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Abstract 

Depression and anxiety disorders are the first and sixth leading cause of disability worldwide 

according to latest reports from the World Health Organization. Despite their high prevalence 

and the significant disability resulted, there are limited advances in new drug development. On 

the other hand, the advent of genome-wide association studies (GWAS) has greatly improved 

our understanding of the genetic basis underlying psychiatric disorders.  

In this work we employed gene-set analyses of GWAS summary statistics for drug 

repositioning. We explored five related GWAS datasets, including two on major depressive 

disorder (MDD-PGC and MDD-CONVERGE, with the latter focusing on severe depression 

cases), one on anxiety disorders, and two on depressive symptoms and neuroticism in the 

population. We extracted gene-sets associated with each drug from DSigDB and examined 

their association with each GWAS phenotype. We also performed repositioning analyses on 

meta-analyzed GWAS data, integrating evidence from all related phenotypes.  

  Importantly, we showed that the repositioning hits are generally enriched for known 

psychiatric medications or those considered in clinical trials, except for MDD-PGC. 

Enrichment was seen for antidepressants and anxiolytics but also for antipsychotics. We also 

revealed new candidates for repositioning, some of which were supported by experimental or 

clinical studies. For example, the top repositioning hit using meta-analyzed p-values was 

fendiline, which was shown to produce antidepressant-like effects in mouse models by 

inhibition of acid sphingomyelinase and reducing ceramide levels. Taken together, our 

findings suggest that human genomic data such as GWAS might be useful in guiding drug 

discoveries for depression and anxiety disorders. 
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Introduction 

Depression and anxiety disorders are among the most common psychiatric disorders. 

According to the latest report by the World Health organization, depression affects more than 

300 million people worldwide and is the leading cause of disability1. Anxiety disorders affects 

more than 260 million people and is the sixth leading cause of disability1. The two disorders are 

highly comorbid and might share common pathophysiologies2,3. Nevertheless, 

pharmacological treatment for major depressive disorder (MDD) or anxiety disorders (AD) has 

not seen much advance in the last two decades or so, with a lack of therapies having novel 

mechanisms of action. In addition, only about one third of MDD patients achieve complete 

remission after a single antidepressant trial4 and around 10 to 30% of patients are 

treatment-resistant5.  

 

On the other hand, with the advent of high-throughput technologies such as genome-wide 

association studies (GWAS) in the last decade, we have gained a much better understanding of 

the genetic bases of many complex diseases. It is hoped that human genomics data will 

accelerate drug development for psychiatric disorders, especially due to the difficulties for 

animal models to fully mimic human psychiatric conditions6.  

 

  Conventional drug development is a very lengthy and costly process. An alternative is to 

explore existing drugs for new disease indications, or drug repositioning. A repurposed drug 

can be brought into clinical use in a much shorter time-frame than a brand-new medication7. In 

this study we will take advantage of large-scale GWAS summary data for drug repositioning.  

 

  The majority of GWAS studies focus on the identification of new susceptibility loci and 

relatively few have explored the potential of using the ever-growing data to guide drug 

discoveries. In an earlier study, Sanseau et al.8 identified the most significant GWAS hits from 

a range of diseases and compared them against known drug targets to find “mismatches” (i.e. 

drug indication different from the studied disorder) as candidates for repurposing. While it is 

intuitive to focus on the most significant SNPs, for many complex traits the genetic architecture 

may be highly polygenic and variants of weaker effects may be “hidden”. Moreover, given the 

complex and multifactorial etiologies of many complex diseases, the development of 

multi-target drugs with wide-ranging biological activities (known as “polypharmacology”) is 

gaining increased attention (please refer to e.g. Anighoro et al.9 for a review). It is argued that 

multi-target drugs may have improved efficacy over highly selective pharmacological agents, 

as they tackle multiple pathogenic pathways in the system.  

