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ABSTRACT	

Cancer	 develops	 as	 a	 result	 of	 somatic	 mutation	 and	 clonal	 selection,	 but	

quantitative	 measures	 of	 selection	 in	 cancer	 evolution	 are	 lacking.	 We	 applied	

methods	 from	 evolutionary	 genomics	 to	 7,664	 human	 cancers	 across	 29	 tumor	

types.	 Unlike	 species	 evolution,	 positive	 selection	 outweighs	 negative	 selection	

during	cancer	development.	On	average,	<1	coding	base	substitution/tumor	is	lost	

through	negative	 selection,	with	purifying	selection	only	detected	 for	 truncating	

mutations	 in	 essential	 genes	 in	 haploid	 regions.	 This	 allows	 exome-wide	

enumeration	 of	 all	 driver	mutations,	 including	 outside	 known	 cancer	 genes.	 On	

average,	 tumors	 carry	 ~4	 coding	 substitutions	 under	 positive	 selection,	 ranging	

from	<1/tumor	in	thyroid	and	testicular	cancers	to	>10/tumor	in	endometrial	and	

colorectal	 cancers.	 Half	 of	 driver	 substitutions	 occur	 in	 yet-to-be-discovered	

cancer	 genes.	 With	 increasing	 mutation	 burden,	 numbers	 of	 driver	 mutations	

increase,	 but	 not	 linearly.	We	 identify	 novel	 cancer	 genes	 and	 show	 that	 genes	

vary	extensively	in	what	proportion	of	mutations	are	drivers	versus	passengers.	

	
	

HIGHLIGHTS	

• Unlike	the	germline,	somatic	cells	evolve	predominantly	by	positive	selection	
• Nearly	all	(~99%)	coding	mutations	are	tolerated	and	escape	negative	selection	
• First	exome-wide	estimates	of	the	total	number	of	driver	coding	mutations	per	tumor	
• 1-10	coding	driver	mutations	per	tumor;	half	occurring	outside	known	cancer	genes	
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INTRODUCTION	

	

Somatic	 cells	 accumulate	mutations	 throughout	 life.	These	mutations	 can	be	 classified	
into	 those	 that	 confer	 a	 selective	 advantage	 on	 the	 cell,	 increasing	 survival	 or	
proliferation,	(so-called	‘driver’	mutations);	those	that	are	selectively	neutral;	and	those	
that	are	disadvantageous	to	the	cell	and	result	in	its	death	or	senescence	(Stratton	et	al.,	
2009).	Cancer	 is	one	end-product	of	mutation	 in	somatic	cells,	 in	which	a	single	clonal	
lineage	 acquires	 a	 complement	 of	 driver	 mutations	 that	 enables	 the	 cells	 to	 evade	
normal	constraints	on	cell	proliferation,	invade	tissues,	and	spread	to	other	organs.		
	
While	 the	general	principles	of	cancer	evolution	have	been	well	documented	 for	some	
decades	 (Cairns,	 1975;	 Nowell,	 1976;	 Stratton	 et	 al.,	 2009),	 a	 number	 of	 fundamental	
questions	remain	unanswered.	We	still	do	not	have	accurate	estimates	of	the	number	of	
mutations	required	to	drive	a	cancer,	and	whether	this	varies	extensively	across	tumor	
types	 or	 with	 different	 mutation	 rates	 (Martincorena	 and	 Campbell,	 2015).	 One	
approach	to	this	question	has	been	to	use	age-incidence	curves	to	estimate	the	number	
of	 rate-limiting	 steps	 required	 for	 a	 cancer	 to	 develop	 (Armitage	 and	 Doll,	 1954;	
Tomasetti	 et	 al.,	 2015),	 with	 the	 implicit	 assumption	 of	 a	 one-to-one	 correspondence	
between	 rate-limiting	 steps	 and	 driver	 mutations.	 However,	 not	 all	 driver	 mutations	
need	be	rate-limiting	(Yates	et	al.,	2015),	nor	every	rate-limiting	event	need	be	a	driver	
mutation	 (Martincorena	 and	 Campbell,	 2015).	 A	 second	 approach	 to	 estimating	 the	
number	of	driver	mutations	has	simply	been	to	count	the	mutations	occurring	in	known	
cancer	genes,	 but	 this	 is	 limited	by	 incomplete	 lists	of	 cancer	driver	 genes	 and	by	 the	
presence	 of	 passenger	 mutations	 in	 cancer	 genes.	 Thus,	 despite	 its	 fundamental	
importance,	 the	 issue	 of	 how	 many	 somatic	 mutations	 drive	 a	 cancer	 remains	
unresolved.	
	
A	 second	major	 gap	 in	 our	 understanding	 of	 cancer	 evolution	 is	 that	we	have	not	 yet	
been	 able	 to	 measure	 the	 importance	 of	 negative	 selection	 in	 shaping	 the	 cancer	
genome,	 and	 to	 what	 extent	 somatic	 lineages	 expire	 due	 to	 the	 effects	 of	 deleterious	
mutations.	Detection	of	negative	selection	in	cancer	genomes	is	a	potentially	important	
endeavor	 as	 it	 may	 help	 identify	 genes	 essential	 for	 cancer	 growth	 and	 patterns	 of	
synthetic	 lethality,	 potentially	 yielding	 a	 novel	 class	 of	 therapeutic	 targets.	 Also,	 with	
increasing	interest	in	the	role	of	neoantigens	created	by	somatic	mutations	shaping	the	
immune	response	 to	cancer	 (McGranahan	et	al.,	2016;	Rajasagi	et	al.,	2014;	Rooney	et	
al.,	 2015),	 we	 might	 expect	 that	 purifying	 selection	 would	 suppress	 clones	 with	
mutations	that	elicit	strong	immune	reaction.	
	
Thirdly,	while	we	have	increasingly	detailed	lists	of	cancer	genes	(Kandoth	et	al.,	2013;	
Lawrence	et	al.,	2014;	Vogelstein	et	al.,	2013),	it	is	not	always	straightforward	to	identify	
which	mutations	 in	those	genes	are	true	driver	mutations	nor	how	many	mutations	 in	
other	 genes	might	 be	drivers.	 This	will	 become	an	 increasingly	 important	 question	 as	
cancer	 genome	 sequencing	moves	 into	 routine	 clinical	 practice	 –	 therapeutic	 decision	
support	 for	an	 individual	patient	critically	depends	on	accurate	 identification	of	which	
specific	mutations	drive	the	biology	of	that	person’s	cancer	(Gerstung	et	al.,	2017).	
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In	 this	 study,	 we	 address	 these	 three	 open	 questions	 by	 adapting	 methods	 from	
evolutionary	genomics	to	the	study	of	cancer	genomes.	The	key	advance	in	the	models	
we	 develop	 is	 that	 we	 can	 directly	 enumerate	 the	 excess	 or	 deficit	 of	mutations	 in	 a	
given	gene,	a	group	of	genes	or	even	at	whole-exome	level,	compared	to	the	expectation	
for	the	background	mutational	processes.	This	enables	us	to	provide	robust	estimates	of	
the	 total	 number	 of	 coding	 driver	 mutations	 across	 cancers;	 how	many	 coding	 point	
mutations	 are	 lost	 through	 negative	 selection	 and	 a	 detailed	 dissection	 of	 the	
distribution	of	driver	mutations	in	individual	cancer	genes	across	different	tumor	types.		
	
	
RESULTS	

	

Quantitative	assessment	of	positive	and	negative	selection	

	
Detection	of	selection	in	traditional	comparative	genomics	typically	requires	a	measure	
of	 the	 expected	 density	 of	 selectively	 neutral	 mutations	 in	 a	 gene.	 In	 the	 context	 of	
cancer,	 a	 gene	 under	 positive	 selection	 will	 carry	 an	 extra	 complement	 of	 driver	
mutations	 in	 addition	 to	 neutral	 (passenger)	 mutations	 –	 it	 is	 this	 recurrence	 of	
mutations	across	cancer	patients	that	has	underpinned	discoveries	of	cancer	genes	from	
the	Philadelphia	chromosome	to	modern	genomic	studies	(Martincorena	and	Campbell,	
2015).	A	gene	subject	to	purifying	selection	of	deleterious	mutations	would	have	fewer	
mutations	than	expected	under	neutrality	(Greenman	et	al.,	2006).	
	
Building	on	previous	work	(Greenman	et	al.,	2006;	Martincorena	et	al.,	2015;	Yang	et	al.,	
2003),	 we	 use	 dN/dS,	 the	 ratio	 of	 non-synonymous	 to	 synonymous	 mutations,	 to	
quantify	 selection	 in	 cancer	 genomes.	 This	 relies	 on	 the	 assumption	 that	 the	 vast	
majority	 of	 synonymous	mutations	 are	 selectively	 neutral	 and	 hence	 a	 good	 proxy	 to	
model	the	expected	mutation	density	(we	address	the	accuracy	of	this	assumption	later;	
Supplementary	 Methods	 S5.3).	 dN/dS	 has	 a	 long	 history	 in	 the	 study	 of	 selection	 in	
species	 evolution	 (Goldman	 and	 Yang,	 1994;	 Nei	 and	 Gojobori,	 1986;	 Yang	 and	
Bielawski,	2000),	but	several	modifications	are	required	for	somatic	evolution.		
	
The	 first	 critical	 refinement	 is	 more	 comprehensive	 models	 for	 context-dependent	
mutational	processes	(Alexandrov	et	al.,	2013;	Greenman	et	al.,	2006;	Yang	et	al.,	2003).	
Traditional	 implementations	 of	 dN/dS	 use	 simplistic	 mutation	 models	 that	 lead	 to	
systematic	 bias	 in	 dN/dS	 ratios,	 and	 can	 cause	 incorrect	 inference	 of	 positive	 and	
negative	 selection	 (Fig.	S1A)	 –	 such	biases	have	 affected	previous	 studies	 in	 this	 area	
(Ostrow	et	al.,	2014)	(Supplementary	Text	S6).	We	therefore	use	a	model	with	192	rate	
parameters	that	accounts	for	all	6	types	of	base	substitution,	all	16	combinations	of	the	
bases	immediately	5’	and	3’	to	the	mutated	base	and	transcribed	versus	non-transcribed	
strands	of	the	gene	(Supplementary	Methods	S1).	A	second	refinement	is	the	addition	of	
other	 types	 of	 non-synonymous	 mutations	 beyond	 missense	 mutations,	 including	
nonsense	and	essential	splice	site	mutations	(Greenman	et	al.,	2006),	and	a	method	for	
small	 insertions	and	deletions	 (indels).	Thirdly,	 extreme	caution	was	exercised	during	
variant	calling	to	avoid	biases	emerging	from	germline	variants,	since	these	have	a	much	
lower	 dN/dS	 ratio	 than	 somatic	 mutations	 (Fig.	 1)	 (Supplementary	 Methods	 S2).	
Misannotation	 of	 a	 germline	 polymorphism	 as	 a	 somatic	 mutation	 will	 bias	 somatic	
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dN/dS	downwards;	excessively	filtering	true	somatic	mutations	that	occur	at	positions	
known	to	be	polymorphic	in	the	population	will	bias	somatic	dN/dS	upwards	(Fig.	S1B).	
For	example,	we	 can	demonstrate	 that	 germline	 contamination	of	 the	public	mutation	
catalogs	 from	 several	 datasets	 in	 The	 Cancer	 Genome	 Atlas	 is	 responsible	 for	 a	 false	
signal	 of	 negative	 selection	 in	 them	 (Supplementary	 Text	 S8,	 Fig.	 S1C).	 Fourthly,	 to	
detect	selection	at	the	level	of	individual	genes	reliably,	and	particularly	for	driver	gene	
discovery,	 we	 refined	 dN/dS	 to	 consider	 the	 variation	 of	 the	mutation	 rate	 along	 the	
human	genome.	A	simple	way	to	do	so	is	estimating	a	separate	mutation	rate	for	every	
gene	(Wong	et	al.,	2014),	but	 this	approach	has	poor	statistical	efficiency	with	current	
sample	sizes.	Instead,	we	developed	a	statistical	model	(dNdScv)	that	combines	the	local	
observed	 synonymous	 mutation	 rate	 with	 a	 regression	 model	 using	 covariates	 that	
predict	the	variable	mutation	rate	across	the	genome	(Lawrence	et	al.,	2013;	Polak	et	al.,	
2015;	 Schuster-Bockler	 and	 Lehner,	 2012)	 (Supplementary	 Methods	 S1.3	 and	
Supplementary	 Text	 S9).	 This	 approach	 has	 the	 advantage	 of	 optimizing	 the	 balance	
between	 local	 and	 global	 data	 on	 estimating	 background	mutation	 rates	 to	 provide	 a	
statistically	efficient	inference	framework	for	departures	from	neutrality	(Fig.	S1F,G).	
	
In	order	to	study	the	landscape	of	positive	and	negative	selection	in	cancer,	we	applied	
these	approaches	to	a	collection	of	7,664	tumors	from	29	cancer	types	from	The	Cancer	
Genome	 Atlas	 (Table	 S1).	 Somatic	 mutations	 were	 re-called	 with	 our	 in-house	
algorithms	across	24	cancer	types	to	ensure	comparability	across	tumor	types	and	avoid	
biases	from	germline	polymorphisms	(Supplementary	Methods	S2).	
	

A	universal	and	distinct	pattern	of	selection	in	cancer	

	
Comparative	genomic	studies	of	related	species	typically	reveal	very	low	dN/dS	ratios,	
reflecting	 that	 the	 majority	 of	 germline	 non-synonymous	 mutations	 are	 removed	 by	
negative	selection	over	the	course	of	evolution.	For	example,	comparison	of	orthologous	
genes	 from	 Escherichia	 coli	 and	 Salmonella	 enterica	 yields	 an	 average	 dN/dS~0.06	
across	 genes.	 This	 indicates	 that	 at	 least	 ~94%	 of	 missense	 mutations	 have	 been	
removed	 by	 negative	 selection.	 The	 dN/dS	 ratio	 for	 nonsense	 mutations	 in	 common	
human	 germline	 polymorphisms	 is	 similarly	 low	 (dN/dS~0.08).	 dN/dS	 ratios	 vary	
across	species	but	a	pattern	of	overwhelming	negative	selection	invariably	characterizes	
species	evolution	(Fig.	1A).	
	
In	stark	contrast,	cancer	evolution	shows	a	pattern	 in	which	dN/dS	ratios	are	close	to,	
but	slightly	above,	one	(Fig.	1B).	This	pattern	is	universally	shared	across	tumor	types	
studied	here	and	applies	 to	both	missense	and	truncating	substitutions	(nonsense	and	
essential	 splice	 site	mutations).	 This	 indicates	 that	mutations	 under	 positive	 selective	
pressure	 are	 somewhat	 more	 numerous	 in	 cancers	 than	 mutations	 under	 negative	
selection,	 but	 the	 overall	 picture	 is	 close	 to	 neutrality.	 Importantly,	 similar	 values	 of	
dN/dS	around	or	above	one	are	found	in	somatic	mutations	detected	in	healthy	tissues,	
including	blood,	skin,	liver,	colon	and	small	intestine	(Blokzijl	et	al.,	2016;	Martincorena	
et	al.,	2015;	Welch	et	al.,	2012)	(Fig.	1C).	Although	these	data	are	still	limited,	dN/dS~1	
appears	 to	 characterize	 somatic	 evolution	 in	 normal	 somatic	 tissues	 as	 well	 as	 all	
cancers	that	we	have	studied	so	far.	
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Identification	of	genes	under	positive	selection	

	

By	 definition,	 driver	 genes	 are	 genes	 under	 positive	 selection	 in	 cancer	 genomes.	 To	
show	the	ability	of	dN/dS	to	uncover	driver	genes,	we	used	dNdScv	to	identify	genes	for	
which	dN/dS	was	significantly	higher	than	1	(Supplementary	Methods	S3),	both	across	
all	 7,664	 cancers	 and	 for	 each	 tumor	 type	 individually	 (Fig.	 2A).	 This	 revealed	 179	
cancer	 genes	 under	 positive	 selection	 at	 5%	 false	 discovery	 rate.	 Of	 these,	 54%	 are	
canonical	 cancer	genes	present	 in	 the	Cancer	Gene	Census	 (Forbes	et	al.,	2015).	Using	
restricted	 hypothesis	 testing	 (Lawrence	 et	 al.,	 2014)	 on	 a	priori	 known	 cancer	 genes	
identifies	 an	 additional	 24	 driver	 genes	 (Supplementary	Methods	 S1.4).	 Evaluation	 of	
genes	 not	 present	 in	 the	 Census	 reveals	 that	 most	 have	 been	 previously	 reported	 as	
cancer	genes,	have	clear	links	to	cancer	biology	or	have	been	found	in	other	pan-cancer	
analyses	 (Kandoth	et	al.,	2013;	Lawrence	et	al.,	2014;	Rubio-Perez	et	al.,	2015)	 (Table	
S2).	Novel	 candidate	 cancer	 genes	 include	ZFP36L1	 and	ZFP36L2,	which	have	 recently	
been	 shown	 to	 promote	 cellular	 quiescence	 and	 suppress	 S-phase	 transition	 during	B	
cell	 development	 (Galloway	 et	 al.,	 2016).	 We	 find	 higher	 than	 expected	 rates	 of	
inactivating	 mutations	 in	 the	 two	 genes	 in	 several	 tumor	 types,	 suggesting	 that	 they	
have	 a	 tumor	 suppression	 role.	 Other	 novel	 tumor	 suppressor	 genes	 identified	 here	
include	KANSL1,	a	scaffold	protein	for	histone	acetylation	complexes	(Dias	et	al.,	2014);	
BMPR2,	a	receptor	serine/threonine	kinase	for	bone	morphogenetic	proteins;	MAP2K7,	
involved	in	MAP-kinase	signaling;	and	NIPBL,	a	member	of	the	cohesin	complex.		
	
