-level subproblem (either
Dk orDl) that has the greatest amount of overlap with the set of taxa that
are reachable from a given dangling node via tree edges only. The result
of the merge procedure is a phylogeny N on the full set of taxa.

3.2 Performance study

Below we describe the steps used in the performance study. Detailed
commands and software options are given in the Appendix.

Simulation of model networks. Our goal was to simulate model
networks that reflected recent (paraphyletic and monophyletic) and
ancestral gene flow deeper in the species phylogeny, similar to the
corresponding simulations in the study of Leaché et al. (2014). We first
simulated random model trees using r8s version 1.7 (Sanderson, 2003) for
20, 30, and 50 taxa. Twenty random model tree replicates were generated
for each model condition (recent and deep gene flow) where the height of

each tree replicate was scaled to 5. One, two, or three reticulations were
added to each model tree using the following two steps. First, select two
taxa or clades. Second, add unidirectional migration occurring from 0 to t
with a rate of 5.0 between the two selected taxa or clades. After generating
a random model network, an outgroup was added at coalescent time 10.
1000 gene trees were simulated for each random model network using ms
(Hudson, 2002). In our simulation study, we sampled one allele per taxon.

Simulation of DNA sequences. The evolution of sequences was
simulated using seq-gen (Rambaut and Grassly, 1997), which takes
the gene trees generated by ms as input and simulates the evolution
of sequences according to a finite-sites model. Using the Jukes-Cantor
mutation model (Jukes and Cantor, 1969), we simulated the evolution of
DNA sequences for each local genealogy generated by ms. The simulated
sequence had a total length of 1000 kb, which was equally distributed
across all local genealogies (1000 bp per local genealogy).

Gene tree inference. FastTree (Price et al., 2009, 2010) was used for
local gene tree inference. We used the Jukes-Cantor model (Jukes and
Cantor, 1969) to infer a maximum-likelihood gene tree for each sequence
alignment. The inferred gene trees were rooted using the outgroup.

Species phylogeny estimation methods. The performance of FastNet
was evaluated relative to each state-of-the-art method that it “boosted”.
We used a likelihood-based approach based on the MLE method of Yu
and Nakhleh (Yu et al., 2011), which calculates model likelihood while
factoring in gene tree branch lengths (Bryant et al., 2012). We refer to this
method as MLE-length. We also applied a pseudo-likelihood inference
method based on the method of Yu and Nakhleh (Yu and Nakhleh, 2015),
which uses pseudo-likelihood approximations to the full model likelihood.

Performance measures. We evaluated the inference methods using
multiple criteria. The first evaluation criterion is topological accuracy.
We compared the inferred phylogeny to the model phylogeny using the
tripartition distance (Nakhleh et al., 2003), which counts the proportion of
tripartitions that are not shared between the inferred and model network.
The second evaluation criterion is the computational requirements of the
method, which was measured in terms of CPU runtime. All computational
analyses were run on Michigan State University’s High-Performance
Computing Center. We used compute nodes in the intel14 cluster which
had 2.5 GHz Intel Xeon E5-2670v2 processor with 64 GiB of main memory
per node.

3.3 Empirical data

Bacteria belonging to the Burkholderiaceae are of interest given their
importance in human and plant disease, but also given their role
as plant and fungal endosymbionts and their metabolic capacity to
degrade xenobiotics. Fully sequenced (closed) genomes belonging to
Burkholderiaceae were selected and downloaded from the PATRIC web
portal (www.patricbrc.org). We chose to maximize phylogenetic and
ecological diversity in this sampling, so we included available genomes
belonging to free-living, pathogenic, and endosymbiotic species spanning
across the genera Burkholderia, Ralstonia, Pandoraea, Cupriavidus,
Mycoavidus, and Polynucleobacter. Genomes ranged in size from 2048
(1.56 MB) and 9172 (9.70 MB) coding DNA sequences (CDS). The
software package Proteinortho was used to select for single copy orthologs
across selected genomes based upon amino acid similarity and using
default parameters (Lechner et al., 2011). Proteinortho inferred 549
orthologs where the multiple sequence alignment of each ortholog
contained 57 taxa. To obtain estimated gene trees for each ortholog,
FastTree under the JTT+CAT model was used to infer the maximum-
likelihood unrooted gene tree for each sequence alignment. Each gene
tree was rooted using the following outgroup taxon: Polynucleobacter
necessarius subsp asymbioticus.
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4 Results