 

In this study we employed gene-set analysis (GSA) for drug repositioning. Here the 

gene-sets are defined as genes related to a drug, for example known drug targets, genes 
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differentially expressed after drug treatment or genes with active bioassay results. We 

considered a large panel of drugs and investigated whether the gene-set associated with each 

drug is enriched among GWAS results. The top results can then serve as candidates for 

repurposing. We also tested whether the top repositioned candidates are enriched for known 

psychiatric medications. 

 

As will be discussed later, the current study is also complementary to our recent drug 

repositioning attempt by a new general methodology in which expression profiles of drugs are 

compared against those of diseases10. This study employed GSA instead and gene-based 

statistics were directly derived from GWAS results, attacking the problem from a different 

angle. 

 

Gene-set analysis is an established approach to gain biological insight into expression 

microarrays, GWAS or other high-throughput “omics” studies11,12. De Jong et al. made use of 

GSA to identify repurposing opportunities for schizophrenia13. In another very recent study, 

Gasper et al.14 performed further analyses of GSA results, and reported that GWAS signals of 

schizophrenia are enriched for neuropsychiatric medications as sample size increases. Another 

related study on schizophrenia was conducted by Ruderfer et al., who collected genome-wide 

significant GWAS variants and exome sequencing results and compared the identified genes 

against drug targets. Significant enrichment was noted for antipsychotics.  

 

 In this work we take a different focus on depression and anxiety disorders, which are highly 

prevalent and disabling disorders. We consider not only one but multiple GWAS summary 

datasets with additional analyses on psychiatric drug class enrichment.  

 

Methods  

Genome-wide association studies data 

We considered five GWAS datasets that are associated with depression and anxiety. Two are 

studies of major depressive disorder (MDD), namely MDD-PGC15 and MDD-CONVERGE16. 

However, the two studies are different in a number of ways. The MDD-PGC sample is 

composed of Caucasians of both sexes, while MDD-CONVERGE is a cohort of Chinese 

women. The MDD-CONVERGE sample mainly consists of hospital-ascertained cases affected 

by severe depression, of whom ~85% had melancholic symptoms16. The MDD-PGC sample on 

the other hand is more heterogeneous and not specifically enriched for any subtypes of 

depression15. 

   

  Another two GWAS studies were meta-analyses on depressive symptoms and neuroticism 

conducted by the Social Science Genetics Association Consortium (SSGAC)17. The 
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meta-analysis on depressive symptoms (SSGAC-DS) included the MDD-PGC sample, but it 

also contained general population samples. We also included another study on neuroticism 

(SSGAC-NEU), as this personality trait is known to be closely associated with depression and 

anxiety disorders18. In addition, antidepressants may affect personality traits, including a 

reduction in neuroticism, independent of their effects on depressive symptoms19.   

 

   The fifth dataset is a GWAS meta-analysis of anxiety disorders, including generalized 

anxiety disorder, panic disorder, social phobia, agoraphobia, and specific phobias20. We 

extracted the GWAS results of case-control analyses.  

 

GWAS summary results were downloaded from 

https://www.med.unc.edu/pgc/results-and-downloads and https://www.thessgac.org/data.  

 

Extracting gene-sets associated with each drug 

We made use of the DSigDB database21 to extract gene-sets related to each drug. DSigDB holds 

gene-sets for a total of 17839 unique compounds. The gene-sets are compiled according to 

multiple sources: (1) bioassay results from PubChem22 and ChEMBL23; (2) kinase profiling 

assay from the literature and two kinase databases (Medical Research Council Kinase Inhibitor 

database and Harvard Medical School Library of Integrated Network-based Cellular Signatures 

database); (3) differentially expressed genes after drug treatment (with >2 fold-change 

compared to controls), as derived from the Connectivity Map24; and (4) manually curated and 

text mined drug targets from the Therapeutics Targets Database (Qin et al., 2014) and the 

Comparative Toxicogenomics Database25. We downloaded the entire database from 

http://tanlab.ucdenver.edu/DSigDB.  

 

  It should be noted that although the focus is on drug “repositioning”, the analytic 

framework is general and can apply to any drugs with some known associated genes. Indeed 

DSigDB contains a substantial number of drugs which do not have an approved indication yet; 

they are still included in our analyses. 