As	 expected,	 depending	 on	 whether	 nonsense	 or	 missense	 mutations	 predominate,	
genes	 generally	 fall	 into	 two	 classes:	 oncogenes,	 with	 strong	 selection	 on	 missense	
mutations,	or	tumor	suppressor	genes,	with	stronger	selection	on	truncating	mutations	
(Fig.	2B).	Significant	dN/dS	ratios	reach	very	high	values	 in	 frequently	mutated	driver	
genes,	often	higher	 than	10	or	even	100	(Fig.	2B).	This	gives	quantitative	 information	
about	the	proportion	of	driver	mutations.	For	example,	dN/dS=10	for	a	gene	evidences	
that	 there	 are	 ten	 times	more	 non-synonymous	mutations	 in	 the	 gene	 than	 expected	
under	 neutral	 accumulation	 of	 mutations,	 indicating	 that	 at	 least	 ~90%	 of	 the	 non-
synonymous	 mutations	 in	 the	 gene	 are	 genuine	 driver	 mutations	 (Greenman	 et	 al.,	
2006).	
	

Negative	selection	is	largely	absent	for	coding	substitutions	

	
While	 some	somatic	mutations	can	confer	a	growth	advantage,	others	may	 impair	cell	
survival	or	proliferation.	Clones	carrying	such	mutations	would	senesce	or	die,	with	the	
result	that	the	mutation	would	be	lost	from	the	catalog	of	variants	seen	in	the	eventual	
cancer.	This	negative	or	purifying	selection	will	lead	to	dN/dS<1	in	a	given	gene	or	set	of	
genes	if	it	occurs	at	appreciable	rates.	Negative	selection	on	somatic	mutations	has	been	
long	 anticipated	 (Beckman	 and	 Loeb,	 2005;	 McFarland	 et	 al.,	 2014;	 Nowell,	 1976;	
Stratton	et	al.,	2009),	but	not	yet	reliably	documented	in	cancer	genomes.	This	is	due	to	
the	 fact	 that	 statistical	 detection	 of	 lower	 mutation	 density	 than	 expected	 by	 chance	
requires	large	datasets	and	very	careful	consideration	of	mutation	biases	and	germline	
SNP	 contamination.	 Previous	 studies	 have	 reported	 extensive	 negative	 selection	 in	
cancer	 genomes	 (Ostrow	 et	 al.,	 2014),	 but	 we	 find	 that	 this	 conclusion	 is	 erroneous,	
resulting	 from	 overly	 simplistic	 and	 biased	mutation	models	 (Supplementary	 Text	 S6	
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and	 Fig.	 S1A).	 Further,	 even	 just	 a	 few	 percent	 of	 germline	 polymorphisms	
contaminating	 catalogs	 of	 somatic	 mutations	 can	 lead	 to	 false	 signals	 of	 negative	
selection	 (Fig.	 S1B),	 a	 problem	 that	we	 detect	 in	 the	 public	mutation	 calls	 of	 several	
TCGA	 datasets	 (Supplementary	 Text	 S8	 and	Fig.	 S1C).	 Owing	 to	 these	 limitations,	 the	
true	extent	of	negative	selection	in	cancer	evolution	remains	unclear.		
	
To	determine	the	potential	extent	of	negative	selection,	we	first	studied	the	distribution	
of	 observed	 dN/dS	 values	 per	 gene.	 There	 is	 considerable	 spread	 of	 these	 observed	
values	 around	 the	 neutral	 peak	 at	 dN/dS=1.0	 (Fig.	 3A),	 which	 at	 face	 value	 might	
suggest	that	many	genes	are	under	positive	or	negative	selection.	However,	the	limited	
numbers	of	mutations	per	gene	make	 individual	dN/dS	values	noisy,	and	we	 find	 that	
the	 observed	 distribution	 almost	 exactly	 matches	 that	 seen	 in	 simulations	 under	 a	
model	 where	 all	 genes	 are	 neutral	 (Supplementary	 Methods	 S4.2.1).	 To	 formally	
estimate	 the	 fraction	 of	 genes	 under	 negative	 selection,	 we	 infer	 the	 underlying	
distribution	 of	 dN/dS	 values	 from	 the	 observed	 data	 using	 a	 binomial	mixture	model	
(Supplementary	Methods	S4.2.2)	(Fig.	3B-C).	We	find	that	the	vast	majority	of	genes	are	
expected	to	accumulate	point	mutations	near	neutrally,	with	dN/dS~1.	A	small	fraction	
of	genes	(~2.2%;	CI95%=1.0-3.9%)	show	dN/dS≥1.5,	consistent	with	current	estimates	of	
the	numbers	of	cancer	genes.	Only	a	tiny	fraction	of	genes	(~0.14%;	CI95%=0.02-0.51%),	
approximately	a	few	tens,	are	estimated	to	exhibit	negative	selection	with	dN/dS≤0.75	
(Fig.	3C;	Fig.	S2).	
	
These	 distributions	 also	 enable	 us	 to	 obtain	 approximate	 estimates	 of	 the	 average	
number	 of	 coding	 substitutions	 lost	 by	 negative	 selection	 per	 tumor	 (Fig.	 3D;	
Supplementary	 Methods	 S4.2.3).	 On	 average	 across	 this	 diverse	 collection	 of	 tumors,	
less	than	one	coding	substitution	per	tumor	(0.55/patient;	CI95%=0.31-1.16)	appears	to	
have	 been	 lost	 by	 negative	 selection,	 accounting	 for	 <1%	 of	 all	 coding	mutations.	We	
note	the	formal	possibility	that	dN/dS=1	can	occur	when	the	numbers	of	positively	and	
negatively	selected	mutations	in	a	given	gene	are	exactly	balanced.	This	could	lead	us	to	
underestimate	 the	 extent	 of	 negative	 selection,	 but	 only	 if	 a	 large	 number	 of	 genes	
showed	such	an	exact	balance,	which	appears	very	unlikely.	
	
Although	negative	selection	in	cancers	might	be	weak	globally,	it	remains	possible	that	
negative	selection	may	act	in	very	specific	scenarios,	genes	or	gene	sets.	No	single	gene	
had	a	dN/dS	significantly	less	than	1	after	multiple	hypothesis	testing	correction,	even	if	
we	 boost	 our	 power	 by	 performing	 restricted	 hypothesis	 testing	 on	 1,734	 genes	
identified	by	in	vitro	screens	as	essential	(Blomen	et	al.,	2015)	(Supplementary	Methods	
S4.3).	To	address	 the	possibility	of	making	a	 type	 II	 inference	error,	we	evaluated	our	
statistical	 power	 to	 detect	 negative	 selection	 at	 the	 level	 of	 individual	 genes	 in	 this	
dataset	(Fig.	3E)	(Supplementary	Methods	S4.3).	We	found	that	there	is	enough	power	
to	detect	negative	selection	at	dN/dS<0.5	on	missense	mutations	for	most	genes	in	the	
dataset,	 but	we	 have	 less	 power	 for	 detecting	 negative	 selection	 acting	 on	 truncating	
mutations	 (Fig.	3E).	 Thus,	 the	 lack	 of	 significant	 negative	 selection	 in	 any	 gene	 in	 the	
current	dataset	reveals	that	negative	selection	is	weaker	than	these	detection	limits.	
	
We	 next	 examined	 whether	 specific	 groups	 of	 genes	 might	 be	 subject	 to	 negative	
selection,	 after	 excluding	 987	 putative	 cancer	 genes	 to	 avoid	 obscuring	 the	 signal	 of	
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negative	selection	(Supplementary	Methods	S4.4).	Sets	of	genes	that	may	be	expected	to	
be	under	stronger	negative	selection	include	highly	expressed	genes	or	genes	in	active	
chromatin	 regions.	 Lower	mutation	 density	 has	 been	 observed	 in	 cancer	 genomes	 in	
highly	expressed	genes	and	open	chromatin	(Fig.	3F)	(Pleasance	et	al.,	2010b;	Schuster-
Bockler	 and	 Lehner,	 2012),	 and	 some	 have	 suggested	 that	 this	 may	 be	 a	 signal	 of	
negative	selection	(Lee	et	al.,	2010).	However,	we	found	that	dN/dS	values	are	virtually	
indistinguishable	from	neutrality	for	both	missense	and	truncating	substitutions	across	
gene	 expression	 levels	 and	 chromatin	 states.	 This	 confirms	 that	 the	 lower	 density	 of	
mutations	 observed	 in	 open	 chromatin	 and	 highly	 expressed	 genes	 is	 due	 to	 lower	
mutation	 rates	 in	 these	 regions	 and	 not	 negative	 selection.	 The	 lack	 of	 detectable	
negative	selection	even	extends	to	nonsense	mutations	in	essential	genes	(Fig.	3G;	 top	
panel).	Gene	sets	grouped	by	gene	ontology	and	functional	annotation	similarly	revealed	
no	clear	evidence	of	negative	selection	(Fig.	S3).	
	
One	reason	for	 this	unexpected	weakness	of	negative	selection	 in	cancer	could	be	that	
cancer	cells	typically	carry	two	(or	more)	copies	of	most	genes,	reducing	the	impact	of	
mutations	 inactivating	a	single	gene	copy.	We	used	copy	number	data	 for	 the	samples	
studied	 here	 to	 identify	 those	 coding	 mutations	 occurring	 in	 haploid	 regions	 of	 the	
genome.	Strikingly,	most	missense	and	even	truncating	substitutions	affecting	the	single	
remaining	copy	of	a	gene	seem	to	accumulate	at	a	near-neutral	rate,	suggesting	that	they	
are	 largely	 tolerated	 by	 cancer	 cells	 (Fig.	 3G;	 bottom	 panel).	 However,	 for	 essential	
genes	 in	 regions	 of	 copy	 number	 1,	 nonsense	 substitutions	 do	 exhibit	 significantly	
reduced	 dN/dS,	with	 about	 one	 third	 of	 such	 variants	 lost	 through	 negative	 selection	
(dN/dS=0.66,	 P-value=8.4x10-4,	 Fig.	 3G).	 Analysis	 of	 mutations	 in	 haploinsufficient	
genes	 in	 human	 evolution	 also	 revealed	 no	 detectable	 negative	 selection	 in	 cancer	
evolution,	either	on	missense	or	truncating	substitutions	(Fig.	3H).	
	
Overall,	these	analyses	show	that	negative	selection	in	cancer	genomes	is	much	weaker	
than	anticipated.	With	the	exception	of	driver	mutations,	nearly	all	coding	substitutions	
(~99%)	 appear	 to	 accumulate	 neutrally	 during	 cancer	 evolution	 and	 are	 tolerated	 by	
cancer	 cells.	 Several	 factors	 are	 likely	 to	 contribute	 to	 the	 weakness	 of	 negative	
selection,	 including	 the	buffering	 effects	 of	 two	or	more	 copies	 of	most	 genes	 and	 the	
fact	 that	 many	 genes	 are	 presumably	 dispensable	 to	 somatic	 cells	 (Morley,	 1995).	
Further,	 in	 cancer,	 the	 regular	 occurrence	 of	 strong	 driver	 mutations	 generating	
selective	 sweeps	 will	 enable	 weakly	 deleterious	 mutations	 not	 yet	 expunged	 to	
hitchhike	 on	 the	 clonal	 expansion,	 reducing	 the	 efficiency	 of	 negative	 selection	 to	
remove	deleterious	variants	(McFarland	et	al.,	2013)	(see	Supplementary	Text	S10	for	a	
discussion	on	factors	limiting	negative	selection	in	somatic	evolution).	
	
Immune	 surveillance	 is	 believed	 to	 be	 a	 relevant	 force	 shaping	 cancer	 evolution,	
potentially	acting	to	purge	clones	carrying	neoantigens	generated	by	somatic	mutations.	
Genomic	 studies	 have	 predicted	 that	 cancers	 typically	 carry	 tens	 of	 coding	mutations	
that	 generate	 potential	 neoantigens	 (McGranahan	 et	 al.,	 2016;	 Rajasagi	 et	 al.,	 2014),	
with	 as	many	as	50%	of	non-synonymous	mutations	predicted	 to	 create	 a	neoantigen	
(Rooney	 et	 al.,	 2015).	 The	 observation	 that	 ~99%	 of	 somatic	 point	 mutations	 are	
tolerated	 and	 accumulate	 neutrally	 in	 cancer	 cells	 confirms	 that	 the	 vast	 majority	 of	
predicted	neoantigens	do	not	elicit	an	immune	response	capable	of	eradicating	the	clone	
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in	 normal	 conditions,	 even	 if	 they	 could	 be	 exploited	 therapeutically	 (Stronen	 et	 al.,	
2016).	
	

Number	of	driver	mutations	per	tumor	

	
The	number	of	driver	mutations	required	to	generate	a	tumor	has	been	a	long-standing	
question	 in	 cancer	 (Armitage	 and	 Doll,	 1954;	 Martincorena	 and	 Campbell,	 2015;	
Nordling,	 1953;	 Stratton	 et	 al.,	 2009;	 Tomasetti	 et	 al.,	 2015).	 Early	 epidemiological	
observations	 using	 age-incidence	 statistics	 suggested	 that	 cancer	 may	 result	 from	 a	
small	 number	 of	 rate-limiting	 steps,	 around	 five	 to	 seven,	 possibly	 driver	 mutations	
(Armitage	 and	 Doll,	 1954;	 Nordling,	 1953).	 The	 sequencing	 of	 thousands	 of	 cancer	
genomes	has	not	clarified	this	question	further	since	it	remains	unclear	what	fraction	of	
non-synonymous	 mutations	 observed	 in	 known	 cancer	 genes	 are	 genuine	 positively-
selected	driver	mutations	and,	particularly,	how	many	driver	mutations	occur	in	cancer	
genes	that	are	yet	to	be	discovered.	This	has	recently	 led	some	to	propose	that	a	 large	
number	 of	 the	mutations	 seen	 in	 any	 given	 tumor	may	 have	 been	 positively	 selected,	
lowly	recurrent	across	patients	but	playing	a	driver	role	in	the	specific	genomic	context	
of	that	patient	(Castro-Giner	et	al.,	2015).		
	
From	an	observed	dN/dS	ratio,	we	can	estimate	the	number	of	extra	non-synonymous	
mutations	 over	 what	 would	 have	 been	 expected	 under	 neutrality	 (Greenman	 et	 al.,	
2006)	(Supplementary	Methods	S5).		Since	we	have	shown	that	negative	selection	does	
not	 significantly	 deplete	 non-synonymous	 mutations	 in	 somatic	 evolution,	 this	
additional	 burden	 is	 a	 direct	 estimate	 of	 the	 number	 of	 driver	 substitutions.	 For	
example,	 combining	 all	 coding	 mutations	 observed	 in	 369	 cancer	 genes	 across	 689	
breast	cancer	samples	yields	dN/dS=1.95	(CI95%:	1.72-2.21).	This	implies	that	there	are	
1.95x	more	non-synonymous	mutations	 than	expected	neutrally,	or,	equivalently,	49%	
(CI95%:	 42%-55%)	 of	 the	 observed	 non-synonymous	mutations	 are	 positively	 selected	
driver	 mutations	 (Fig.	 4A).	 Although	 this	 calculation	 does	 not	 inform	which	 of	 these	
mutations	are	drivers,	 it	provides	a	statistical	framework	for	inferring	the	fraction	and	
the	 absolute	 number	 of	 drivers	 in	 a	 catalog	 of	 mutations.	 Interestingly,	 manual	
annotation	of	breast	cancer	genomes	has	led	to	very	similar	estimates	of	the	number	of	
driver	mutations	in	known	cancer	genes	per	tumor	(Fig.	S4A)	(Nik-Zainal	et	al.,	2016).	
	