4.1 Simulation study

Runtime. We report the runtimes of FastNet and the other phylogenetic
inference methods in Table 1. Recall that the probabilistic network
inference methods were found to be the most accurate among state-of-
the-art methods, and MPL was among the fastest methods in this class
(Hejase and Liu, 2016). Furthermore, MPL was designed to tradeoff
optimization under a pseudo-likelihood-based approximation for increased
computational efficiency compared with full likelihood methods (Yu and
Nakhleh, 2015). However, the tradeoff netted efficiency that was well
short of current phylogenomic dataset sizes (Hejase and Liu, 2016). In
comparison to MPL, FastNet was faster by orders of magnitude. For
dataset sizes of 30 taxa or less, FastNet completed analysis in less than six
hours. For the largest 50 taxon datasets in our study, FastNet completed
analysis in approximately a day. MPL was slower than FastNet by several
factors. MPL completed analysis on dataset sizes of 20 and 30 taxa in
approximately one and three days, respectively. MPL did not complete the
analysis of datasets with 50 taxa after one week of runtime. We predict that
MPL’s computational runtime requirements render it infeasible for analysis
of any datasets larger than 50 taxa in our study. MP was faster than FastNet
by several factors. As we have shown in our previous study (Hejase and
Liu, 2016), the speed of this method comes at a cost in terms of accuracy,
which is consistent with other studies examining problems of phylogenetic
tree estimation (Mirarab et al., 2014b) and statistical inconsistency of MP
approaches in this context (Felsenstein, 1978). The runtime of each method
increased as the number of taxa increased.

FastNet as a boosting method. The purpose of FastNet is to boost
existing methods, much like previous tree-based divide-and-conquer
methods (Liu et al., 2009). Using true gene trees as input, we evaluated
the performance boost of FastNet using MLE-length as a base method
compared to the base method itself (Table 2). We observed a boost in
terms of accuracy and runtime of 0.146 (as measured by the tripartition
distance) and 64 hours, respectively. FastNet, using MLE-length as a
base method, was significantly more accurate and faster than the boosted
method (Benjamini-Hochberg-corrected pairwise t-test; α = 0.05 and
n = 20). Similarly, we compared the performance of FastNet, using MPL
as a base method, relative to the base method itself (Table 2). We observed
a performance boost of 0.165 as measured by the tripartition distance and
20 hours for the accuracy and runtime, respectively. The performance
advantage of FastNet over the boosted method was significant using a
Benjamini-Hochberg-corrected pairwise t-test (α = 0.05 and n = 20).
The aforementioned two boosting experiments demonstrated the relative
improvement in accuracy and time for FastNet versus the boosted method
(MLE-length or MPL).

Topological accuracy of FastNet: one-reticulation-node model
conditions. We next evaluated the topological accuracy of the phylogenies
inferred by FastNet across a range of evolutionary scenarios and using
inferred gene trees as input. Figure 1 shows the topological accuracy
of FastNet on one-reticulation-node model conditions. We found that
FastNet’s topological error tended to increase from 0.02 to 0.05 as dataset
sizes increased from 20 to 50 taxa for the recent gene flow model
conditions. For the ancestral gene flow model conditions, the accuracy
ranged between 0.06 and 0.15. Overall, FastNet was more accurate in the
recent gene flow model conditions compared to the ancestral gene flow
model conditions across all taxa with an average accuracy improvements
of 0.08, 0.12, and 0.02, for dataset sizes of 20, 30, and 50, respectively.
This observation suggests that detecting ancestral gene flow deeper in
the species phylogeny is more difficult compared to detecting recent
(paraphyletic and monophyletic) gene flow.

On the twenty taxon datasets, FastNet perfectly recovered the topology
of the model phylogeny for 16 and 6 replicates for the recent and ancestral
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Fig. 1. Topological accuracy of FastNet on one-reticulation-node model conditions on
dataset sizes ranging from 20 to 50. The topological accuracy of each inferred phylogeny
with respect to the model phylogeny is evaluated using the tripartition distance (See Methods
for details). The panels show results for model conditions with either: (a) recent gene flow
or (b) ancestral gene flow. Average distances and standard error bars are shown (n = 20).

gene flow model conditions, respectively, and was nearly perfectly accurate
on the remaining replicates. On the thirty and fifty taxon datasets, FastNet
perfectly recovered the topology of the model phylogeny for 10 and
8 replicates for the recent gene flow model conditions, and 0 and 4
replicates for the ancestral deeper in the species phylogeny gene flow model
conditions. Therefore, we observed more difficulty in perfectly inferring a
phylogeny as we increase the number of taxa. One minor exception to this
observation is the performance of FastNet on thirty and fifty taxon datasets
using ancestral gene flow model conditions.