 

Gene-set analysis (GSA) approach 

We first converted the SNP-based test results to gene-based test results. We employed 

fastBAT26 (included in the software package GCTA) for gene-based analyses. FastBAT 

computes the sum of chi-square statistics over all SNPs within a gene and uses an analytic 

approach to compute the p-value. Gene size and linkage disequilibrium patterns are taken into 

account when computing the p-values. The same statistical approach for gene-based tests is 

also used by two other popular programs, VEGAS27 and PLINK28, although they computed 

p-values by simulations or permutations. FastBAT has been shown to be equivalent to VEGAS 
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and PLINK at higher p-values (>1E-6) and more accurate than them for smaller p26. We ran 

fastBAT with default settings and used the 1000 Genome genotype data as the reference panel.  

 

  We then performed a standard GSA by comparing gene-based test statistics within and 

outside the gene-set. We adopted the same approach as implemented in MAGMA29, which is 

also reviewed in 12. Briefly, gene-based p-values are first converted to z-statistics by 
1( )z p  , where 1  is the probit function (more negative z-values represent stronger 

statistical associations). We then employed a single-sided two-sample t-test to see if the mean 

z-statistics of genes within the gene-set is lower than that outside the gene-set. To avoid results 

driven by only a few genes, we only considered drugs with at least 5 genes in their gene-sets. 

A total of 5232 drugs were included for final analyses. 

 

Combining p-values across datasets  

Besides analyzing each GWAS dataset in turn for repositioning opportunities, we also 

considered the aggregate contribution of all datasets, as depression, anxiety and neuroticism are 

closely connected to each other. We performed meta-analysis of p-values based on two 

methods, the Simes’ method30 and the Brown’s approach31. The Simes’ method is valid under 

positive regression dependencies32. Brown’s method is similar to Fisher’s method but accounts 

for dependencies in p-values. The MDD-CONVERGE sample includes only Chinese subjects 

and does not overlap with other datasets, but we accounted for overlapping samples in the 

remaining GWAS studies. We did not include MDD-PGC when combining p-values as this 

sample is already included in the GWAS results of depressive symptoms.  

 

Testing for enrichment of psychiatric drug classes 

We considered three sources for defining psychiatric drug-sets in our analyses. The first set 

comes from the Anatomical Therapeutic Classification (ATC) drugs downloaded from KEGG. 

We extracted three groups of drugs: (1) all psychiatric drugs (coded “N05” or “N06”); (2) 

antipsychotics (coded “N05A”); (3) antidepressants and anxiolytics (coded “N05B” or 

“N06A”). We did not specifically include drugs for dementia or psychostimulants as they are 

relatively small in number. The second source is from MEDication Indication resource 

(MEDI)33 derived from four public medication resources, namely RxNorm, Side Effect 

Resource 2 (SIDER2), Wikipedia and MedlinePlus. A random subset of the extracted 

indications was checked by physicians. The MEDI high-precision subset (MEDI-HPS), with an 

estimated precision of 92%, was used in our analyses33. Since only known drug indications are 

included in ATC or MEDI-HPS, we also included an expanded set of drugs that are considered 

for clinical trials (as listed on https://clinicaltrials.gov). These drugs are usually promising 

candidates supported by preclinical or clinical studies. A precompiled list of these drugs 

(created in May 2016) was obtained from https://doi.org/10.15363/thinklab.d212. For ATC and 
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MEDI-HPS, due to the relatively small number of drugs in each class, we combine 

schizophrenia with bipolar disorder (BD), as well depression with anxiety.  

 

We performed enrichment tests of repositioning hits for known drug classes, in a manner 

similar to the GSA described above. P-values are first converted to z-statistics, and the mean 

z-score within each drug class is compared against the theoretical null of zero (self-contained 

test) and against other drugs outside the designated drug class (competitive test) with one-sided 

tests. 

 

It is reasonable to believe that the current antidepressants or anxiolytics are not the only 

drugs that have therapeutic effects; in other words, a certain proportion of drugs in the 

“competing set” might also have therapeutic potential against depression or anxiety. Therefore, 

results of the competitive tests should be interpreted with this potential limitation in mind. In 

this paper we presented the drug-set enrichment results of both self-contained and competitive 

tests.  