Estimation	of	the	number	of	driver	mutations	per	tumor	using	this	approach	requires	an	
accurate	calculation	of	dN/dS	ratios	and	so	we	took	additional	cautionary	steps.	Small	
inaccuracies	 in	 the	 mutation	 model	 can	 lead	 to	 systematic	 biases	 in	 the	 estimated	
numbers	of	drivers,	especially	in	patients	with	high	mutation	burden.	We	found	that	this	
was	 particularly	 problematic	 in	melanoma	where	 the	mutation	 signature	 is	 known	 to	
have	sequence	context	biases	beyond	the	immediate	5’	and	3’	neighbors	of	the	mutated	
base	(Pleasance	et	al.,	2010a).	A	mutation	model	based	on	the	pentanucleotide	sequence	
context	 considerably	 outperformed	 the	 trinucleotide	 model	 in	 melanoma	
(Supplementary	Methods	 S5.2.1	 and	Text	 S7).	 Reassuringly,	 for	 all	 other	 tumor	 types,	
estimates	 of	 the	 number	 of	 driver	 substitutions	 per	 tumor	 obtained	 under	 the	
trinucleotide	and	pentanucleotide	models	were	highly	consistent	(Fig.	S1E),	 indicating	
that	possible	unaccounted	substitution	biases	are	unlikely	to	impact	our	results.	
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Estimated	dN/dS	 values	 on	369	known	 cancer	 genes	 varied	 extensively	 across	 cancer	
types	 (Fig.	4A).	Using	 these	 ratios,	we	 can	 estimate	 that	80%	of	 the	non-synonymous	
mutations	occurring	in	cancer	genes	in	low-grade	glioma	are	driver	mutations,	whereas	
only	 20%	 are	 drivers	 in	 melanoma,	 with	 other	 tumor	 types	 spanning	 this	 range.	
Combining	 these	 estimates	 with	 total	 mutation	 burden,	 we	 infer	 that	 the	 average	
number	of	coding	substitutions	in	known	cancer	genes	that	are	driver	mutations	ranges	
from	 <1/patient	 in	 sarcomas,	 thyroid	 cancers	 and	 mesotheliomas	 to	 3-4/patient	 in	
bladder,	endometrial	and	colorectal	cancers	(Fig.	4A).	
	
Importantly,	we	can	extend	this	analysis	to	all	genes	in	the	genome	to	provide	the	first	
comprehensive	estimates	of	the	total	number	of	driver	coding	substitutions	per	tumor.	
Unlike	 simply	 counting	 the	 number	 of	 non-synonymous	 mutations	 seen	 in	 known	
cancer	 genes,	 this	 estimate	 is	 not	 constrained	 to	 known	 cancer	 genes	 and	
comprehensively	measures	the	number	of	all	coding	driver	substitutions	per	tumor.	We	
find	 that	 the	 fraction	 of	 all	 coding	 mutations	 estimated	 to	 be	 drivers	 is	 low	 in	 most	
cancer	types	(Fig.	4B).	For	example,	only	5.0%	(CI95%:	3.0%-6.9%)	of	non-synonymous	
coding	 point	 mutations	 in	 head	 and	 neck	 cancers	 are	 predicted	 to	 be	 drivers.	
Interestingly,	 the	 average	 number	 of	 coding	 substitutions	 per	 tumor	 that	 are	 driver	
mutations	 is	 consistently	 modest,	 typically	 around	 4/tumor	 and	 ranging	 from	 1-
10/tumor	across	tumor	types	(Fig.	4B).	We	note	that	this	is	an	estimate	of	the	average	
number	of	coding	driver	substitutions	per	tumor	for	each	tumor	type;	the	actual	number	
for	 individual	 patients	 might	 vary	 extensively	 around	 this	 average.	 Estimates	 of	 the	
number	of	driver	mutations	per	tumor	based	on	all	genes	are	about	twice	those	from	the	
369	cancer	genes,	suggesting	that	about	half	of	driver	mutations	occur	in	cancer	genes	
yet	to	be	discovered	(Fig.	4B;	Fig.	S4B).	
	
Mutator	 phenotypes	 are	 common	 in	 cancers,	 and	 it	 has	 been	 unclear	 whether	 their	
effect	is	to	increase	the	overall	number	of	driver	mutations	or	simply	to	allow	a	clone	to	
acquire	a	 fixed	complement	of	drivers	 faster	 than	competing	clones.	We	estimated	the	
number	of	driver	mutations	per	 tumor	as	a	 function	of	 total	mutation	burden,	 finding	
that	as	mutation	burden	increases,	the	dN/dS	ratio	converges	towards	1	(Fig.	4C).	When	
this	is	converted	to	estimate	the	number	of	coding	substitutions	that	are	drivers,	we	find	
that	 there	 is	a	hyperbolic	relationship	–	as	mutation	burden	increases,	so	too	does	the	
number	 of	 drivers,	 but	 not	 linearly.	 This	 implies	 that	 mutator	 phenotypes	 do	 indeed	
increase	the	overall	number	of	driver	mutations	per	tumor,	even	though	they	represent	
an	ever	smaller	proportion	of	the	total	mutation	burden.	
	
The	preceding	estimates	are	 limited	 to	coding	non-synonymous	base	substitutions.	To	
extend	 this	 reasoning	 to	 estimate	 the	 numbers	 of	 small	 indels	 and	 synonymous	
substitutions	that	could	be	drivers,	we	measured	the	overall	excess	of	these	changes	in	
known	 cancer	 genes	 by	 using	 putative	 passenger	 genes	 to	 estimate	 background	
mutation	 rates	 (Supplementary	 Methods	 S5.3)	 (Supek	 et	 al.,	 2014).	 Although	 these	
values	 are	 likely	 to	 be	 slight	 underestimates	 due	 to	 the	 small	 number	 of	 driver	
mutations	 hidden	 in	 undiscovered	 cancer	 genes,	 this	 will	 have	 minimal	 quantitative	
impact.	Reassuringly,	this	more	extensive	model	yielded	very	similar	estimates	for	non-
synonymous	 coding	 substitutions	 to	 these	 obtained	 above	 from	 dN/dS	 (Fig.	 4D).	We	
find	that	indels	appear	to	contribute	a	similar	number	of	driver	mutations	as	truncating	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 29, 2017. ; https://doi.org/10.1101/132324doi: bioRxiv preprint 

https://doi.org/10.1101/132324


substitutions	 (nonsense	 and	 essential	 splice	 site	mutations),	 with	 an	 average	 of	 ~0.7	
coding	 indel	 drivers	 per	 tumor	 in	 the	 369	 known	 cancer	 genes.	 Furthermore,	
synonymous	 driver	mutations	 are	 rare	 but	 not	 negligible	 (~0.09	per	 tumor	 in	 known	
cancer	 genes),	 in	 agreement	 with	 previous	 studies	 (Supek	 et	 al.,	 2014).	 For	 a	 more	
detailed	analysis	of	the	driver	role	of	some	synonymous	mutations,	see	Supplementary	
Methods	S5.3.1.	
	
Gene-by-gene,	histology-by-histology	driver	mutations	

	
Ultimately,	if	we	are	to	use	genomics	to	underpin	precision	medicine,	an	important	step	
will	be	to	infer	which	mutations	in	a	given	patient	are	drivers.	As	we	have	seen,	not	all	
somatic	mutations	in	a	given	cancer	gene	are	drivers,	but	dN/dS	offers	a	framework	to	
estimate	 these	 probabilities.	 We	 find	 that	 across	 tumor	 suppressor	 genes,	 whether	
missense	substitutions	are	likely	to	be	drivers	or	not	varies	considerably.	For	example,	
the	tumor	suppressors	ARID1A,	RB1	and	APC	show	dN/dS	values	for	missense	mutations	
close	to	one	suggesting	that	the	vast	majority	of	missense	mutations	seen	in	these	genes	
across	all	cancers	are	genuinely	passengers,	even	though	>95%	of	observed	truncating	
mutations	 are	 estimated	 to	 be	 drivers	 (Fig.	 4E).	 In	 contrast,	 the	 dN/dS	 value	 for	
missense	mutations	in	TP53	indicates	that	>95%	of	the	missense	mutations	observed	in	
this	gene	are	drivers.		
	
Such	analyses	highlight	important	differences	across	tumor	types	in	the	distribution	of	
driver	mutations.	For	example,	in	breast	cancer,	virtually	all	nonsense	substitutions	and	
~90%	 of	missense	 substitutions	 in	PTEN	are	 driver	mutations.	 However,	 in	 clear	 cell	
kidney	 cancer	 only	 nonsense	 mutations	 in	 PTEN	 are	 significantly	 enriched,	 with	 no	
significant	 excess	 of	 missense	 substitutions	 above	 expectation;	 and	 in	 lung	
adenocarcinoma,	 neither	 missense	 nor	 nonsense	 substitutions	 in	 PTEN	 were	 in	
statistical	 excess.	 Similarly,	 for	 oncogenes,	 we	 estimate	 that	 >10%	 of	 missense	
substitutions	 in	 PIK3CA	 in	 lung	 adenocarcinomas	 are	 passenger	 mutations,	 whereas	
only	1-2%	of	such	events	in	breast	cancer	are	(Fig.	4E).		
	
DISCUSSION	

	

By	 adapting	methods	 from	 evolutionary	 genomics	 and	 applying	 them	 to	 thousands	 of	
cancer	 genomes	 and	 to	 five	 healthy	 tissues,	 we	 have	 observed	 a	 universal	 pattern	 of	
selection	 in	somatic	evolution,	 characterized	by	a	dominance	of	positive	over	negative	
selection.	 We	 have	 found	 that	 negative	 selection	 is	 a	 surprisingly	 weak	 force	 during	
cancer	 development,	 which	 in	 turn	 has	 allowed	 us	 to	 obtain	 genetic	 estimates	 of	 the	
number	of	driver	coding	substitutions	per	tumor.	
	
Here,	 we	 have	 provided	 first	 exome-wide	 genetic	 estimates	 of	 the	 number	 of	 coding	
driver	mutations	across	a	range	of	tumor	types.	We	have	found	that	many	tumors	have	6	
or	 more	 coding	 driver	 mutations,	 with	 endometrial	 cancer,	 colorectal	 cancer	 and	
melanoma	 averaging	 more	 than	 10	 per	 tumor.	 These	 counts	 must	 represent	 a	 lower	
bound	 for	 the	 true	 number	 of	 driver	mutations,	 since	 they	 do	 not	 include	 non-coding	
driver	point	mutations	nor	structural	variant	drivers.	Yet,	overall	the	numbers	of	driver	
coding	substitutions	estimated	per	tumor	are	moderately	low,	more	in	line	with	classic	
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models	 of	 cancer	 evolution	 (Armitage	 and	 Doll,	 1954)	 than	 with	 recent	 speculations	
(Castro-Giner	et	al.,	2015).		
	
The	 absence	 of	 negative	 selection	 on	 coding	 point	mutations	 in	 cancer	 is	 remarkable,	
especially	since	it	is	the	predominant	evolutionary	pressure	in	the	germline.	Clearly,	the	
vast	 majority	 of	 genes	 are	 dispensable	 for	 any	 given	 somatic	 lineage,	 presumably	
reflecting	 the	 buffering	 effect	 of	 diploidy	 and	 the	 inherent	 resilience	 and	 redundancy	
built	into	most	cellular	pathways.	This	explains	why	cancers	can	tolerate	extreme	levels	
of	hypermutation,	evidenced	by	tumors	that	acquire	many	hundreds	of	mutations	with	
every	cell	division	(Shlien	et	al.,	2015).	Our	results	also	suggest	that	negative	selection	
on	point	mutations	is	largely	absent	during	normal	somatic	tissue	maintenance	as	well.	
This	 has	 important	 implications	 for	 the	 somatic	 mutation	 theory	 of	 ageing	 (Morley,	
1995),	since	it	would	argue	that	point	mutations	deleterious	to	the	carrying	cell	do	not	
drive	cellular	senescence,	exhaustion	and	death.	Rather,	if	point	mutations	do	play	a	role	
in	 ageing	 of	 somatic	 tissues,	 it	 will	 be	 through	 the	 functional	 consequences	 to	 the	
organism	of	mutations	that	are	selectively	neutral	or	advantageous	to	the	clone.	
	
The	 conceptual	 framework	we	have	developed	 for	 directly	 enumerating	 the	 excess	 or	
deficit	 of	 mutations	 over	 neutral	 expectation	 could	 be	 adapted	 to	 explore	 the	 role	 of	
driver	 mutations	 in	 non-coding	 regions	 of	 the	 genome.	 Furthermore,	 with	 increasing	
numbers	of	 tumors	being	sequenced,	we	will	be	able	 to	deploy	such	reasoning	at	ever	
higher	resolution	to	estimate	probabilities	that	variants	in	particular	exons	or	domains	
of	 a	 gene	 in	 a	 particular	 tumor	 type	 are	 driver	 mutations.	 Such	 approaches	 could	
ultimately	underpin	statistically	rigorous,	personalized	annotation	of	driver	mutations,	
a	crucial	step	in	successfully	implementing	precision	oncology.	
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Figures	
	

Fig.	1.	Genome-wide	dN/dS	ratios	show	a	distinct	pattern	of	selection	universally	

shared	across	cancer	types.	(A)	Species	evolution:	median	dN/dS	ratios	across	genes	
for	missense	mutations	 (data	 from	 (Martincorena	 et	 al.,	 2012),	 Ensembl	 (Vilella	 et	 al.,	
2009)).	Data	on	germline	human	SNPs	are	from	the	1000	genomes	phase	3	(Auton	et	al.,	
2015),	 restricted	 to	 SNPs	 with	 minor	 allele	 frequency	 >=5%.	 (B)	 Cancer	 evolution:	
genome-wide	 dN/dS	 values	 for	 missense	 and	 nonsense	 mutations	 across	 23	 cancer	
types	 (Supplementary	 Methods	 S2.3).	 (C)	 Somatic	 mutations	 in	 normal	 tissues	 (data	
from	 (Blokzijl	 et	 al.,	 2016;	Martincorena	 et	 al.,	 2015;	Welch	 et	 al.,	 2012)).	 Error	 bars	
depict	95%	confidence	intervals.	

	
	

	

	 	

0

0.5

1.0

1.5

2.0

G
en

om
e−

w
id

e 
dN

/d
S

E.
co
li−
S.
en
te
ric
a

Te
tra

od
on

−F
ug

u
C

hi
ck

en
−T

ur
ke
y

M
ou

se
−R

at
H

um
an

−C
hi

m
p

H
um

an
 S

N
Ps

Pa
nc

an
ce

r*
Ad

re
no

co
rti

ca
l

Bl
ad

de
r

Br
ea

st
Ce

rv
ix

C
N

S−
LG

G
C

ol
or

ec
tu

m
En

do
m

et
riu

m
Es

op
ha

gu
s

G
lio
bl

as
to

m
a

H
ea

d−
ne

ck
Ki

dn
ey

−P
ap

ill
Ki

dn
ey

−R
C

C
Li
ve

r−
H

C
C

Lu
ng

−A
de

no
Lu

ng
−S

C
C

M
es

ot
he

lio
m

a
O
va
ry

Sa
rc

om
a

St
om

ac
h

Te
st

is
Th
ym

om
a

Th
yr

oi
d

Ut
er

us
−C

ar
Sa

rc

missense
nonsense

0

0.5

1.0

1.5

2.0
Species
evolution

Cancer evolution Normal
tissues

A B C

0.1

0.2

0.5
1.0

2.0

5.0
10.0

Bl
oo

d
Sk

in
C

ol
on

Sm
al

l i
nt

es
tin

e
Li
ve
r

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 29, 2017. ; https://doi.org/10.1101/132324doi: bioRxiv preprint 

https://doi.org/10.1101/132324


	

Fig.	2.	Positively	selected	genes	in	cancer	genomes.	(A)	List	of	genes	detected	under	
significant	positive	selection	(dN/dS>1)	in	each	of	the	29	cancer	types.	Y-axes	show	the	
percentage	of	patients	carrying	a	non-synonymous	substitution	or	an	indel	in	each	gene.	
The	color	of	the	dot	reflects	the	significance	of	each	gene.	RHT	=	Restricted	Hypothesis	
Testing	 on	 known	 cancer	 genes	 (Supplementary	 Methods	 S3	 and	 Table	 S2).	 (B)	
Pancancer	dN/dS	values	for	missense	and	nonsense	mutations	for	genes	with	significant	
positive	 selection	 on	 missense	 mutations	 (depicted	 in	 red)	 and/or	 truncating	
substitutions.	
	