We evaluated the performance of FastNet as we varied the number of
loci from 100 to 1000 using twenty taxon datasets on recent gene flow
model conditions (Figure 2). As we increase the number of loci from
100 to 1000, the topological error as measured by the tripartition distance
decreased from 0.06 to 0.02.

Topological accuracy of FastNet: two-reticulation-node and three-
reticulation-node model conditions. On model conditions where the
model phylogeny contained two reticulation nodes rather than one, FastNet
inferred a rooted, directed phylogeny with an average tripartition distance
of 0.04 (Figure 3). Similarly, on model conditions where the model
phylogeny contained three reticulation nodes, FastNet had relatively
high accuracy with an average topological distance of 0.08. FastNet
perfectly recovered the topology of the model phylogeny in 16, 13,
and 7 replicates for the one-reticulation-node, two-reticulation-node and
three-reticulation-node model conditions, respectively. As the number of
reticulation nodes increased from one to three, FastNet’s error tended to
increase from 0.02 to 0.08.
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Table 1. Runtime in hours for FastNet and the other phylogenetic inference methods. The model conditions involved dataset sizes ranging from 20 to 50 and
model phylogenies that contained one reticulation node. Average runtime (“Avg”) and standard errors (“SE”) are listed (n = 20). MPL was unable to finish analysis
of datasets with fifty taxa after one week of runtime.

Number of taxa Runtime in hours
Recent gene flow Ancestral gene flow

FastNet MPL MP FastNet MPL MP
Avg SE Avg SE Avg SE Avg SE Avg SE Avg SE

20 3.7 1.3 23.7 4.3 <1 <0.1 2.5 0.6 21.4 4.5 <1 <0.1
30 6.1 2.4 60.3 14.7 <1 <0.1 3.8 1.0 66.1 11.8 <1 <0.1
50 25.6 3.6 - - <1 <0.1 19.2 2.8 - - <1 <0.1

Table 2. Average distances and runtimes for the performance boost of FastNet (with either MLE-length or MPL as base methods) over base method (either
MLE-length or MPL) using model conditions that contained 20 taxa. The topological distance between the inferred and model phylogenies was measured using
the tripartition distance. The model conditions involved model phylogenies that contained one reticulation node. True gene trees were used as input to FastNet,
MLE-length, and MPL. Average (“Avg”) and standard errors (“SE”) for the performance improvement of topological distances and runtimes are listed (n = 20). A
one-sided t-test comparing the performance advantage of FastNet over the boosted method (MLE-length or MPL) for the evaluation criteria (i.e. topological distance
and runtime) was conducted. Corrected q-values are reported where multiple test correction was performed using the Benjamini-Hochberg method (Benjamini and
Hochberg, 1995).

Boosted Method Topological distance Runtime in hours
Avg SE q value Avg SE q value

MLE-length 0.146 0.025 1.78 x 10−5 64.21 5.887 2.41 x 10−9

MPL 0.165 0.01 7.93 x 10−3 20.501 5.44 6.99 x 10−4

4.2 Empirical study

To estimate a phylogeny on the empirical dataset, we coupled FastNet
analysis with standard model selection approaches to choose the number
of reticulation nodes in the output phylogeny. One approach consisted of
standard information criteria (Akaike, 1974; Schwarz, 1978). As shown in
Supplementary Table S4 in the Appendix, the FastNet-inferred phylogeny
with two reticulation nodes is preferred to the FastNet-inferred phylogeny
with one reticulation node, and both are preferred to the ASTRAL-
inferred tree which served as FastNet’s guide phylogeny. The preferred
phylogeny (i.e., the FastNet-inferred phylogeny with two reticulation
nodes) is shown in Supplementary Figure S2 in the Appendix. The
preferred phylogeny contains the FastNet-inferred phylogeny with one
reticulation node (Supplementary Figure S1 panel i in the Appendix);
the latter phylogeny contained the same reticulation node and edges,
all of which were subsumed by the preferred phylogeny. The FastNet-
inferred phylogeny with two reticulation nodes contained 53 out of the 53
internal tree edges which formed the ASTRAL-inferred tree. A standard
slope analysis (similar to the study of Solís-Lemus and Ané (Solís-Lemus

and Ané, 2016)) suggests that the true phylogeny may contain additional
reticulation edges and nodes (Supplementary Figure S3 in the Appendix).