 

Literature search  

For the top 30 repositioning hits based on meta-analyzed GWAS results (Brown’s or Simes’ 

method), we searched PubMed and Google scholar using the following terms: Drug_name 

AND (depression OR depressive OR antidepressant OR anxiety OR panic OR phobia OR 

anxiolytic). We also looked up the references therein if relevant.  

 

Correction for multiple testing 

We employed the false discovery rate (FDR) approach (which controls the expected proportion 

of false positives among those declared to be significant) to account for multiple testing34. 

FDR-adjusted p-values (or q-values) were computed by the R function p.adjust with the 

Benjamini-Hochberg (BH) procedure34. The primary q-value threshold was set at 0.05, while q 

< 0.1 was regarded as suggestive association. 

 

RESULTS 

Enrichment of psychiatric drug classes among the drugs repositioned from gene-set 

analyses 

Table 1-3 and Supplementary Tables 1-3 show the enrichment p-values and q-values for major 

psychiatric drug classes amongst the drugs repositioned from GSA. We observed that the drugs 

repositioned from most GWAS of anxiety and depressive traits are enriched for known 

psychiatric medications.  
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First we consider the three datasets (MDD-CONVERGE, MDD-PGC, SSGAC-DS) which 

focus on depression traits (Table 1 and Supplementary Table 1). On the whole the 

MDD-CONVERGE sample showed the strongest enrichment with the greatest number of 

significant results. Significant enrichment was seen for antipsychotics and antidepressants or 

anxiolytics within ATC and MEDI-HPS categories. Interestingly, when considering drugs 

included for clinical trials, the enrichment was more specific for anxiety and depression, while 

no significant results were found for schizophrenia.  

 

In contrast, we did not observe any significant enrichment for drugs repositioned from the 

MDD-PGC sample. The SSGAC-DS study included MDD-PGC data but the latter only 

comprised ~10% of the total sample size. For SSGAC-DS, we observed enrichment of drugs 

for schizophrenia and BD, and suggestive associations with anxiety and depression for 

medications listed in clinicalTrial.gov.  

 

As for neuroticism and anxiety disorders, there was evidence of enrichment in most drug 

classes under study. Interestingly, for neuroticism, the strongest enrichment was for 

antipsychotics (lowest q = 2.28E-09) instead of antidepressants. Table 2 and Supplementary 

Table 2 show the enrichment p-values and q-values respectively.  

 

For analyses involving meta-analyzed GWAS data across all datasets (Table 3 and 

Supplementary Table 3), enrichment was observed for all psychiatric drug classes, with 

generally stronger or at least comparable statistical associations when compared to enrichment 

tests of individual GWAS. The results of Brown’s and Simes’ tests were largely consistent with 

each other.  

 

Top repositioning hits 

We found a few interesting repositioning hits that were supported by previous studies (Table 4; 

full results of drug repositioning are given in Supplementary Table 4). Here we focus our 

discussion on the meta-analyzed results integrating all associated GWAS datasets (using either 

Brown’s or Simes’ method) and drugs among the top 30 hits. The top repositioning hit 

identified in meta-analysis was fendiline (Brown’s p = 1.06E-11, q = 5.55E-8), a non-selective 

calcium channel blocker. Fendiline was shown to exert antidepressant-like effects in a mouse 

model by inhibition of acid sphingomyelinase (ASM) activity and reduction of ceramide 

concentrations in the hippocampus35. A drop in ceramide concentrations might lead to 

increased neurogenesis and improved neuronal maturation and survival35.  

 

Another drug on the top list was alsterpaullone, a glycogen synthase kinase-3β (GSK-3β) 

inhibitor36. GSK-3β is involved in multiple psychiatric disorders, including depression37. Diniz 
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et al. reported higher platelet GSK-3β activities in elderly depressive patients38. Increased 

activation of GSK-3β was also associated with depression-like behavior in mouse models, 

which could be alleviated by GSK-3β inhibitors39. In addition, inhibition of GSK3 has been 

postulated as a major mechanism of action by the mood stabilizer lithium40.  