	
	

	 	

0

10

20

30

40

50

60

70

80

90

100

TP53
CTNNB1
MEN1
PRKAR1A
NF1
DAXX

Adrenocortical
(n=91)

TP53
KMT2D
KDM6A
ARID1A
PIK3CA
RB1
KMT2C
EP300
FGFR3
STAG2
ELF3
CREBBP
ATM
ERBB2
KMT2A
SPTAN1
FAT1
ERBB3
CDKN1A
ERCC2
TSC1
ASXL2
ARID2
ZFP36L1
NF1
FBXW7
RHOB
CDKN2A
NFE2L2
RXRA
KANSL1
ASXL1
RBM10
KLF5
RHOA
PSIP1
PTEN
HRAS
C3orf70
FOXA1
FOXQ1
KRAS
EPS8
BAP1
HIST1H3B
RUNX1

Bladder
(n=390)

PIK3CA
TP53
GATA3
KMT2C
MAP3K1
CDH1
NCOR1
PTEN
RUNX1
MAP2K4
CBFB
TBX3
SPEN
ARID1A
FOXA1
PIK3R1
ERBB2
RB1
AKT1
CTCF
BRCA1
HIST1H3B
TBL1XR1
CASP8
CDKN1B
ZFP36L1
FAM104A
GPS2
RHOA
SMAD4
GAGE12J

Breast
(n=702)

PIK3CA
NFE2L2
KMT2D
KMT2C
BAP1
PTEN

Cervix
(n=38)

APC

TP53

KRAS
PIK3CA
SOX9
ATM
SMAD4
FBXW7
BRAF
ARID1A
TCF7L2
RNF43
AMER1
BMPR2
PTEN
NRAS
ZFP36L2
MLH1
HLA−C
HLA−B
TGIF1
HLA−A
PIK3R1
B2M
CD58
TAP2
MAP2K4
ACVR1B

Colorectum
(n=266)

TP53

KMT2D
NFE2L2
PIK3CA
ARID1A
NOTCH1
SMAD4
ZNF750
SMARCA4
FBXW7
ERBB2
CREBBP
PTCH1
PTEN
RB1

Esophagus
(n=180)

PTEN
TP53
EGFR
PIK3CA
PIK3R1
NF1
RB1
ATRX
IDH1
ARHGAP5
LZTR1
BRAF
RPL5
STAG2
TCF12
PAX5
MSH6
BCOR

Glioblastoma
(n=255)

TP53

FAT1
NOTCH1
PIK3CA
KMT2D
CDKN2A
NSD1
CASP8
EP300
AJUBA
HRAS
FBXW7
HLA−B
NFE2L2
TGFBR2
POM121L12
EPHA2
KEAP1
HLA−A
ZNF750
KMT2B
NOTCH2
RASA1
ASXL1
ARID1A
KDM6A
ARID2
RB1
CTCF
PTEN
KRT5
CYLD
FGFR3
RAC1
SMAD4
RHOA
FOSL2
B2M
NF2

Head-neck
(n=507)

TP53

PTEN

Kidney-ChRCC
(n=66)

VHL

PBRM1

SETD2
BAP1
KDM5C
MTOR
ATM
ARID1A
PTEN

Kidney-RCC
(n=314)

MET
KMT2C
SETD2
BAP1
ARID1A
KDM6A
PBRM1
NF2
CUL3
PTEN
STAG2
ATP1B1
SMARCB1
DNMT3A
TP53
KRAS
FGFR3

Kidney-Papill
(n=275)

FLT3
DNMT3A
NPM1
IDH2
TP53
IDH1
RUNX1
NRAS
CEBPA
TET2
KIT
PTPN11
KRAS
WT1
U2AF1
SMC3
PHF6
SMC1A
STAG2
EZH2
ASXL1
CBFB
CALR
RAD21
SRSF2

Myeloid-AML
(n=136)

IDH1

TP53

ATRX
CIC
FUBP1
PIK3CA
NOTCH1
NF1
EGFR
PIK3R1
PTEN
SMARCA4
NIPBL
ZBTB20
IDH2
ARID1A
BCOR
TCF12
ARID2
DNMT3A
SETD2
PTPN11
NRAS
MAX
RB1
CDKN2C

CNS-LGG
(n=467)

TP53
CTNNB1
ALB
AXIN1
ARID1A
ARID2
BAP1
KEAP1
RB1
TSC2
ACVR2A
RPS6KA3
NFE2L2
IL6ST
HNF1A
HLA−B
PTEN
CDKN2A
KRAS
NRAS

Liver-HCC
(n=339)

TP53

KRAS
KEAP1
STK11
EGFR
NF1
SETBP1
SMARCA4
ATM
RBM10
MGA
BRAF
RB1
ARID1A
SETD2
CMTR2
PIK3CA
ARID2
CTNNB1
SMAD4
HOXB3
NFE2L2
CDKN2A
U2AF1
MAX

Lung-Adeno
(n=367)

0

10

20

30

40

50

60

70

80

90

100

TP53

KMT2D
NFE2L2
PIK3CA
KEAP1
NF1
KMT2C
PTEN
NOTCH1
CDKN2A
FBXW7
RB1
B2M
FUBP1

Lung-SCC
(n=167)

BAP1
NF2
TP53

LATS2
SETD2
PTCH1

Mesothelioma
 (n=80)

TP53

TOP2A
NF1
CDK12
BRCA1
RB1
CIB3
ARID1A
KRAS

Ovary
(n=262)

KRAS

TP53

SMAD4

CDKN2A
TYRO3
RNF43
ARID1A
PBRM1

Pancreas-Adeno
(n=145)

HRAS
NF1
RET
ATRX
CSDE1
VHL

Pheo-Paragang
(n=178)

TP53
SPOP
FOXA1
KMT2D
KMT2C
ATM
PTEN
ZFHX3
PIK3CA
KDM6A
CTNNB1
ZMYM3
APC
CDK12
BRAF
CDKN1B
IL6ST
RNF43
HRAS

Prostate
(n=497)

TP53

ATRX
RB1

PTEN

Sarcoma
(n=247)

BRAF

NRAS
TP53
ARID2
NF1
PTEN
PSG4
PPP6C
CDKN2A
DDX3X
MAP2K1
RAC1
ZFX
RB1
BRD7
KRAS
B2M

Melanoma
(n=437)

TP53
ARID1A
PIK3CA
MUC6
RNF43
APC
KRAS
PTEN
HLA−B
FBXW7
ERBB3
BMPR2
CDH1
ARID2
SMAD4
MAP2K7
BCOR
B2M
RHOA
CASP8
HLA−A
ACVR1B
MLH1

Stomach
(n=360)

KIT
KRAS

NRAS
RACGAP1

Testis
(n=142)

BRAF

NRAS
TG
EIF1AX
KRAS
AKT1

Thyroid
(n=438)

GTF2I

CYLD
HRAS
TP53

Thymoma
(n=29)

PTEN
PIK3CA

ARID1A
PIK3R1
TP53
CTNNB1
CTCF
KRAS
RNF43
ARID5B
ZFHX3
JAK1
FBXW7
FAT1
FGFR2
ATM
ARHGAP35
CHD4
PPP2R1A
UPF3A
INPPL1
SPOP
NFE2L2
RB1
FOXA2
CASP8
CCND1
HIST1H2BD
NRAS
SMTNL2

Endometrium
(n=233)

TP53

FBXW7
PIK3CA

PPP2R1A

PTEN
CHD4
KRAS
PIK3R1
ZBTB7B
ARID1A
RB1

Uterus-CarSarc
(n=56)

Significance
q < 0.001
q < 0.01
q < 0.05
RHT (q < 0.05)

%
 o

f p
at

ie
nt

s 
wi

th
 m

ut
at

io
n

(n
on

-s
yn

on
ym

ou
s 

su
bs

tit
ut

io
n 

or
 in

de
l)

%
 o

f p
at

ie
nt

s 
wi

th
 m

ut
at

io
n

(n
on

-s
yn

on
ym

ou
s 

su
bs

tit
ut

io
n 

or
 in

de
l)

0 5 10 15 20 25 ≥30
0

5

10

15

20

25

≥30

dN/dS (missense)

dN
/d

S 
(tr

un
ca

tin
g 

su
bs

tit
ut

io
ns

) PTEN
TP53VHL

B2M

ARID1A
RB1

STK11
CASP8

SMAD4APC

KRAS

NRAS

IDH1HRAS
PIK3CA

BRAF
SPOP

RHOA

A

B

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 29, 2017. ; https://doi.org/10.1101/132324doi: bioRxiv preprint 

https://doi.org/10.1101/132324


	
	
Fig.	 3.	 Negative	 selection	 in	 cancer.	 (A)	Distributions	 of	 dN/dS	 values	 per	 gene	 for	
missense	 mutations	 in	 non-LOH	 regions	 (Supplementary	 Methods	 S4.1).	 The	 real	
distribution	 is	 shown	 in	 grey	 and	 the	 distribution	 observed	 in	 a	 neutral	 simulation	 is	
shown	in	purple	(Supplementary	Methods	S4.2.1).	(B)	Underlying	distribution	of	dN/dS	
values	 across	 genes	 inferred	 from	 the	 observed	distribution	 (Supplementary	Methods	
S4.2.2).	(C)	Estimated	percentage	of	genes	under	different	levels	of	positive	and	negative	
selection	based	on	 the	 inferred	dN/dS	distribution	 in	Fig.	3B.	 (D)	Average	number	 of	
selected	mutations	per	tumor	based	on	the	inferred	distributions	of	dN/dS	across	genes,	
combining	 missense	 and	 truncating	 mutations	 from	 all	 copy	 number	 regions	
(Supplementary	Methods	S4.2.3).	Error	bars	depict	95%	confidence	intervals.	(E)	Power	
calculation	for	the	statistical	detection	of	negative	selection	(dN/dS<1)	as	a	function	of	
the	 extent	 of	 selection	 (dN/dS)	 and	 the	 neutrally-expected	 number	 of	mutations	 in	 a	
gene	in	a	cohort	(Supplementary	Methods	S4.3).	Shaded	areas	under	the	curves	reflect	
power>80%.	 Vertical	 lines	 indicate	 the	 range	 in	 which	 the	 middle	 50%	 and	 95%	 of	
genes	 are,	 in	 the	 dataset	 of	 7,664	 tumors.	 (F)	 Average	 mutation	 burden	 in	 genes	
grouped	according	to	gene	expression	quintile	and	chromatin	state.	(G)	Average	dN/dS	
values	 for	 genes	 grouped	 according	 to	 gene	 expression	 quintile,	 chromatin	 state	 and	
essentiality	(Supplementary	Methods	S4.4).	(H)	Average	dN/dS	values	for	all	mutations	
in	genes	 found	 to	be	haploinsufficient	 in	 the	human	germline,	 including	and	excluding	
putative	driver	 genes.	Haploinsufficient	 genes	 are	defined	 as	 those	having	 a	pLI	 score	
>0.9	in	the	ExAC	database	(Lek	et	al.,	2016).	
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Fig.	 4.	 Estimated	average	number	of	driver	mutations	per	 tumor.	 (A)	Top:	 global	
dN/dS	values	obtained	 for	369	known	cancer	genes.	This	analysis	uses	a	single	dN/dS	
ratio	 for	 all	 non-synonymous	 substitutions	 (missense,	 nonsense	 and	 essential	 splice	
site).	 Middle:	 percentage	 of	 non-synonymous	 mutations	 that	 are	 drivers	 assuming	
negligible	negative	selection.	Bottom:	average	number	of	driver	coding	substitutions	per	
tumor.	 Pancancer	 refers	 to	 the	 24	 cancer	 types	 with	 in-house	 mutation	 calls	
(Supplementary	Methods	S5).	 (B)	Same	panels	as	Fig	4A	but	 including	all	genes	 in	 the	
genome.	 (C)	 dN/dS	 and	 estimated	 number	 of	 driver	 mutations	 per	 tumor	 grouping	
samples	 in	 20	 equal-sized	 bins	 according	 to	 mutation	 burden.	 This	 analysis	 excludes	
melanoma	samples	to	avoid	mutational	biases	(Supplementary	Methods	S5).	Figures	4A-
C	were	generated	under	the	pentanucleotide	substitution	model	for	maximum	accuracy.	
(D)	Average	number	of	driver	mutations	per	 tumor	 in	369	known	cancer	genes,	using	
two	 different	 approaches:	 (1)	 dN/dS,	 (2)	 fitting	 a	 Poisson	 regression	 model	 with	
covariates	 on	 putative	 passenger	 genes	 and	 using	 this	 to	 measure	 the	 excess	 of	
mutations	 in	 known	 cancer	 genes	 (Supplementary	 Methods	 S5.3).	 This	 allows	
estimating	the	driver	contribution	of	indels	and	synonymous	mutations.	(E)	Left	y-axis:	
dN/dS	values	for	missense	and	truncating	substitutions	for	a	series	of	driver	genes	and	
for	 different	 datasets.	 Right	 y-axis:	 corresponding	 estimates	 of	 the	 fraction	 of	 driver	
mutations.	Grey	bars	depict	dN/dS	ratios	not	significantly	different	from	one.	Error	bars	
depict	95%	confidence	intervals.	
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1.	A	dN/dS	model	for	cancer	genomics	
	
dN/dS	(also	called	Ka/Ks)	is	the	ratio	between	the	rate	of	non-synonymous	substitutions	per	non-
synonymous	site	and	the	rate	of	synonymous	substitutions	per	synonymous	site.	First	developed	
in	the	1980s	(Miyata	and	Yasunaga,	1980;	Nei	and	Gojobori,	1986),	it	has	a	long	history	in	the	
detection	of	negative	and	positive	selection	from	sequencing	data	(Yang	and	Bielawski,	2000).	
	
dN/dS	is	particularly	suitable	for	the	analysis	of	coding	mutations	in	cancer	genomes,	for	several	
reasons.	First,	unlike	evolutionary	comparisons	of	distant	species,	in	which	a	change	between	two	
sequences	may	be	 the	 result	 of	multiple	 changes	 to	 the	 site	 over	 the	 course	 of	 evolution,	 the	
density	of	substitutions	per	site	in	cancer	is	extremely	low	(typically	<10-5	mutations	per	site)	
(Martincorena	and	Campbell,	2015).	This	greatly	simplifies	the	estimation	of	rate	parameters	and	
facilitates	 the	development	of	more	complex	mutation	and	selection	models	 (Greenman	et	al.,	
2006).	 Second,	 while	 some	 concerns	 exist	 regarding	 the	 use	 of	 dN/dS	 within	 a	 highly-
recombining	population	(Kryazhimskiy	and	Plotkin,	2008),	these	considerations	do	not	apply	to	
somatic	mutations	 accumulated	 in	 a	 cancer	 sample.	 That	 is	 both	 because	 cancer	 cells	 evolve	
asexually	 and	 because	 collections	 of	 somatic	mutations	 are	 identified	 by	 comparing	 a	 cancer	
sample	 to	 the	 ancestral	 genome,	 rather	 than	 comparing	 two	 individuals	 or	 cells	 from	 a	
population.	Finally,	dN/dS	offers	a	measure	of	selection	largely	free	of	assumptions,	in	contrast	
to	population	genetic	tests	of	selection,	in	which	apparent	violation	of	neutrality	can	result	from	
demographic	changes	rather	than	selection.	
	
1.1.	Poisson	framework	
	
In	this	study	we	adopt	and	expand	upon	the	Poisson	framework	developed	by	Greenman	et	al.	
(Greenman	 et	 al.,	 2006).	 Mutations	 are	 classified	 according	 to	 their	 substitution	 type	 (i)	
(depending	on	 the	substitution	model)	and	 functional	 impact	 (synonymous	–s-,	missense	–m-,	
nonsense	–n-	and	essential	splice	sites	–e-).	Note	that,	throughout	the	paper,	the	term	“truncating	
substitutions”	refers	to	nonsense	and	essential	splice	site	substitutions	together.	For	example,	the	
number	of	C>T	synonymous	mutations	(nC>T,s)	in	a	collection	of	samples	is	modelled	as	a	Poisson	
process:	
	

!"#$,&~()*++)! , = .	0"#$1"#$,& 	
	
Where	t	is	the	density	of	substitutions	per	site,	rC>T	is	the	relative	rate	of	C>T	substitutions	per	
site,	 and	 LC>T,s	 is	 the	 number	 of	 C	 sites	 in	 which	 a	 C>T	 change	 is	 synonymous.	 In	 this	
parameterization,	one	rate	parameter	of	the	substitution	matrix	is	arbitrarily	set	to	1	(e.g.	rG>T=1,	
so	that	all	other	rates	are	relative	rates	with	respect	to	it).	For	non-synonymous	sites,	an	extra	
parameter	reflects	the	effect	of	selection	on	the	accumulation	of	mutations:	
	

!2,3~()*++)! , = .	0212,343 	
!2,5~()*++)! , = .	0212,545 	
!2,6~()*++)! , = .	0212,646 	

	
The	w	parameters	are	 the	dN/dS	ratios	 inferred	by	 the	model	after	correcting	 for	 the	rates	of	
different	 substitution	 classes	 (ri)	 and	 for	 sequence	 composition	 (L).	 Maximum-likelihood	
estimates	for	all	parameters	in	the	model	can	be	efficiently	obtained	by	Poisson	regression.	
	
Although	a	Poisson	implementation	of	dN/dS	is	particularly	suitable	for	cancer	genomic	data,	it	
can	similarly	be	used	in	other	resequencing	studies,	especially	as	long	as	the	density	of	mutations	
per	site	is	low.	This	includes,	for	example,	studies	of	human	evolution	and	bacterial	populations.	
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1.2.	Substitution	models	
	
The	simplest	dN/dS	implementations,	such	as	the	Nei-Gojobori	model	(Nei	and	Gojobori,	1986),	
treat	 all	 substitutions	 as	 a	 single	 substitution	 class.	 More	 sophisticated	 likelihood-
implementations,	widely	used	nowadays,	instead	use	a	substitution	model	with	two	substitution	
classes:	 transitions	(C<>T,	A<>G)	and	transversions	(C<>A,	C<>G,	T<>A,	T<>G)	(i.e.	 they	use	a	
transition/transversion	 ratio	 as	 a	 single	 rate	 parameter)	 (Goldman	 and	 Yang,	 1994).	 More	
complex	mutation	models	 include	 the	GTR	 (General	Time	Reversible)	model	with	6	mutation	
classes,	one	for	each	of	the	6	possible	reversible	base	changes.	
	