5 Discussion
Performance study. Using both simulated and empirical data, we
evaluated the performance of FastNet across a range of evolutionary
scenarios. We evaluated performance based upon computational runtime
and topological accuracy.

FastNet was roughly an order of magnitude faster and more accurate
than MPL, a pseudo-likelihood-based inference method. FastNet analyses
required only slightly longer runtime compared to the fastest method in our
study: MP, which was among the least accurate methods in our previous
study (Hejase and Liu, 2016). On the largest datasets in our study which
had 50 taxa, FastNet analyses completed within a day – well within the
range of feasibility. We predict that FastNet will almost certainly scale to
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Fig. 2. Topological accuracy of FastNet on one-reticulation-node model conditions
where the number of loci per replicate dataset ranged between 100 and 1000 loci. The
model conditions consisted of recent gene flow events. Figure layout and description are
otherwise identical to Figure 1.
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Fig. 3. Topological accuracy of FastNet on one-reticulation-node, two-reticulation-
node and three-reticulation-node model conditions. Figure layout and description are
otherwise identical to Figure 1.

datasets with hundred taxa. We note that the FastNet algorithm is pleasantly
parallelizable (as are some of the other methods in this study).

We used FastNet to “boost” the performance of two state-of-the-art
methods, resulting in improved topological accuracy and computational
runtime. We note that the base methods (MLE-length and MPL) were run in
default mode. More intensive settings for each base method’s optimization
procedures may allow a tradeoff between topological accuracy and
computational runtime. We stress that our goal was not to make specific
recommendations about the nuances of running the base methods. Rather,
FastNet’s divide-and-conquer framework can be viewed as orthogonal to
the specific algorithmic approaches utilized by the base method to be
boosted. In this sense, improvements to the latter accrue to the former
in a straightforward and modular manner.

We explored the impact of multiple factors upon FastNet’s topological
accuracy. For evolutionary scenarios involving recent gene flow, FastNet’s
accuracy was relatively robust to the dataset sizes explored in our study
(in terms of the number of taxa as well as the number of loci). A
relatively greater impact on topological accuracy was seen in the presence
of ancestral gene flow as well as a greater number of reticulations in the
model phylogeny.

To our knowledge, our study contains the first data-driven survey of
horizontal gene transfer (HGT) among the Burkholderiaceae which utilizes
the latest phylogenomic models and methods. We note that the literature
suggest pervasive horizontal gene transfer among the Burkholderiaceae
(Boyd et al., 2009). These findings echo the common sentiment
among microbiologists that horizontal gene transfer must be widespread
throughout the prokaryotic Tree of Life. Many corollary questions follow.
For example, is horizontal gene transfer uniformly distributed across the
prokaryotic Tree of Life, or not? Concrete and quantitative answers to these
questions crucially depend upon computational methodologies that scale
to large and divergent datasets. We view FastNet as the first step in this
direction. The empirical analysis in our study points to multiple horizontal
gene transfer events with unknown evolutionary roles. Fine-scale intra-
genomic detection of alleles and loci involved in HGT will shed more light
into the role of HGT in the evolution of the Burkholderiaceae. Analyses
using PhyloNet-HMM (Liu et al., 2014) or related methods (Mailund et al.,
2012; Durand et al., 2011) would be suitable for this purpose.

The algorithmic design of FastNet. We consider the procedures used
in FastNet’s step one (inferring a guide phylogeny), step two (subproblem
decomposition), and step four (merge) to be reasonable approaches, but
more sophisticated alternatives can (and should) be proposed. Rather,

we decided to focus our effort on the part of the phylogenetic network
inference problem that we hypothesized to both have a first-order impact on
inference accuracy and that substantially differentiates the problem from
species tree inference: namely, step three – gene flow detection within
“regions” of a guide phylogeny. Despite these methodological limitations
and the added challenge of moderate gene tree error relative to other
studies (see Appendix), we were able to obtain consistent improvements
in topological accuracy and computational runtime when FastNet was
used to boost the performance of a base method. Taken together, these
results suggest that FastNet is robust to the choice of guide phylogeny,
subproblem decomposition, merge technique, and gene tree error. We
attribute FastNet’s performance advantage to the techniques used in step
two of the algorithm. Inference accuracy tended to diminish as dataset
sizes increased, which is likely due to larger subproblem sizes and more
complex correlation structure (due to additional edge structure) “above”
subproblems. Recursive application of divide-and-conquer should help to
address these issues.