     

  Another drug sanguinarine, which is a selective mitogen-activated protein kinase 

phosphatase-1 (Mkp-1) inhibitor, was shown to produce antidepressant-like effect in rats41. 

Piperlongumine, a constituent of the fruit of Piper longum, was shown to confer resistance 

against stress in a mouse model42.  

 

  Interestingly, among the top repositioning hits from the meta-analysis results, a number of 

them are calcium channel blockers (CCB). These include fendiline, perhexiline, prenylamine 

and felodipine (prenylamine was withdrawn from the market due to risk of QT prolongation 

and torsades de pointes43). Although with the exception of fendiline, no direct experimental or 

clinical studies have shown antidepressant or anxiolytic properties of the above drugs, CCB as 

a whole have been proposed as treatment for various psychiatric disorders. CCB has been 

mostly studied for the treatment of mania, recently reviewed in Cipriani et al.44. However the 

number of quality double-blind randomized controlled trials (RCT) was small, and there is yet 

insufficient evidence to suggest the use of CCB in treating manic symptoms. As for depression, 

a recent pilot (patient-only) study of isradipine on bipolar depression showed positive results45. 

Another CCB, nicardipine, was reported to enhance the antidepressant action of 

electroconvulsive therapy46. Two RCTs also showed nimodipine might be useful as an 

augmenting agent for vascular depression patients47,48. A limited number of studies have 

investigated the use of CCB in anxiety disorders, with some successes but negative results have 

also been reported49. Notwithstanding the mixed evidence, CCB are probably still worthy of 

further investigation for depression and anxiety disorders, given the biological relevance of 

calcium signaling and some support from clinical studies.  

 

DISCUSSION 

In this study we leveraged large-scale GWAS summary data and analyzed gene-sets associated 

with drugs to uncover repositioning opportunities for depression and anxiety disorders. It is 

encouraging that we observed significant enrichment for known psychiatric medications or 

drugs considered in clinical trials. To our knowledge, this is the first study to demonstrate such 

enrichment. It also provides support for the validity of GSA in drug repurposing. In addition, 

we reveal a few interesting candidates for repurposing that are supported by prior studies. 

Taken together, our findings support the usefulness of GWAS data in guiding drug discoveries. 

Although only few susceptibility variants of genome-wide significance have been found for 

depression and anxiety disorders, our findings suggest that leveraging variants with weaker 
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associations, for example by GSA, might still contribute valuable information to the discovery 

of novel therapies. 

  

It is noteworthy that while we have included three datasets (SSGAC-DS, MDD-PGC, 

MDD-CONVERGE) related to depression, the enrichment results are quite different. Both 

MDD-PGC and MDD-CONVERGE are case-control GWAS studies on MDD; however the 

PGC sample showed no significant enrichment for known psychiatric medications. The 

discrepancy might be due to the differences between the two samples. As described above, the 

two samples differ by gender, ethnicity and the severity of depression. In addition, due to the 

lower awareness and possibly stronger resistance to seeking medication attention for 

depression in China, the disease severity in the CONVERGE cohort may be even higher than 

expected. It is widely accepted that MDD is a heterogeneous disorder, with a variety of clinical 

presentations and possibly divergent pathophysiologies50. By recruiting a more homogeneous 

group of patients, the CONVERGE study might have better power in detecting susceptibility 

genes despite a lower sample size. Indeed, MDD-CONVERGE revealed two genome-wide 

significant loci while none was found in the MDD-PGC study. It is also worth mentioning that 

previous meta-analyses showed that the response to antidepressant depends on the baseline 

severity of depression51,52. They reported that effects of antidepressants were largest for the 

most severely depressed group, but small or even non-existent for mild to moderate depression. 

Our findings, although based on a different study paradigm, are broadly in line with this clinical 

observation.  