Somatic	mutations	in	cancer	have	been	shown	to	display	strong	context-dependence,	particularly	
from	one	base	upstream	and	downstream	of	the	mutant	base	(Alexandrov	et	al.,	2013).	As	we	
show	in	Supplementary	Text	S6	and	Fig.	S1A,	the	use	of	simplistic	substitution	models	can	lead	
to	 severe	 systematic	 under-	 or	 over-estimation	 of	 dN/dS	 ratios	 and	 erroneous	 inference	 of	
selection.	Previous	studies	of	selection	in	cancer	genomics	have	accounted	for	only	some	of	this	
context-dependence,	especially	the	high	rate	of	C>T	at	CpG	dinucleotides	(Greenman	et	al.,	2006;	
Lawrence	et	al.,	2013;	Yang	et	al.,	2003).		
	
In	this	study,	to	comprehensively	avoid	biases	emerging	from	context-dependent	effects	from	one	
base	upstream	and	downstream	of	the	mutant	base,	we	use	a	full	trinucleotide	model	with	192	
rate	parameters,	one	for	each	of	the	possible	trinucleotide	substitution	rates.	By	using	a	model	
with	192	rates,	 as	opposed	 to	96	 rates,	we	accommodate	 the	possibility	of	 strand	asymmetry	
emerging	 from	 transcription	 coupled	 repair	 in	 coding	 regions	 (Pleasance	 et	 al.,	 2010b).	More	
complex	models,	 including	 a	 full	 pentanucleotide	 substitution	model,	were	 also	 evaluated	 for	
specific	applications	(see	Supplementary	Methods	S5.2.1,	Supplementary	Text	S7	and	Fig.	S1D,E).	
	
1.3.	Modeling	variable	mutation	rates	across	genes:	dNdScv	
	
In	early	exome	studies	with	small	numbers	of	samples,	methods	to	detect	significant	mutation	
recurrence	at	gene	level	often	assumed	that	the	substitution	rate	was	uniform	across	genes	(Bolli	
et	al.,	2014;	Greenman	et	al.,	2007;	Lawrence	et	al.,	2013).	In	the	Poisson	framework	described	
above,	 this	 is	 achieved	 by	 having	 a	 single	 t	 parameter	 shared	 across	 all	 genes	 (uniform	 rate	
dN/dS	model).	Maximum-likelihood	estimates	for	the	parameters	across	genes	(t,	ri,	wm,	wn	and	
we)	are	obtained	by	Poisson	regression.	
	
However,	mutation	 rates	 are	 known	 to	 vary	 substantially	 across	 genes	 and	models	 assuming	
uniform	mutation	rates	across	genes	lead	to	the	identification	of	large	numbers	of	false	positives	
when	applied	to	relatively	 large	numbers	of	samples	(Lawrence	et	al.,	2013).	A	simple	way	to	
avoid	this	problem	is	to	have	a	separate	t	parameter	for	each	gene	(variable	rate	dN/dS	model).	
This	 is	 similar	 to	 most	 dN/dS	 implementations	 used	 in	 comparative	 genomics,	 in	 which	 the	
background	 mutation	 rate	 in	 a	 gene	 is	 directly	 estimated	 from	 the	 number	 of	 synonymous	
mutations	observed	in	the	gene.	Although	we	have	used	this	model	successfully	in	cancer	genomic	
datasets	containing	thousands	of	samples	(Wong	et	al.,	2014),	it	lacks	statistical	power	to	detect	
positively	selected	genes	in	smaller	datasets.	
	
The	mutation	rate	is	known	to	vary	across	genes	depending	on	their	expression	level,	replication	
time	 and	 chromatin	 state	 (Lawrence	 et	 al.,	 2013;	 Pleasance	 et	 al.,	 2010a;	 Polak	 et	 al.,	 2015;	
Schuster-Bockler	 and	Lehner,	 2012).	 Some	methods	designed	 to	 identify	 recurrently	mutated	
genes	 in	 cancer	 genomes,	 exploit	 this	 knowledge	 to	 improve	 their	 background	mutation	 rate	
models.	For	example,	MutSigCV	uses	three	covariates	to	estimate	the	mutation	rate	of	each	gene,	
by	 using	 information	 from	 other	 genes	 with	 similar	 covariate	 values	 (Lawrence	 et	 al.,	 2014;	
Lawrence	et	 al.,	 2013).	 Inspired	by	 this	work,	we	developed	dNdScv,	 a	method	 that	 combines	
dN/dS	with	a	negative	binomial	regression	on	a	large	number	of	covariates.	
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We	 model	 the	 variation	 of	 the	 normalized	 mutation	 rate	 per	 base	 pair	 (t)	 across	 genes	 as	
following	 a	 Gamma	 distribution.	 In	 a	 given	 dataset,	 the	 observed	 number	 of	 synonymous	
mutations	per	gene	–j-	(ns,j)	can	then	be	modelled	as	a	Poisson	process	whose	mean	is	drawn	from	
a	Gamma	distribution	reflecting	the	variation	of	the	mutation	rate	across	genes.	
	

!&,7~()*++)! , 	
,~89::9 ;, < 	

	
Since	the	negative	binomial	distribution	is	a	Gamma-Poisson	compound	distribution,	the	number	
of	synonymous	mutations	per	gene	is	modelled	as	following	a	negative	binomial	distribution.	This	
enables	 the	 use	 of	 a	 negative	 binomial	 regression	 framework	 to	 estimate	 the	 background	
mutation	model	across	genes	for	each	dataset.	Gene	size,	gene	sequence	and	the	impact	of	the	
substitution	model	are	all	accounted	for	as	an	offset	in	the	model	(reflecting	the	exposure	of	the	
gene).	The	normalized	mutation	rate	per	site,	t,	is	modelled	as	Gamma-distributed	across	genes,	
reflecting	 the	 uncertainty	 in	 the	 variation	 of	 the	mutation	 rate	 across	 genes	 remaining	 after	
accounting	 for	 the	 exposure	 of	 the	 gene.	 Covariates	 can	 then	 be	 used	 in	 this	 framework,	 to	
improve	the	estimated	background	rate	for	a	gene	and	reduce	the	unexplained	variation	of	the	
mutation	rate,	and	so	reduce	the	dispersion	of	the	underlying	Gamma	distribution.	A	reduction	
in	the	unexplained	variation	of	the	mutation	rate	leads	to	more	sensitivity	for	the	detection	of	
selection,	while	the	use	of	overdispersion	in	the	form	of	the	Gamma	distribution,	reflecting	the	
uncertainty	in	mutation	rates	across	genes,	ensures	good	specificity.	
	
In	R	code,	the	regression	is	performed	using:	
model	=	glm.nb(n_syn	~	offset(log(expected_syn))	+	covariate_matrix)	
	
where:	
n_syn	for	gene	j	is:	ns,j	=	 !2,&,72 	
expected_syn	for	gene	j	is:	Es,j	=	= 0212,&2 	(with	t	being	constant	across	genes)	
	
This	framework	allows	to	use	a	large	number	of	covariates	and	variable	selection	approaches	to	
improve	the	background	mutation	rate	model.	In	this	study,	we	have	used	as	the	covariate	matrix	
the	 first	 20	 principal	 components	 of	 169	 chromatin	 marks	 from	 the	 RoadMap	 Epigenomics	
Project	(Kundaje	et	al.,	2015).	This	included	data	from	63	cell	lines	and	10	different	epigenetic	
marks	(H3K9me3,	H3K36me3,	H3K27me3,	H3K4me1,	H3K4me3,	H3K9ac,	H3K23ac,	H3K14ac,	
H2AK9ac	and	DNase).	Since	it	has	been	shown	that	epigenomic	landscapes	derived	from	cell	lines	
more	closely	related	to	a	cancer	type	are	better	predictors	of	its	local	mutation	density	(Polak	et	
al.,	 2015),	 there	 is	 added	 value	 in	 using	 a	 wide	 set	 of	 epigenomic	 covariates.	 The	 use	 of	 a	
regression	framework	hence	allows	to	build	complex	and	fully	data-driven	background	mutation	
models	for	each	dataset.	
	
The	negative	binomial	regression	estimates	a	Gamma	distribution	for	the	uncertainty	on	tj	after	
considering	the	gene	size,	the	gene	sequence,	the	substitution	model	and	the	covariates.	Hence,	
the	likelihood	for	tj	can	now	be	constrained	both	by	the	global	knowledge	of	how	the	mutation	
rate	varies	across	genes	and	the	local	number	of	synonymous	mutations	in	the	gene.	
	

ℒ	 .? = 	 ℒ@A2&&A5(.?|!D,?)ℒFG33G(.?|a, b)	
	
By	using	this	joint	likelihood,	dNdScv	weighs	the	amount	of	information	on	the	mutation	rate	of	
the	gene.	In	small	datasets,	in	which	most	genes	have	zero	or	a	few	synonymous	mutations,	the	
Gamma	 function	 dominates	 the	 likelihood.	 In	 large	 datasets	 with	 sufficient	 numbers	 of	
synonymous	mutations	per	gene,	the	Poisson	function	dominates	and	the	model	converges	to	the	
variable	rate	dN/dS	model.	
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Derivation	of	the	expression	for	ℒ .? ,	
Hℒ

HIJ
= 0,	gives	a	simple	analytical	solution	for	the	maximum	

likelihood	estimate	of	tj	under	both	the	Poisson	and	Gamma	constraints.	The	maximum	likelihood	
estimate	for	the	expected	number	of	synonymous	mutations	in	a	gene	under	the	dNdScv	model	
(E’s,j)	 is:	L′&,N = .N 0212,&2 =

5O,JPQRS

SPTJ
.	Where	a	 and	bj	 are	 the	 shape	and	 rate	 (inverse	of	 scale)	

parameters	 of	 the	 Gamma	 distribution	 respectively,	 defined	 as:	 a=q	 and	 bj=q/µj	 (µj	 is	 the	
predicted	 number	 of	 synonymous	 mutations	 for	 gene	 j	 according	 to	 the	 negative	 binomial	
regression	model	and	q	is	the	overdispersion	parameter	of	the	regression	model).	
	
Confidence	intervals	for	w	parameters	under	the	dNdScv	model	(as	used	in	Fig.	4E)	were	obtained	
by	profile	likelihood	integrating	out	tj.	
	
1.4.	Likelihood	ratio	tests	for	the	inference	of	selection	
	
In	 all	 three	 dN/dS	models	 (uniform	 rate,	 variable	 rate	 and	 dNdScv),	 inference	 of	 selection	 is	
performed	using	Likelihood	Ratio	Tests,	similarly	to	traditional	likelihood	dN/dS	models	used	in	
phylogenetics	 (Goldman	 and	 Yang,	 1994;	 Yang	 and	 Bielawski,	 2000).	 Examples	 of	 null	 and	
alternative	hypotheses	for	different	tests	are	shown	below.	
	
Global	test	for	selection	with	free	w	parameters	(3	degrees	of	freedom):	
H0:	wm	=	1;	wn	=	1;	we	=	1	
H1:	wm	¹	1;	wn	¹	1;	we	¹	1	
	
Global	 test	 for	selection	with	a	single	w	parameter	 for	 truncating	substitutions	(nonsense	and	
essential	 splice	 site	mutations)	 (2	degrees	of	 freedom).	This	 is	 the	 test	used	 in	 the	 screen	 for	
positively	selected	genes	in	this	study	as	it	tends	to	be	more	sensitive	than	the	fully	unconstrained	
model	above.	
H0:	wm	=	1;	wn	=	1;	we	=	1	
H1:	wm	¹	1;	wn	=	we	¹	1	
	
Test	for	selection	on	missense	mutations	(1	degree	of	freedom).	
H0:	wm	=	1;	wn	¹	1;	we	¹	1	
H1:	wm	¹	1;	wn	¹	1;	we	¹	1	
	
Multiple	 testing	 correction	 is	 performed	using	Benjamini	 and	Hochberg’s	 false	 discovery	 rate	
(Benjamini	 and	Hochberg,	 1995)	 for	 all	 genes	 tested.	 To	boost	 the	 statistical	 power	 to	 detect	
selection	on	known	cancer	genes,	we	use	restricted	hypothesis	testing	on	an	a	priori	list	of	known	
cancer	genes,	as	described	before	(Lawrence	et	al.,	2014).	 In	this	study,	we	use	the	 list	of	174	
COSMIC	classic	genes	from	version	73	of	the	COSMIC	database	(Forbes	et	al.,	2015)	for	RHT	in	the	
positive	selection	screen,	and	a	list	of	essential	genes	for	RHT	in	the	negative	selection	screen	(see	
Supplementary	Methods	S4.4).	Alternative	approaches	that	can	help	increase	power	on	a	priori	
gene	candidates	without	theoretically	incurring	in	an	inflation	of	the	global	false	discovery	rate	
are	 stratified	 false	 discovery	 rate	 (Sun	 et	 al.,	 2006)	 and	 data-driven	 hypothesis	 weighting	
(Ignatiadis	et	al.,	2016).	
	
1.5.	Recurrence	of	insertions	and	deletions	
	
dN/dS	 can	be	used	 to	detect	 and	quantify	 selection	on	 coding	 substitutions,	 but	 not	 on	 small	
insertions	 or	 deletions	 (indels).	 To	 identify	 genes	 recurrently	 affected	 by	 indels	 or	 by	 other	
mutation	types,	such	as	dinucleotide	substitutions	or	complex	substitutions,	we	use	a	different	
model.	
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Briefly,	 a	 simple	 negative	 binomial	 regression	model	 is	 used	 to	 estimate	 the	 expected	 rate	 of	
indels	per	gene.	The	length	of	the	CDS	of	each	gene	is	used	as	an	offset	and	the	20	epigenomic	
covariates	used	 in	dNdScv	are	also	used	as	covariates	here	(Supplementary	Methods	S1.3).	To	
minimise	 the	 risk	 of	 driver	 indels	 inflating	 the	 background	 model,	 known	 cancer	 genes	 are	
excluded	when	fitting	the	negative	binomial	model	(in	this	study	we	used	the	list	of	558	cancer	
genes	in	the	Cancer	Gene	Census	version	73	(Forbes	et	al.,	2015).	Applying	this	regression	model	
to	all	genes	in	the	genome	provides	an	estimate	of	the	mean	indel	rate	expected	in	each	gene	and	
of	the	overdispersion	of	the	model	(q).	A	P-value	for	the	observed	number	of	indels	in	each	gene	
(ni,j)	can	be	obtained	using	the	cumulative	negative	binomial	distribution.	For	each	gene,	we	used	
Fisher’s	method	 to	combine	 the	P-value	 from	the	 indel	model	with	 the	P-value	obtained	 from	
dNdScv	(with	2	degrees	of	freedom)	for	selection	on	coding	substitutions.	The	resulting	global	P-
value	was	used	to	identify	genes	under	positive	selection	in	Fig.	2	and	Supplementary	Table	S2.	
	
Supplementary	 Text	 S9	 compares	 the	 specificity	 and	 sensitivity	 of	 the	 three	 dN/dS	 models	
introduced	here	(uniform	rate	dN/dS	model,	variable	rate	dN/dS	model	and	dNdScv).	
	
	
2.	Exome	data	and	mutation	calling	
	
2.1.	Exome	data	
	
Paired	tumor	and	normal	exome	sequencing	files	from	9,699	cancer	patients	were	downloaded	
from	CGHub	between	November	and	December	2015.	The	samples,	 sequenced	by	The	Cancer	
Genome	Atlas	(http://cancergenome.nih.gov/),	correspond	to	29	different	tumor	types.	Colon	and	
rectal	cancer	were	grouped	together	as	colorectal	cancer.	Supplementary	Table	S1	shows	the	list	
of	cancer	types	used	in	this	study,	their	TCGA	4-letter	code	names,	the	longer	abbreviations	used	
in	this	study	and	the	number	of	samples	eventually	selected	for	analysis	(7,664	across	all	cancer	
types).	
	
2.2.	Calling	of	point	mutations	and	indels	
	
The	data	were	uniformly	reprocessed	using	the	Wellcome	Trust	Sanger	Institute’s	variant	calling	
algorithms	 to	 ensure	 uniformity	 across	 cancer	 types	 and	 to	 have	 control	 over	 the	 filtering	 of	
mutations	at	polymorphic	sites.	Owing	to	negative	selection	during	human	evolution,	germline	
polymorphisms	are	heavily	enriched	in	synonymous	substitutions	(Fig.	1A).	As	a	consequence,	
incomplete	removal	of	germline	polymorphisms	from	the	collections	of	somatic	mutations	can	
lead	 to	 an	 underestimation	 of	 dN/dS	 ratios,	 while	 removal	 of	 genuine	 somatic	 mutations	 at	
polymorphic	sites	can	lead	to	an	overestimation	of	dN/dS	ratios	(see	Supplementary	Text	S8	and	
Fig.	S1B,C	for	analyses	on	the	impact	of	germline	SNPs	in	catalogs	of	somatic	mutations).	
	