6 Conclusion
In this study, we introduced FastNet, a new computational method
for inferring phylogenetic networks from large-scale genomic sequence
datasets. FastNet utilizes a divide-and-conquer algorithm to constrain two
different aspects of scale: the number of taxa and evolutionary divergence.
We evaluated the performance of FastNet in comparison to state-of-the-art
phylogenetic inference methods. We found that FastNet improves upon
existing methods in terms of computational efficiency and topological
accuracy. FastNet was an order of magnitude faster than the most accurate
state-of-the-art phylogenetic network inference method. Furthermore,
FastNet’s topological accuracy was comparable to or typically better than
all other methods in our study.

Future enhancements to FastNet’s algorithmic design are anticipated
to yield further performance improvements. Here we highlight several
possibilities. First, the greedy search used in step three of FastNet
will suffice for small values of cr , but dynamic programming based
upon ∆ assignments will likely be necessary to retain computational
efficiency as the number of reticulation nodes increases. Second, as noted
above, more sophisticated techniques for gene tree inference, inferring a
guide phylogeny, subproblem decomposition, and merging phylogenetic
networks inferred on subproblems can be substituted for the approaches
used in our study. Third, the use of a guide phylogeny naturally invites

.CC-BY-NC-ND 4.0 International licenseauthor/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted May 1, 2017. ; https://doi.org/10.1101/132795doi: bioRxiv preprint 

https://doi.org/10.1101/132795
http://creativecommons.org/licenses/by-nc-nd/4.0/


“fastnet” — 2017/1/27 — page 8 — #8

8 Hejase et al.

iteration: the output phylogeny from one iteration of the FastNet algorithm
would be used as the guide phylogeny for a subsequent iteration of the
algorithm. This requires modifying step one of FastNet to utilize a guide
network in lieu of a guide tree. We provide specific recommendations
below.

To provide added flexibility in algorithmic design, we briefly return to
the question of subproblem decomposition using a guide phylogeny that
is not necessarily a tree. In general, the use of a phylogenetic network for
subproblem decomposition presents two challenges. First, if a phylogeny
contains no reticulation edges and is therefore a tree, removal of any single
edge will break the phylogeny into two subtrees and the leaves of the two
subtrees will form two subproblems. However, when a phylogeny contains
reticulation edges, this observation no longer applies: removal of a single
edge (reticulation or tree) does not necessarily disconnect a phylogenetic
network. To deal with this challenge, we choose a random member from
the set of rooted tree topologies encoded in the network topology of N0

and use the rooted tree topology T0 for subproblem decomposition. The
greedy algorithm in step one can then be applied to the rooted tree topology
T0.

Several aspects of our performance study can also be revisited in the
future to better understand the performance of FastNet and related methods.
Recall that the gene tree topology distributions explored in our study
became more “tree-like” as more taxa and reticulation nodes were added to
the model phylogeny. This observation depends in part upon the simulation
conditions explored in our study. One contributing factor is that the gene
flow parameter values used in our study were uniform across the phylogeny
(and different model conditions). In general, not all reticulation nodes are
equal in this sense, and we predict that different reticulation nodes will have
differential effects upon coalescent histories. For example, rare gene flow
events will have less effect compared to more common gene flow events.
Our performance study focused on topological comparisons and sets the
stage for future evaluations that also evaluate branch length accuracy. More
work is needed to devise suitable phylogenetic network distances, possibly
building upon the related work of Kuhner and Felsenstein (1994) and
Solís-Lemus and Ané (2016).

We conclude with some parting thoughts about the computational
problem of phylogenetic network inference. In today’s post-genomic
era, current trends in biomolecular sequence technologies suggest that
even the scalability advance set forth in this study will not suffice for
near future studies. There is a critical need for new phylogenomic
methodologies to infer species networks involving thousands of taxa or
more. Another important issue involves appropriate representations for
phylogenies involving both vertical divergence and horizontal gene flow.
In our view, inference of vertical divergence and inference of horizontal
gene flow really represent two orthogonal questions. We recommend
the use of orthogonal measures to separately evaluate the two (despite
differences in scale in terms of the number of edges of each type).
Furthermore, we would argue that, in explicit phylogenetic network
representations, exact placement of the endpoints of reticulation edges
may be difficult in some cases, whereas a summary-based localization may
be tractable and almost as informative (cf. Figure 3 in Yu et al. (Yu et al.,
2014a)). We believe that step three of FastNet suggests a way forward
(i.e., alternative phylogenetic representations that summarize gene flow
within “regions” of a phylogeny). One possibility would be to generalize
tree-based concordance factors (Baum, 2007) for this purpose.
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