    

  The SSGAC-DS study is about 10 times the sample size of MDD-PGC. It contained two 

case-control samples but also included a study of depressive symptoms in the general 

population (UK BioBank study). Although SSGAC-DS is not selective for depression 

phenotypes, the significant enrichment results suggest that expanding the sample size may be 

one way to overcome the genetic and phenotypic heterogeneities for drug repositioning.  

 

  Also, although the two SSGAC studies involve symptom measures in the general 

population instead of clinically diagnosed depression or anxiety disorders, we still observe 

enrichment for psychiatric drug classes. Drug repositioning may hence benefit from genetic 

studies of less restrictive symptom traits in the population, in addition to clinically diagnosed 

samples. In addition, our results suggest that combined analyses of multiple associated traits 

may further improve the power to detect new repositioning opportunities.  

 

   It is noteworthy that the repositioning hits are not only enriched for antidepressants or 

anxiolytics but also antipsychotics. A meta-analysis by Spielmans et al. revealed that atypical 

antipsychotics are effective as adjunctive treatment for treatment-resistant depression53. Zhou 
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et al. also reached a similar conclusion in a recent network meta-analysis54. Atypical 

antipsychotics may also be useful for anxiety disorders and symptoms55-57, although further 

studies are still required and that the benefits need to be balanced against the side-effects. 

Furthermore, a shared genetic basis between schizophrenia and depression is 

well-established58, and a recent study also found significant genetic correlation between 

neuroticism and schizophrenia59.  

 

In this study we employed the GSA approach to drug repositioning. The current study is 

complementary to our recent repositioning attempt by a novel methodology in which the 

drug-induced transcriptome are compared against GWAS-imputed expression profiles10. Each 

of these two methods has their own advantages and disadvantages. The methodology of finding 

reversed expression patterns has a unique advantage of accounting for the directions of 

associations. It also takes into account the functional impact of variants on expression and is 

intuitive from a biological point of view. While differentially expressed genes can be included 

in gene-sets, the actual (quantitative) expression changes are not considered which results in a 

loss of information. GSA also does not delineate the directions of effects. Nevertheless, GSA 

can make use of knowledge concerning known drug targets and other information on 

drug-related genes, for which more databases are available. Also the transcriptome comparison 

approach involves “imputing” expression levels; since the major reference transcriptome 

dataset (GTEx) is mainly composed of Caucasians (84.6%) with greater proportion of males 

(65.6%) (https://www.gtexportal.org/home/tissueSummaryPage, accessed 29th Apr 2017), the 

quality of imputation for other ethnicities and females may be less reliable, for example when 

applied to the MDD-CONVERGE dataset.  

 

Just as medications acting on different pathways might have synergistic therapeutic effects, 

we believe that it is beneficial to have different approaches for computational drug 

repositioning to complement each other. Of course, computational methods leveraging human 

genomic data are not the only means to drug discoveries. We believe that a combination of a 

variety of approaches, including experimental and computational ones, is required to speed up 

drug repurposing and discoveries.  

 

Our enrichment analyses support the application of GSA in drug repositioning in 

depression and anxiety. However, we stress that our repositioning results should be validated in 

further pre-clinical and clinical studies before translation to practice. GSA analyses do not 

provide information on the direction of effects, as discussed previously. Measures of 

statistical significance also do not provide direct or definitive evidence for the actual 

therapeutic effects of the repositioned drugs.  
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In summary, we have performed a drug repositioning analyses on depression and anxiety 

disorders, using a gene-set analysis approach considering five related GWAS studies. We 

showed that the repositioned drugs are in general enriched for known psychiatric medications 

or those considered in clinical trials. The results lend further support to the usefulness of 

human genomic data in guiding drug development in psychiatry, and we hope that the rapid 

advances in psychiatric genomics research will translate into benefits for patients in the 

foreseeable future.   