Paired-end	reads	were	aligned	to	the	reference	human	genome	(GRCh37,	hs37d5	build)	using	
BWA-MEM	 (Li,	 2013).	 Substitutions	 were	 called	 using	 CaVEMan	 (Cancer	 Variants	 Through	
Expectation	Maximization:	http://cancerit.github.io/CaVEMan/)	(Jones	et	al.,	2016).	Indels	were	
called	using	cgpPindel	v2.0	(http://cancerit.github.io/cgpPindel/)	(Raine	et	al.,	2015).	A	panel	of	
unmatched	 normal	 samples	 (sequenced	 at	 the	Wellcome	 Trust	 Sanger	 Institute)	was	 used	 to	
remove	common	sequencing	and	mapping	artefacts.	
	
2.3.	Quality	controls	and	use	of	TCGA	calls	in	five	cancer	types	
	
Only	pairs	 of	 samples	with	 the	 same	TCGA	barcode	 ID	 to	 those	used	by	TCGA	 in	 their	 public	
somatic	 mutation	 calls	 were	 considered	 for	 further	 study.	 To	 minimize	 the	 risk	 of	 germline	
polymorphisms	in	the	collections	of	somatic	mutations,	somatic	calls	at	sites	with	less	than	10	
reads	 of	 sequencing	 coverage	 in	 the	 matched	 normal	 sample	 were	 excluded.	 To	 ensure	 that	
somatic	 calls	 from	 our	 pipeline	were	 not	 excessively	 different	 from	 those	 released	 by	 TCGA,	
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samples	in	which	our	algorithms	called	<50%	of	the	coding	mutations	publicly	released	by	TCGA	
were	 excluded.	 Samples	 with	 >3,000	 coding	 mutations	 (i.e.	 ~100	 mutations/Mb),	 including	
substitutions	and	indels,	were	excluded	from	all	of	the	analyses	in	this	study.	After	applying	these	
filters,	a	total	of	7,664	samples	were	used	for	the	analyses	in	this	paper.	
	
Comparison	of	the	mutation	calls	obtained	from	our	pipeline	to	those	released	by	TCGA	for	the	
same	samples	suggested	low	sensitivity	of	our	pipeline	in	five	of	the	29	cancer	types	analyzed:	
acute	 myeloid	 leukemia	 (LAML),	 kidney	 chromophobe	 (KICH),	 pheochromocytoma	 and	
paraganglioma	 (PCPG),	 prostate	 adenocarcinoma	 (PRAD)	 and	 pancreatic	 adenocarcinoma	
(PAAD).	For	these	five	cancer	types,	public	TCGA	mutation	calls	were	used	in	this	study	instead	
of	those	from	our	pipeline.	These	five	cancer	types	were	used	in	the	driver	discovery	analyses,	
since	 these	 analyses	 are	 largely	 robust	 to	 minor	 germline	 contamination	 or	 over-filtering	 at	
polymorphic	 sites.	However,	 these	 cancer	 types	were	 excluded	 from	 the	 analyses	 of	 negative	
selection	 (Fig.	 3,	 Supplementary	 Methods	 S4)	 and	 the	 estimation	 of	 number	 of	 driver	
substitutions	per	tumor	(Fig.	4,	Supplementary	Methods	S5),	where	moderate	biases	to	dN/dS	
can	affect	the	interpretation	of	the	results.	
	
2.4.	Calling	of	copy	number	changes	
	
We	used	 the	ASCAT	algorithm	 (Van	Loo	et	 al.,	 2010)	 to	 identify	 copy	number	 changes	 across	
13,241	TCGA	samples	using	Affymetrix	SNP6	arrays.	CEL	files	provided	by	TCGA	were	processed	
using	PennCNV	libraries	(Wang	et	al.,	2007)	to	obtain	logR	and	BAF	values.	The	logR	values	were	
subsequently	 corrected	 for	GC	content	 to	decrease	wave	artefacts,	which	often	affect	 samples	
profiled	by	SNP	arrays.	Copy	number	profiles	for	all	tumor	samples	were	then	inferred	from	the	
corrected	data	using	ASCAT	version	2.4.2	(Van	Loo	et	al.,	2010).	
	
	
3.	Screen	for	positive	selection	at	gene	level	(driver	gene	discovery)	
	
To	 identify	 genes	 under	 significant	 positive	 selection	 we	 ran	 dNdScv	 on	 every	 cancer	 type	
separately	 and	 on	 all	 7,664	 samples	 together.	 P-values	 were	 calculated	 as	 described	 in	
Supplementary	 Methods	 S1.3-1.5	 and	 adjusted	 for	 multiple	 testing	 using	 Benjamini	 and	
Hochberg’s	false	discovery	rate	(Benjamini	and	Hochberg,	1995).	On	inspection	of	the	results,	a	
small	 number	 of	 significant	 genes	 were	 found	 to	 be	 false	 positives	 resulting	 from	 recurrent	
sequencing	 or	 mapping	 artefacts	 in	 the	 collections	 of	 somatic	 mutations.	 To	 systematically	
remove	false	positives	due	to	recurrent	artefacts,	all	mutations	found	in	significant	genes	were	
subject	to	an	in	silico	validation	(see	below),	false	calls	were	removed	and	dNdScv	rerun	on	the	
cleaned	dataset.	
	
Genes	 found	 as	 significant	 (q-value<0.05)	 in	 each	 cancer	 type	 are	 depicted	 in	 Fig.	 2	 and	 in	
Supplementary	Table	S2.	Since	combining	results	from	multiple	tumor	types	can	inflate	the	global	
false	 discovery	 rate	 in	 the	 final	 list	 of	 significant	 genes,	we	 then	 performed	 a	 global	multiple	
testing	correction	on	the	entire	matrix	of	P-values	(20090	genes	by	30	datasets)	(as	in	(Lawrence	
et	al.,	2014)).	This	resulted	 in	a	 list	of	180	putatively	positively-selected	(driver)	genes.	Using	
restricted	 hypothesis	 testing	 led	 to	 the	 additional	 identification	 of	 24	 driver	 genes	
(Supplementary	Methods	S1.4)	(Lawrence	et	al.,	2014).	
	
3.1.	In	silico	identification	and	removal	of	sequencing	artefacts	
	
Evaluation	of	significant	hits	revealed	a	small	number	of	false	positives	due	to	recurrent	artefacts	
that	escaped	our	filters	and	our	unmatched	normal	panel.	To	systematically	identify	recurrent	
artefacts	 leading	 to	 false	positives	 in	 the	 screens	 for	positive	 and	negative	 selection,	we	used	
ShearwaterML	(Gerstung	et	al.,	2014;	Martincorena	et	al.,	2015).		
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ShearwaterML	is	a	variant	calling	algorithm	that	relies	on	building	a	base-specific	error	model	by	
using	a	large	collection	of	unmatched	normal	samples.	Sequencing	artefacts	caused	by	Illumina	
sequencing	errors,	PCR	errors,	DNA	damage	in	a	library,	misalignment	of	reads	or	other	causes,	
are	expected	to	appear	at	similar	frequencies	in	sequencing	libraries	of	tumor	or	healthy	(normal)	
tissue.	Thus,	all	mutations	identified	in	genes	detected	as	significant	by	dNdScv	were	re-evaluated	
by	ShearwaterML,	comparing	the	number	of	reads	supporting	the	mutation	in	the	mutant	sample	
to	the	frequency	of	errors	seen	across	a	large	panel	of	TCGA	normal	samples	from	the	same	cancer	
type	using	a	beta-binomial	likelihood	model	(Martincorena	et	al.,	2015).	
	
To	build	a	reliable	panel	of	normal	samples	for	each	TCGA	dataset	and	avoid	filtering	out	genuine	
driver	mutations,	we	excluded	from	the	panels	any	normal	sample	with	suggestive	evidence	of	a	
mutation	(>=3	supporting	reads)	in	a	list	of	344	recurrently	mutated	sites	in	known	cancer	genes.	
This	 reduces	 the	 risk	 of	 including	 samples	 in	 the	 normal	 panel	 with	 significant	 tumor	
contamination	or	hematopoietic	clonal	expansions	(Xie	et	al.,	2014).	
	
P-values	resulting	 from	ShearwaterML	were	adjusted	for	multiple	testing	using	Benjamini	and	
Hochberg’s	false	discovery	rate	(Benjamini	and	Hochberg,	1995),	correcting	for	n=N*S	 tests	to	
avoid	a	discovery	bias	(where	N	is	the	number	of	sites	tested	and	S	is	the	number	of	samples	in	
each	cancer	 type).	Mutations	with	q-value>0.20	were	removed	and	dNdScv	was	 re-run	on	 the	
cleaned	dataset.	49	genes	were	found	to	be	heavily	affected	by	artefacts,	with	more	than	50%	of	
the	mutations	found	in	them	being	considered	artefactual	by	ShearwaterML.	These	genes	were	
conservatively	excluded	from	any	significant	hits	in	the	positive	selection	screen.	
	
The	49	genes	heavily-affected	by	artefacts	are:	AGAP10,	AL445989.1,	ANAPC1,	ANKRD36C,	AQP7,	
BMI1,	C16orf3,	CD209,	CDC27,	CDC7,	CRIPAK,	DTD2,	EP400,	FAM104B,	FRG1,	FRG1B,	GNAQ,	HLA-
DRB5,	HSPD1,	IGBP1,	KBTBD6,	KRT14,	KRT5,	KRT6A,	KRTAP1-5,	KRTAP4-11,	KRTAP4-3,	KRTAP4-
8,	 KRTAP4-9,	 KRTAP5-5,	 KRTAP9-9,	 MLLT3,	 MUC4,	 MUC8,	 NCOA6,	 PABPC1,	 PCDHB12,	 POTEC,	
POTEM,	PPFIBP1,	PRKRIR,	PTH2,	RGPD3,	RGPD8,	RP11-176H8.1,	SLC35G6,	TMEM219,	TPT1	and	
UBBP4.		
	
4.	Negative	selection	analyses	
	
4.1.	Samples	selected	for	negative	selection	analyses	
	
As	we	 have	 described,	 simplistic	mutation	models,	 germline	 contamination	 of	 the	 catalogs	 of	
somatic	mutations	and	over-filtering	of	genuine	somatic	mutations	at	polymorphic	sites	can	lead	
to	biased	dN/dS	ratios.	When	analyzing	dN/dS	ratios	close	to	1,	these	biases	can	lead	to	wrong	
inferences	about	selection,	as	shown	in	Fig.	S1A-E	and	Supplementary	Text	S6-8.	
	
In	order	to	avoid	these	biases,	the	analyses	of	negative	selection	shown	in	Fig.	3	were	carried	out	
on	 a	 subset	 of	 all	 samples,	 encompassing	 5,763	 samples	 from	23	 cancer	 types.	 First,	 the	 five	
cancer	types	with	TCGA	mutation	calls	were	excluded	from	the	analyses	to	have	control	over	the	
filtering	 of	 germline	mutations	 used	 during	 variant	 calling.	 Second,	 melanoma	 samples	 were	
excluded	from	these	analyses	since	the	mutation	spectrum	in	melanoma	causes	a	downward	bias	
to	dN/dS	under	the	trinucleotide	model	(Supplementary	Text	S7).	Third,	only	samples	with	copy	
number	 information	 were	 included	 in	 the	 analyses,	 since	 this	 information	 was	 required	 for	
several	of	the	analyses.	Finally,	only	samples	with	fewer	than	500	coding	mutations	per	exome	
were	 included	 in	 the	 analyses	 to	 avoid	 hypermutator	 samples	 dominating	 the	 analyses	 and	
ensure	representative	results.	
	
4.2.	dN/dS	distributions	across	genes	
	
Observed	dN/dS	values	at	gene	level	are	subject	to	considerable	uncertainty	due	to	the	limited	
number	of	substitutions	per	gene.	Hence,	the	variation	in	dN/dS	values	observed	across	genes	
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(Fig.	3A)	is	a	composite	of	the	true	variation	of	selection	across	genes	and	Poisson	noise	in	the	
counts	 of	 non-synonymous	 and	 synonymous	mutations.	 Using	mixture	models,	 this	 technical	
variation	can	be	eliminated	to	infer	the	underlying	dN/dS	distribution	across	genes.	
	
For	any	gene,	given	a	extent	of	selection	(wm,j)	and	a	substitution	model,	the	expected	fraction	of	
synonymous	 and	 missense	 substitutions	 in	 the	 gene	 can	 be	 calculated	 as	 follows:	 U&,7 =

	
VWXW,O,JW

VW(XW,O,JPXW,Y,JZY,J)W
,	 U3,7 = 	

VWXW,Y,JZY,JW

VW(XW,O,JPXW,Y,JZY,J)W
,	 respectively.	 The	 analysis	 of	 truncating	

substitutions	(nonsense	and	essential	splice	site	mutations)	was	done	analogously.	
	
4.2.1.	Neutral	simulations	
	
To	study	how	much	variation	in	observed	dN/dS	values	across	genes	is	expected	by	simple	noise	
under	 perfect	 neutral	 evolution,	we	 first	 carried	 out	 a	 simple	 simulation.	 Using	 the	 expected	
fraction	of	synonymous	and	missense	mutations	per	gene	under	neutrality	(rs,j,neutral	and	rm,j,neutral	
given	wm,j=1	for	all	genes),	and	the	total	number	of	mutations	observed	per	gene	(ns,j+nm,j),	we	
performed	 a	 random	 binomial	 simulation	 of	 the	 number	 of	 missense	 mutations	 per	 gene:	
!3,7,VG5HA3~[ ! = !&,7 + !3,7, ] = U3,7,56^IVG_ .	 This	 yields	 a	 maximum-likelihood	 point	
estimate	for	dN/dS	per	gene	of:	(!3,7,VG5HA3U&,7,56^IVG_)/(!&,7,VG5HA3U3,7,56^IVG_).	This	simulation	
revealed	 that	most	 of	 the	 apparent	 variation	 observed	 in	 dN/dS	 across	 genes	 was	 technical,	
caused	by	the	limited	number	of	mutations	per	gene	(Fig.	3A).	
	
4.2.2.	Binomial	mixture	model	
	
We	can	go	beyond	neutral	simulations	and	infer	the	extent	of	the	biological	variation	of	w	across	
genes.	Given	rs,j	and	rm,j	(as	a	function	of	wm,j)	and	the	total	number	of	mutations	seen	in	the	gene	
(ns,j+nm,j),	 the	probability	of	observing	nm,j	mutations	 in	a	gene	follows	a	binomial	distribution.	
The	 advantage	 of	 using	 a	 binomial	 distribution	 contingent	 on	 the	 total	 number	 of	 observed	
mutations	is	that	it	makes	the	approach	unaffected	by	the	uncertainty	in	the	background	mutation	
rate	of	the	gene.		
	

((!&,7, !3,7|43,7) =
!&,7 + !3,7

!3,7
U3,7

5Y,JU&,7
5O,J 	

	
We	can	extend	this	to	model	w	as	a	distribution	across	genes,	for	example	using	a	discrete	mixture	
model	or	integrating	over	a	continuous	distribution	for	w.	This	is	similar	to	existing	approaches	
for	modeling	the	distribution	of	w	across	codons	of	a	protein	in	comparative	genomics	(Nielsen	
and	Yang,	1998).	In	this	study,	to	avoid	imposing	a	restrictive	parameterization	of	the	distribution	
of	w	(dN/dS)	across	genes,	we	used	a	flexible	discrete	distribution	with	a	fine	grid.	For	the	results	
shown	in	the	main	text,	we	used	a	discrete	distribution	defined	as	w	Î	(0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	
0.7,	0.8,	0.9,	1,	1.1,	1.2,	1.3,	1.4,	1.5,	1.6,	1.7,	1.8,	1.9,	2,	3,	4,	5,	10,	15,	20),	with	a	free	probability	
mass	function	defined	at	these	values	( ]a = 1c

adS ,	where	K	is	the	number	of	points	used	in	the	
discrete	 distribution	 and	 pk	 the	 fraction	 of	 genes	 with	 w=wk).	 The	 global	 likelihood	 of	 the	
distribution	of	w	across	genes	can	then	be	expressed	as:	
	

ℒ 4 = ]a((!&,7, !3,7|4a,3,7)

c

adS

e

7dS

	

	
Where	 J	 is	 the	 total	 number	 of	 genes	 considered.	 Maximum	 likelihood	 estimates	 for	 the	
probability	mass	function	(]a)	were	obtained	using	an	Expectation	Maximization	(EM)	algorithm,	
initialized	 with	 uniform	 probabilities	 (pk,0	 =	 1/K).	 Confidence	 intervals	 were	 obtained	 by	
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bootstrapping	(sampling	genes	with	replacement).	Using	distributions	with	more	points	yielded	
analogous	results.	
	
4.2.3.	 Estimation	 of	 the	 average	 number	 of	mutations	 under	 positive	 and	 negative	 selection	 per	
tumor	
	
Once	 the	underlying	w	distribution	has	been	estimated	 (]a),	 the	probability	 that	a	gene	has	a	
particular	value	of	w	can	be	calculated	using	the	equation	below.	This	equation	corresponds	to	
the	posterior	probability	of	a	gene	belonging	to	a	w	class	in	the	EM	algorithm	and	it	is	identical	to	
the	 empirical	Bayes	 equation	used	 for	 a	 similar	purpose	 in	 the	dN/dS	 literature	 (Nielsen	and	
Yang,	1998).	
	

( 4a,3,7|!&,7, !3,7 =
]a((!&,7, !3,7|4a,3,7)

]a((!&,7, !3,7|42,3,7)c
2dS

	

	
If	 a	 gene	 is	 evolving	 under	 a	 given	 value	 of	wk,m,j,	 the	 maximum	 likelihood	 estimate	 for	 the	
expected	 number	 of	 missense	 mutations	 in	 the	 gene,	 given	 the	 mutations	 observed,	 is:	
5Y,J

Zf,Y,J
+ !&,7 U3,7 .	 If	we	assume	that	genes	under	positive	selection	(wk,m,j>1)	do	not	contain	a	

significant	number	of	sites	under	negative	selection,	or	vice	versa,	we	can	use	the	value	of	wk,m,j	to	
estimate	the	number	of	missense	mutations	fixed	by	positive	selection	or	depleted	by	negative	
selection.	 Summing	 over	 all	 genes,	we	 can	 obtain	 global	 estimates	 for	 the	 average	number	 of	
missense	mutations	fixed	by	positive	selection	(dpos)	or	depleted	by	negative	selection	(dneg),	per	
tumor.	
	

g56h =
1
i

( 4a,3,7|!&,7, !3,7 1 − 4a,3,7
!3,7
4a,3,7

+ !&,7 U3,7
ZfkS

e

7dS

	

	

glA& =
1
i

( 4a,3,7|!&,7, !3,7 4a,3,7 − 1
!3,7
4a,3,7

+ !&,7 U3,7
Zf#S

e

7dS

	

	
Where	N	is	the	number	of	samples	used	in	the	analysis.	Confidence	intervals	for	these	estimates	
were	obtained	by	bootstrapping	(sampling	genes	with	replacement).	It	should	be	noted	that,	in	
the	presence	of	both	positive	and	negative	selection	acting	on	the	same	gene	at	different	sites	or	
in	 different	 samples,	 these	 estimates	 will	 underestimate	 the	 extent	 of	 positive	 and	 negative	
selection.	 However,	 in	 order	 to	 explain	 the	 observation	 that	 the	 vast	 majority	 of	 genes	 are	
estimated	to	have	an	average	w~1	(Fig.	3B),	the	combination	of	positive	and	negative	selection	
should	be	nearly	perfectly	balanced	across	most	 genes	 in	 the	 genome,	which	 is	unlikely.	This	
suggests	that	most	genes	seem	to	accumulate	missense	mutations	largely	neutrally	and	so	that	
dpos	and	dneg	are	probably	decent	approximations.	
	
In	this	study,	we	inferred	]a ,	dpos	and	dneg	for	missense	and	truncating	(nonsense	and	essential	
splice	site)	substitutions	separately,	as	well	as	for	three	classes	of	mutations	according	to	the	copy	
number	 state	 of	 the	 region	 where	 the	 mutations	 occurred:	 haploid	 regions	 (1:0),	 loss	 of	
heterozygosity	 (LOH)	 regions	 with	 higher	 ploidy	 (n:0,	 with	 n>1),	 and	 all	 others	 (i.e.	 regions	
without	LOH).	Estimates	shown	in	Fig.	3D	include	the	sum	of	all	of	these	mutation	types.	Fig.	3A-
C	show	estimates	for	missense	mutations	in	regions	without	LOH.	
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4.3.	Gene-level	analyses	of	negative	selection	
	
To	identify	whether	any	gene	has	a	dN/dS	value	significantly	lower	than	1	we	used	a	one-sided	
test	on	missense	mutations	alone:	
H0:	wm	=	1;	wn	¹	1;	we	¹	1	
H1:	wm	≤	1;	wn	¹	1;	we	¹	1	
	
This	test	has	1	degree	of	freedom	and	the	resulting	P-value	from	the	Chi-square	distribution	is	
divided	by	 two,	as	 the	 test	 is	one-sided.	Since	 tissue-specific	datasets	 lack	statistical	power	 to	
detect	negative	selection	at	gene	level,	we	used	the	entire	pancancer	dataset	(n=7,664	samples)	
for	 this	 analysis.	 We	 used	 both	 the	 dNdScv	 model	 and	 the	 variable	 rate	 dN/dS	 model	
(Supplementary	 Methods	 S1.3).	 These	 tests	 did	 not	 find	 any	 gene	 under	 significant	 negative	
selection	at	false	discovery	rate	<10%.	
	
To	boost	 the	 statistical	power	on	genes	 that	may	be	 suspected	 to	be	under	 stronger	negative	
selection,	we	performed	restricted	hypothesis	testing	on	an	a	priori	chosen	list	of	1,734	essential	
genes	(see	Supplementary	Methods	S4.4	below	for	a	description	of	the	genes	in	this	list).	All	genes	
yielded	q-values	higher	than	0.10.	
	
4.3.1.	Power	calculations	
	
The	power	to	detect	negative	selection	in	a	gene	(or	a	group	of	genes)	under	the	variable	rate	
dN/dS	model	is	determined	by	two	main	factors:	(1)	the	effect	size	(the	dN/dS	ratio),	and	(2)	the	
number	of	mutations	in	the	gene	(which	is	largely	determined	by	the	number	of	samples	in	the	
dataset,	their	mutation	burden	and	the	length	of	the	gene).	Under	the	dNdScv	model,	a	third	factor	
affecting	 the	power	 is	 the	uncertainty	of	 the	background	model	 (i.e.	 the	overdispersion	of	 the	
negative	binomial	regression	-q-).	
	
In	 order	 to	 study	 the	 power	 to	 detect	 negative	 selection	 under	 both	 models,	 we	 performed	
random	simulations.	Let	m	be	the	expected	(average)	number	of	coding	mutations	in	a	gene	in	a	
dataset,	 rs,	 rm	 and	 rt	 the	 fraction	 of	 synonymous,	 missense	 and	 truncating	 (nonsense	 and	
essential	splice	site)	substitutions	expected	under	neutrality,	wm	and	wt	the	corresponding	values	
of	 dN/dS,	 and a	 the	 shape	 parameter	 of	 the	 underlying	 Gamma	 distribution.	 Then	 we	 can	
simulate	the	number	of	synonymous,	missense	and	truncating	substitutions	in	the	gene	using:	
	

:7~89::9 ; = m, < = m/n 	

!&~()*++)! , = :7U& 	
!3~()*++)! , = :7U343 	

!I~()*++)! , = :7UI4I 	
	
P-values	 for	 two-sided	 tests	 under	 both	 the	 variable	 rate	 dN/dS	 model	 and	 dNdScv	 can	 be	
calculated	from	these	numbers	as	described	in	Supplementary	Methods	S4.3	(H0:	wm=1;	H1:	wm¹1,	
df=1).	For	each	combination	of	m	and	w	tested,	we	performed	5,000	simulations.	The	fraction	of	
P-values	below	0.05	reflect	the	power	to	detect	a	gene	as	significantly	under	selection.	The	values	
used	for	rs,	rm,	rt	and	q	are	the	average	values	for	these	parameters	observed	in	the	pancancer	
dataset	(rs=0.287,	rm=0.649,	rt=0.064,	q=6.03).	
	
4.4.	Group-level	analyses	of	negative	selection	
	
Given	the	limited	statistical	power	to	detect	negative	selection	at	the	level	of	individual	genes,	we	
searched	for	evidence	of	negative	selection	in	groups	of	related	genes.	To	do	so,	we	first	excluded	
a	long	list	of	987	putative	cancer	genes,	by	combining	gene	lists	from	multiple	sources.	We	then	
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used	the	variable	rate	dN/dS	model	to	study	selection	on	groups	of	genes,	as	defined	by	expression	
level,	local	chromatin	state,	essentiality	and	gene	ontology	functional	annotation.	
	
Expression:	As	a	measure	of	the	typical	expression	level	of	a	gene	across	tumors,	we	calculated	
the	mean	of	the	log	RSEM-normalized	expression	level	of	each	gene	across	a	collection	of	6,190	
TCGA	samples	(.rsem.genes.normalized_results	TCGA	files).	
	
Chromatin	 state:	 As	 a	 measure	 of	 the	 typical	 chromatin	 state	 of	 a	 gene,	 we	 defined	 as	
heterochromatin	and	euchromatin	those	regions	in	which	the	six	main	ENCODE	cell	lines	shared	
the	same	annotation	(ENCODE	Project	Consortium,	2012).	
	
Essentiality:	As	a	list	of	genes	essential	for	cell	survival	and	growth,	we	used	a	collection	of	1,734	
core	essential	genes	reported	by	a	recent	mutagenesis	screen	in	haploid	human	cell	lines	(Blomen	
et	 al.,	 2015).	 This	 list	 of	 genes	 is	 heavily	 enriched	 in	 proteins	 participating	 in	 key	 cellular	
components	 and	 pathways,	 such	 as	 the	 ribosome,	 the	 spliceosome,	 the	 aminoacyl-tRNA	
biosynthesis	pathway,	the	proteasome,	RNA	degradation,	DNA	replication,	RNA	polymerases	and	
the	cell	cycle	(Blomen	et	al.,	2015).	
	
Gene	ontology:	To	search	 for	evidence	of	negative	selection	at	 the	 level	of	 functionally	 related	
genes,	we	 used	Ensembl	 BioMart	 to	 extract	 Gene	Ontology	 (GO)	 annotations	 for	 all	 genes.	 To	
ensure	adequate	statistical	power	and	reduce	multiple	testing	correction,	we	only	tested	groups	
composed	of	at	 least	30	genes.	We	considered	GO	annotations	of	Biological	Processes,	Cellular	
Components	 and	Molecular	 Functions.	 Overall	we	 tested	 1,242	 functional	 groups	 of	 genes	 and	
performed	 Bonferroni	 multiple-testing	 correction	 (we	 used	 Bonferroni	 to	 account	 for	 the	
extensive	 overlaps	 between	 gene	 groups).	 Including	 all	 genes	 in	 the	 analysis	 yielded	 a	 large	
number	 of	 GO	 groups	 with	 evidence	 of	 positive	 selection	 on	 missense	 and/or	 nonsense	
substitutions	(n=428),	but	no	group	with	evidence	of	negative	selection.	Excluding	the	long	list	of	
987	 putative	 driver	 genes	 dramatically	 reduced	 the	 number	 of	 functional	 gene	 groups	 with	
evidence	 of	 positive	 selection	 (n=27),	 but	 still	 no	 GO	 group	 showed	 evidence	 of	 significant	
negative	selection	(Fig.	S3).	Repeating	this	analysis	on	mutations	occurring	in	haploid	regions	did	
not	identify	any	group	of	genes	under	clear	negative	selection.	
	
	
5.	Estimation	of	the	number	of	driver	mutations	
	
5.1.	Samples	selected	for	the	estimation	of	the	number	of	driver	mutations	
	
All	samples	with	CaVEMan	mutation	calls	and	less	than	500	coding	mutations	per	sample	were	
included	in	this	analysis,	including	the	melanoma	dataset.	Overall,	a	total	of	6,108	samples	from	
24	cancer	types	were	included	in	the	pancancer	estimates	of	the	number	of	driver	mutations	per	
tumor	shown	in	Fig.	4.	
	
5.2.	Estimating	the	number	of	substitutions	fixed	by	positive	selection	from	dN/dS	
	
In	the	absence	of	negative	selection	and	mutation	biases,	we	can	accurately	estimate	the	number	
of	mutations	expected	to	have	accumulated	neutrally	in	a	gene	or	group	of	genes.	As	described	by	
Greenman	et	al.	(Greenman	et	al.,	2006),	this	can	be	used	to	estimate	the	number	of	mutations	in	
excess	that	have	been	fixed	by	positive	selection.	Assuming	a	negligible	role	for	negative	selection,	
we	can	calculate	the	fraction	(fm)	and	the	absolute	number	(dm)	of	mutations	in	a	gene	or	group	
of	genes	that	are	genuine	driver	mutations	as:	
	

o3 =
43 − 1
43

;		q3 = o3!3;		∀	43 > 1	
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In	 the	 presence	 of	 significant	 negative	 selection,	 these	 equations	would	 provide	 lower	 bound	
estimates	of	the	density	and	number	of	genuine	driver	mutations.	However,	our	analyses	suggest	
that	negative	selection	has	a	small	quantitative	effect	on	the	accumulation	of	passenger	mutations	
in	cancer.	The	same	equations	apply	for	nonsense	and	essential	splice	site	substitutions.	
	
Naively,	one	might	expect	that	all	non-synonymous	mutations	observed	in	a	driver	gene	could	
have	been	positively	selected	and	so	that	they	could	all	be	drivers.	However,	 in	the	absence	of	
negative	selection,	we	should	still	expect	passenger	mutations	to	accumulate	in	driver	genes	at	
approximately	 the	background	rate	predicted	under	neutrally	and	so	 the	equations	above	are	
required	to	estimate	the	number	of	genuine	driver	substitutions.	This	is	true	even	if	a	driver	gene	
was	 under	 positive	 selection	 in	 every	 patient,	 as	 long	 as	 the	 extent	 of	 negative	 selection	 is	
negligible.	
	
5.2.1.	Pentanucleotide	model	and	removal	of	polymorphic	sites	
	
We	have	shown	that	using	an	inadequate	substitution	model	can	lead	to	substantial	biases	in	the	
estimation	 of	 dN/dS	 (Supplementary	 Text	 S6,	 Fig.	 S1A).	 Many	 applications	 of	 dN/dS	 do	 not	
require	a	very	high	accuracy,	since	true	biological	deviations	from	neutrality	are	often	far	larger	
than	 the	 biases	 caused	 by	 the	 substitution	model.	 For	 example,	 identification	 of	 genes	 under	
positive	 selection	 in	 small	 datasets	 is	 often	unaffected	by	 the	 substitution	model	 since	dN/dS	
ratios	of	genuine	driver	genes	can	take	very	high	values	(see,	for	example,	Fig.	4E).	
	
The	 estimation	 of	 the	 number	 of	 driver	 substitutions	 per	 tumor,	 however,	 requires	 accurate	
quantification	 of	 dN/dS	 ratios,	 since	 these	 ratios	 are	 often	 very	 close	 to	 1.	 For	 example,	 the	
genome-wide	dN/dS	value	for	all	non-synonymous	substitutions	in	the	pancancer	dataset	used	
in	Fig.	4B	is	1.059	(CI95%:	1.052,	1.065).	Given	the	proximity	to	1,	misestimating	this	value	by	a	
few	 percent	 would	 have	 a	 considerable	 impact	 on	 the	 estimates	 of	 the	 number	 of	 driver	
substitutions	per	tumor.	
	
To	minimize	the	risk	of	systematic	biases	in	the	estimation	of	genome-wide	dN/dS	values	and	the	
average	 number	 of	 driver	 substitutions	 per	 tumor	 shown	 in	 Fig.	 4,	 we	 took	 two	 additional	
precautions.	First,	we	used	a	pentanucleotide	context-dependent	substitution	model	(3,072	rate	
parameters)	 instead	 of	 the	 trinucleotide	model	 (192	 rate	 parameters).	 Second,	 since	 somatic	
mutations	 called	 by	 our	 pipeline	were	 filtered	 against	 an	 unmatched	 normal	 panel,	 common	
polymorphic	sites	in	the	human	population	(which	are	enriched	in	synonymous	mutations)	will	
be	depleted	of	somatic	mutations,	which	could	 lead	 to	a	very	small	upward	bias	 in	dN/dS.	To	
entirely	avoid	this	possible	bias,	all	sites	in	the	unmatched	normal	panel	were	excluded	from	the	
calculation	of	the	numbers	of	synonymous	and	non-synonymous	sites	(Li)	per	gene.	
	
Pentanucleotide	model	
	
Comparing	the	numbers	of	driver	substitutions	per	tumor	for	each	cancer	type	estimated	under	
the	trinucleotide	and	pentanucleotide	substitution	models	reveals	a	very	good	agreement	across	
all	cancer	types,	with	the	exception	of	melanoma	(Fig.	S1E).	This	suggests	that	the	trinucleotide	
model	 already	 captures	 the	 relevant	 context-dependent	mutational	 biases	 in	 the	 data	 for	 the	
purpose	of	the	estimation	of	the	number	of	driver	substitutions	across	tumor	types.		
	
The	 only	 exception	 is	 the	 melanoma	 dataset,	 in	 which	 the	 trinucleotide	 model	 estimates	 a	
significantly	 lower	 dN/dS	 value	 than	 the	 pentanucleotide	 model,	 leading	 to	 a	 very	 different	
estimate	of	the	number	of	driver	mutations	per	tumor.	Careful	examination	suggests	that	this	is	
due	to	ultraviolet-induced	C>T	substitutions,	which	show	context-dependent	effects	extending	
beyond	the	trinucleotide	context	(Pleasance	et	al.,	2010a).	In	fact,	excluding	C>T	mutations	from	
the	dN/dS	calculation	in	melanoma	shows	that	the	downward	bias	of	dN/dS	in	melanoma	under	
the	trinucleotide	model	is	largely	exclusive	to	C>T	substitutions.	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 29, 2017. ; https://doi.org/10.1101/132324doi: bioRxiv preprint 

https://doi.org/10.1101/132324


	
To	avoid	these	biases,	all	analyses	in	Fig.	4A-C,	which	require	accurate	dN/dS	values,	were	carried	
out	using	the	pentanucleotide	substitution	model.	
	