 

 

Acknowledgements 

This work is partially supported by the Lo-Kwee Seong Biomedical Research Fund and a 

Direct Grant from the Chinese University of Hong Kong. I thank Mr. Carlos Chau for 

assistance in literature search and useful discussions. I also thank Professor Stephen K.W. Tsui 

and the Hong Kong Bioinformatics Centre for computing support. We would also like to 

acknowledge the Psychiatric Genomics Consortium, the CONVERGE Consortium and the 

Social Science Genetics Association Consortium for providing open access to full GWAS 

summary results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 1, 2017. ; https://doi.org/10.1101/132563doi: bioRxiv preprint 

https://doi.org/10.1101/132563
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Table 1    Enrichment p-values of repositioning hits derived from GWAS of major depressive disorder (MDD) and depressive symptoms 

Disorder  
MDD-CON 

Self 

MDD-CON 

Compet 

MDD-PGC  

Self 

MDD-PGC 

Compet 

DepSym  

Self 

DepSym  

Compet 

ATC classification 
      

Antipsychotics 2.50E-04 1.13E-02 1.00E+00 9.98E-01 1.35E-03 4.48E-02 

Antidepressants or anxiolytics 2.10E-06 7.64E-04 1.00E+00 9.82E-01 1.90E-02 3.44E-01 

All ATC psychiatric drugs 3.54E-08 1.83E-03 1.00E+00 9.98E-01 5.17E-07 9.62E-03 

       
MEDI-HPS 

      
Schizophrenia and Bipolar 3.06E-07 2.04E-04 1.00E+00 1.00E+00 2.90E-02 4.68E-01 

Anxiety and Depression 2.98E-07 6.59E-04 1.00E+00 9.99E-01 2.08E-03 2.02E-01 

All psychiatric drugs 1.77E-10 4.40E-05 1.00E+00 1.00E+00 1.35E-03 3.15E-01 

       
ClinicalTrial.gov 

      
Anxiety disorders 3.20E-07 2.18E-03 1.00E+00 9.92E-01 4.97E-04 1.16E-01 

Depression 9.45E-07 2.27E-02 1.00E+00 9.99E-01 5.76E-05 8.67E-02 

Bipolar disorder 1.64E-03 1.69E-01 1.00E+00 9.97E-01 1.55E-05 9.33E-03 

Schizophrenia 5.42E-05 9.66E-02 1.00E+00 9.96E-01 4.39E-05 9.42E-02 

Anxiety + Depression 3.14E-09 1.69E-03 1.00E+00 1.00E+00 1.23E-05 6.07E-02 

Schizophrenia + Bipolar 2.62E-05 9.12E-02 1.00E+00 9.96E-01 4.85E-07 8.78E-03 

All psychiatric drugs 6.89E-11 1.43E-03 1.00E+00 1.00E+00 5.09E-09 1.49E-02 

Self: self-contained test; Compet, competitive test. Test results with q-value < 0.05 are in bold. Results with q-value between 0.05 and 0.1 are in italics. Full tables of q-values are presented in 

Supplementary Table 1.  

MDD-CONVERGE, MDD with GWAS data from the CONVERGE Consortium; MDD-PGC, MDD with GWAS data from the Psychiatric Genomics Consortium; DepSym, GWAS of depressive symptoms 

from the Social Science Genetics Association Consortium (SSGAC).   
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Table 2   Enrichment p-values of repositioning hits derived from GWAS of anxiety disorders and neuroticism 

Disorder  AnxietyCC Self AnxietyCC Compet Neurotic Self Neurotic Compet 

ATC classification 
    

Antipsychotics 1.71E-03 4.47E-04 1.21E-10 1.52E-10 

Antidepressants or anxiolytics 1.35E-02 5.23E-03 1.09E-03 1.45E-03 

All ATC psychiatric drugs 6.67E-03 7.93E-04 4.88E-12 7.99E-12 

     
MEDI-HPS 

    
Schizophrenia and Bipolar 7.51E-03 2.30E-03 1.29E-06 1.98E-06 

Anxiety and Depression 8.24E-03 2.46E-03 5.98E-05 9.01E-05 

All psychiatric drugs 4.18E-04 3.82E-05 1.02E-07 1.77E-07 

     
ClinicalTrial.gov 

    
Anxiety disorders 2.84E-02 7.94E-03 2.70E-03 3.82E-03 

Depression 1.17E-02 1.55E-03 8.62E-02 1.14E-01 

Bipolar disorder 1.56E-02 3.53E-03 5.93E-03 7.94E-03 

Schizophrenia 3.49E-03 3.43E-04 9.70E-04 1.47E-03 

Anxiety + Depression 1.78E-02 2.33E-03 4.09E-02 5.70E-02 

Schizophrenia + Bipolar 3.12E-03 2.69E-04 5.32E-04 7.84E-04 

All psychiatric drugs 8.26E-03 3.61E-04 2.16E-03 3.34E-03 

Self: self-contained test; Compet, competitive test. Test results with q-value < 0.05 are in bold. Results with q-value between 0.05 and 0.1 are in italics. Full tables of q-values are presented in 

Supplementary Table 2.  

Anxiety CC, GWAS of anxiety disorders case-control sample; neurotic, GWAS of neuroticism in general population.  
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Table 3   Enrichment p-values of repositioning hits derived from meta-analysis of GWAS p-values from MDD-CONVERGE, MDD-PGC, SSGAC-DS and SSGAC-NEU 

Disorder  Brown Self Brown Compet Simes Self Simes Compet 

ATC classification 
    

Antipsychotics 2.31E-09 8.77E-07 4.64E-07 9.11E-06 

Antidepressants or anxiolytics 8.30E-10 3.19E-06 2.01E-07 9.57E-06 

All ATC psychiatric drugs 2.51E-18 3.16E-10 8.38E-12 3.03E-08 

     
MEDI-HPS 

    
Schizophrenia and Bipolar 5.19E-08 5.70E-05 7.14E-06 1.79E-04 

Anxiety and Depression 1.63E-10 3.18E-06 1.35E-06 8.95E-05 

All psychiatric drugs 2.36E-13 2.85E-07 1.83E-08 6.63E-06 

     
ClinicalTrial.gov 

    
Anxiety disorders 3.47E-08 4.63E-04 1.98E-04 7.49E-03 

Depression  4.33E-10 3.82E-04 1.04E-06 6.14E-04 

Bipolar disorder 5.53E-09 7.43E-05 8.07E-07 7.47E-05 

Schizophrenia 1.61E-10 9.69E-05 2.04E-06 4.70E-04 

Anxiety + Depression 4.94E-12 4.19E-05 5.33E-08 7.93E-05 

Schizophrenia + Bipolar 2.56E-12 6.00E-06 5.84E-08 3.07E-05 

All psychiatric drugs 1.23E-16 9.29E-07 2.94E-10 4.86E-06 

Self: self-contained test; Compet, competitive test. Test results with q-value < 0.05 are in bold. Results with q-value between 0.05 and 0.1 are in italics. Full tables of q-values are presented in 

Supplementary Table 3.  
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Table 4   Selected repositioning hits based on meta-analyzed p-values (Brown’s or Simes’ method)  

Drug pval_Simes pval_Brown qval_Simes qval_Brown Drug Description Reference 

Fendiline 1.21E-10 1.06E-11 6.33E-07 5.55E-08 Nonselective calcium channel blocker; produce 

antidepressant-like effects in mouse models by 

inhibition of acid sphingomyelinase and 

reduction of ceramide levels  

35
 

Alsterpaullone 1.01E-06 1.25E-04 1.32E-03 2.97E-02 Competitive inhibitor of GSK-3β; GSK3 

inhibition is implicated in various psychiatric 

disorders, including depression 

36,37 

Sanguinarine 6.05E-04 1.56E-04 7.19E-02 3.02E-02 A selective mitogen-activated protein kinase 

phosphatase-1 (Mkp-1) inhibitor; shown to 

produce antidepressant-like effect in rats 

41
 

Piperlongumine 1.17E-04 1.45E-03 2.45E-02 1.48E-01 A constituent of Piper longum fruit; shown to 

confer resistance against stress in a mouse model 

42
 

Pval, p-values; qval, q-values. Please refer to the main text for more detailed discussions.  
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