List	of	369	known	cancer	genes	
	
To	quantify	the	fraction	of	non-synonymous	substitutions	observed	in	known	driver	genes	that	
are	genuine	driver	mutations,	we	used	a	list	of	369	high-confidence	driver	genes	(Fig.	4A).	This	
list	was	compiled	by	merging	the	list	of	174	COSMIC	classic	genes	from	version	73	of	the	COSMIC	
database	(Forbes	et	al.,	2015),	the	list	of	219	significantly	mutated	genes	reported	by	Lawrence	
et	al.	(Lawrence	et	al.,	2014)	and	the	list	of	204	genes	identified	as	significantly	mutated	by	the	
present	study.	
	
5.3.	Other	mutation	types:	estimating	the	density	of	driver	indels	and	synonymous	mutations	
	
Our	estimates	of	the	number	of	driver	mutations	per	tumor	using	dN/dS	are	restricted	to	non-
synonymous	 coding	 substitutions,	 including	 missense,	 nonsense	 and	 essential	 splice	 site	
substitutions.	 To	 obtain	 approximate	 estimates	 of	 the	 relative	 contribution	 of	 indels	 and	
synonymous	substitutions	to	the	number	of	driver	mutations,	we	used	a	different	approach	not	
based	on	dN/dS.	Briefly,	the	expected	neutral	rate	of	indels	and	synonymous	substitutions	on	a	
collection	of	driver	genes	was	estimated	from	their	frequency	on	putative	passenger	genes,	and	
this	number	was	used	to	estimate	the	excess	of	these	mutations	observed	in	driver	genes.	This	
approach	 is	 conceptually	 analogous	 to	 the	 one	 used	 in	 (Supek	 et	 al.,	 2014)	 to	 estimate	 the	
frequency	of	synonymous	driver	mutations	in	cancer.	
	
To	 estimate	 a	 background	model	 for	 the	 neutral	 frequency	 of	 synonymous	 substitutions	 and	
indels	we	first	excluded	the	long	list	of	987	putative	cancer	genes	described	in	Supplementary	
Methods	S4.4.	We	then	used	two	separate	negative	binomial	regression	models	for	synonymous	
substitutions	and	indels.	For	synonymous	mutations	we	used	as	an	offset	the	expected	rate	of	
synonymous	substitutions	per	gene	under	the	full	trinucleotide	model.	Unlike	the	approach	used	
in	 (Supek	 et	 al.,	 2014),	 this	 entirely	 avoids	 the	 confounding	 effect	 of	 variable	 sequence	
composition	across	genes	and	trinucleotide	context-dependent	mutational	biases.	For	indels	we	
used	the	gene	length	as	an	offset.	For	both	synonymous	substitutions	and	indels,	we	used	the	20	
covariates	 described	 in	 Supplementary	Methods	 S1.3,	 to	 account	 for	 the	 regional	 variation	 of	
mutation	 rates	 across	 the	 genome.	 These	 models	 were	 then	 applied	 to	 the	 list	 of	 369	 high-
confidence	cancer	genes	to	estimate	the	number	of	passenger	indels	and	synonymous	mutations	
expected	 to	 accumulate	 neutrally	 in	 these	 genes.	 This	 enables	 the	 calculation	 of	
observed/expected	ratios	for	synonymous	substitutions	and	indels	in	known	cancer	genes,	and,	
analogously	 to	 using	 dN/dS	 ratios,	 the	 estimation	 of	 the	 fraction	 of	 these	mutations	 that	 are	
genuine	drivers	and	their	absolute	contribution	to	the	number	of	driver	mutations	per	tumor.	
Confidence	 intervals	 for	 these	 estimates	 were	 obtained	 by	 bootstrapping	 the	 number	 of	
mutations	observed	per	gene.	
	
To	evaluate	the	reliability	of	this	approach,	we	also	applied	it	to	missense,	nonsense	and	essential	
splice	site	substitutions	and	compared	the	estimated	number	of	driver	mutations	per	tumor	in	
known	cancer	genes	to	those	obtained	using	dN/dS.	As	shown	in	Fig.	4D,	the	estimates	obtained	
from	these	two	very	different	approaches	are	very	consistent.	
	
5.3.1.	Identification	of	cancer	genes	with	a	higher	frequency	of	synonymous	mutations	than	expected	
	
Although	the	vast	majority	of	synonymous	mutations	observed	in	cancer	genomes	are	passenger	
mutations	and	accumulate	largely	neutrally,	our	analysis	and	a	previous	study	(Supek	et	al.,	2014)	
suggest	 that	 a	 small	 number	 of	 them	 can	 act	 as	 driver	 mutations.	 We	 can	 use	 the	 negative	
binomial	background	model	for	synonymous	substitutions	described	above	to	identify	genes	with	
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an	unexpectedly	high	density	of	synonymous	mutations,	 in	a	similar	way	in	which	we	identify	
genes	recurrently	mutated	by	indel	drivers	(Supplementary	Methods	S1.5).	
	
Running	this	analysis	on	the	list	of	369	cancer	genes	reveals	that	only	TP53	(q-value=6.0e-6)	and	
CDKN2A	(q-value=0.00058)	have	a	convincing	and	statistically-significant	higher	than	expected	
number	 of	 synonymous	 substitutions	 (q-value<0.01).	 Close	 inspection	 of	 the	 mutations	 in	
CDKN2A	 revealed	 that	 the	 recurrent	 synonymous	 mutations	 observed	 are	 indeed	 truncating	
mutations	 affecting	 a	 different	 transcript	 of	 the	 gene,	 with	 a	 different	 reading	 frame,	 and	 so	
CDKN2A	is	not	genuinely	recurrently	affected	by	synonymous	driver	mutations.	
	
TP53	has	been	previously	reported	to	be	the	target	of	synonymous	driver	mutations	(Supek	et	al.,	
2014),	which	affect	the	correct	splicing	of	the	transcript,	and	our	analysis	entirely	supports	this	
conclusion.	 The	 observed/expected	 ratio	 of	 synonymous	 substitutions	 in	 TP53	 is	 very	 high	
(~6.8),	which	suggests	 that	a	majority	of	 the	synonymous	mutations	observed	 in	TP53	 in	our	
cohort	of	24	cancer	types	are	likely	genuine	driver	mutations.	In	fact,	in	our	cohort,	over	half	of	
the	 synonymous	 substitutions	 observed	 in	 TP53	 affect	 the	 same	 site	 T125T	 (21	 out	 of	 39	
synonymous	substitutions	in	TP53),	a	recurrent	synonymous	hotspot	known	to	lead	to	aberrant	
splicing	(Supek	et	al.,	2014).	Hence,	this	single	synonymous	hotspot	accounts	for	the	majority	of	
synonymous	driver	substitutions	in	TP53,	although	other	synonymous	mutations	in	TP53	are	also	
likely	drivers.	
	
A	 previous	 study	 identified	 a	 number	 of	 oncogenes	 with	 a	 higher	 density	 of	 synonymous	
mutations	than	expected	by	chance	(Supek	et	al.,	2014)	and	argued	that	these	could	be	driver	
mutations	 affecting	 splicing.	 Among	 these	 genes,	 the	 study	 highlighted	 11	 oncogenes	 with	 a	
particularly	high	density	of	synonymous	substitutions:	PDGFRA,	EGFR,	KDR,	NTRK1,	IL7R,	TSHR,	
ELN,	JAK3,	ITK,	GATA1	and	RUNX1T1.	This	contrasts	with	our	analysis,	which	only	identified	TP53	
as	having	a	statistically-significant	higher	rate	of	synonymous	mutations	despite	using	a	dataset	
with	 nearly	 twice	 as	many	 samples	 as	 the	 dataset	 used	 in	 the	 previous	 study.	 An	 important	
difference	between	our	analysis	 and	 that	 in	 the	previous	 report	 is	 that	our	negative	binomial	
model	uses	overdispersion	to	quantify	the	uncertainty	in	the	estimated	mutation	rate	for	a	gene.	
This	makes	our	model	more	conservative,	but	also	more	robust	against	false	positives	caused	by	
the	neutral	variation	of	the	mutation	rate	across	genes.	We	also	control	for	trinucleotide	sequence	
composition	 and	 trinucleotide	 mutation	 rates	 as	 well	 as	 20	 epigenomic	 covariates	 in	 the	
estimation	of	the	background	mutation	rate	per	gene.	Interestingly,	even	though	both	studies	are	
based	on	TCGA	samples	and,	in	fact,	share	a	large	number	of	samples,	only	4	of	the	11	oncogenes	
highlighted	 in	 the	 previous	 study	 as	 having	 a	 high	 rate	 of	 synonymous	 mutations	 have	
observed/expected	ratios	of	synonymous	substitutions	>1.5x	according	to	our	model	and	none	
are	considered	significant	under	the	negative	binomial	model	(q-value>0.5).	
	
Overall,	 consistently	 with	 previous	 reports,	 our	 analyses	 suggest	 that	 certain	 synonymous	
mutations	can	 indeed	act	as	cancer	driver	mutations,	of	which	the	T125T	hotspot	mutation	 in	
TP53	is	probably	the	most	striking	example.	However,	there	is	little	evidence	that	this	is	a	general	
and	frequent	mechanism.	Our	analyses	suggest	that	synonymous	mutations	contribute	a	small	
fraction	(<5%)	of	all	driver	mutations	seen	in	cancer	genomes	(Fig.	4D).	 	
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Supplementary	Text	
	
6.	 Simplistic	 substitution	 models	 lead	 to	 biased	 dN/dS	 ratios	 and	 false	 inference	 of	
selection	
	
Traditional	 implementations	of	dN/dS	have	 typically	used	 simplistic	 substitution	models.	The	
classic	implementation	of	dN/dS	by	Nei	and	Gojobori	(Nei	and	Gojobori,	1986),	for	example,	uses	
a	substitution	model	in	which	all	substitutions	are	equally	likely	(F81	substitution	model).	More	
sophisticated	likelihood	implementations	of	dN/dS,	such	as	the	widely	used	implementation	in	
the	PAML	software	package,	typically	use	a	simple	substitution	model	with	a	different	rate	for	all	
transitions	 (C<>T	 and	 G<>A	 changes)	 and	 all	 transversions	 (C<>A,	 C<>G,	 G<>C	 and	 G<>T	
changes)	(HKY85	substitution	model)	(Goldman	and	Yang,	1994;	Yang,	2007).	A	more	complex	
substitution	model,	frequently	used	in	molecular	evolution	but	more	rarely	in	dN/dS	analyses,	is	
the	GTR	(General	Time	Reversible)	model,	which	has	6	mutation	classes,	one	for	each	of	the	6	
possible	reversible	base	changes	(A<>C,	A<>G,	A<>T,	C<>G,	C<>T,	G<>T).	
	
In	reality,	the	substitution	rate	often	varies	markedly	depending	on	the	exact	nucleotide	change	
and	on	 the	bases	upstream	and	downstream	of	a	base.	This	 is	particularly	well	understood	 in	
cancer,	from	the	study	of	mutational	signatures	(Alexandrov	et	al.,	2013).	The	use	of	simplistic	
mutation	models	is	known	to	lead	to	biases	in	dN/dS	estimates	(Yang	and	Nielsen,	2000).	While	
these	biases	may	be	of	lesser	importance	in	the	presence	of	overwhelming	negative	or	positive	
selection,	they	can	have	important	implications	when	dN/dS	ratios	are	close	to	1,	as	is	often	the	
case	in	somatic	evolution.	
	
Fig.	S1A	reveals	how	simplistic	substitution	models	lead	to	systematic	under	or	overestimation	
of	 dN/dS	 ratios	 and	 to	 wrong	 inference	 of	 selection.	 To	 generate	 this	 figure,	 the	 average	
trinucleotide	substitution	rates	(192	parameters)	were	estimated	 in	 three	different	cohorts	of	
samples,	which	are	dominated	by	different	mutational	processes:	pancancer	(dominated	by	C>T	
mutations	at	CpG	sites),	melanoma	(dominated	by	the	UV-signature	of	C>T	mutations	at	cytosines	
with	a	pyrimidine	upstream)	and	lung	adenocarcinoma	(dominated	by	G>T	mutations	generated	
by	tobacco	smoking)	(Alexandrov	et	al.,	2013).	Using	the	trinucleotide	rates	observed	in	each	of	
these	datasets,	and	the	trinucleotide	frequencies	of	the	human	exome,	we	simulated	100	datasets	
with	 10,000	 random	 coding	 substitutions	 per	 dataset.	 The	 correct	 dN/dS	 ratio	 in	 these	
simulations	is	1,	since	the	mutations	were	simulated	entirely	randomly,	without	selection.	Fig.	
S1A	 shows	 how	 estimated	 dN/dS	 ratios	 under	 different	 simplistic	 substitution	 models	
systematically	deviate	from	the	correct	value	of	1.	In	fact,	these	biases	are	large	enough	to	suggest	
considerable	negative	and	positive	selection	when	using	simplistic	models.	
	
These	 biases	 have	 important	 implications.	 For	 example,	 a	 study	 applying	 dN/dS	 to	 somatic	
mutations	 from	 breast	 cancer	 genomes	 used	 a	 Nei-Gojobori	 implementation	 of	 dN/dS	 (F81	
substitution	model),	obtaining	a	global	dN/dS~0.82	(Ostrow	et	al.,	2014).	This	led	the	authors	to	
conclude	that	weak	negative	selection	operates	in	cancer	somatic	mutations,	when	in	reality	this	
dN/dS	ratio	is	a	consequence	of	the	downward	bias	in	dN/dS	under	the	Nei-Gojobori	model	(Fig.	
S1A).	
	
	
7.	Trinucleotide	vs	pentanucleotide	substitution	models	
	
The	 use	 of	 a	 full	 trinucleotide	 model	 comprehensively	 accounts	 for	 the	 majority	 of	 known	
context-dependent	mutational	biases.	Previous	 studies	 suggest	 that	 context	dependent	 effects	
beyond	three	nucleotides	are	relatively	small	(Alexandrov	et	al.,	2013).		
	
To	evaluate	the	impact	on	dN/dS	of	context-dependent	effects	extending	beyond	one	base	up-	
and	downstream,	we	compared	whole-genome	estimates	of	dN/dS	across	cancer	types	under	the	
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full	 trinucleotide	 (192	 rate	 parameters)	 and	 a	 full	 pentanucleotide	 model	 (3,072	 rate	
parameters).	 Fig.	 S1D,E	 reveals	 that	 the	 addition	 of	 context-dependent	 effects	 beyond	 three	
nucleotides	does	not	have	a	significant	impact	on	genome-wide	dN/dS	ratios	in	any	cancer	type,	
with	the	exception	of	melanoma.	As	discussed	in	Supplementary	Methods	S5.2,	this	is	due	to	UV-
induced	C>T	mutations	showing	context-dependent	effects	extending	beyond	the	trinucleotide	
level	(Pleasance	et	al.,	2010a).	
	
With	 the	 exception	 of	melanoma,	 in	which	 the	 dominant	mutation	 processes	 lead	 to	 a	 slight	
downward	bias	in	dN/dS	under	the	trinucleotide	model,	Fig.	S1D,E	evidence	that	the	trinucleotide	
model	 captures	 most	 of	 the	 relevant	 context-dependent	 effects	 required	 for	 a	 very	 accurate	
estimation	of	dN/dS.	
	
	
8.	Impact	of	germline	SNP	contamination	or	SNP	over-filtering	
	
As	shown	in	Fig.	1A,	coding	germline	SNPs	are	heavily	enriched	in	synonymous	mutations	as	a	
result	of	purifying	selection	on	germline	mutations	during	human	evolution	(dN/dS	ratios	 for	
missense	and	truncating	substitutions	are	0.38	and	0.08,	respectively).	Identification	of	somatic	
mutations	in	cancer	genomes	requires	careful	removal	of	germline	polymorphisms	by	sequencing	
a	matched	normal	sample	in	addition	to	a	tumor	sample	from	each	patient.	Given	the	action	of	
negative	 selection	 on	 germline	 SNPs,	 incomplete	 removal	 of	 SNPs	 from	 catalogs	 of	 somatic	
mutations	 can	 introduce	 a	 false	 signal	 of	 negative	 selection.	 To	 protect	 against	 germline	 SNP	
contamination,	 some	 pipelines	 systematically	 remove	 putative	 somatic	 mutation	 overlapping	
polymorphic	 sites	 in	 humans	 in	 addition	 to	 using	 a	matched	 normal	 sample.	 However,	 since	
polymorphic	 sites	 are	 enriched	 in	 synonymous	 sites,	 such	 filtering	 strategy	 can	 lead	 to	 over-
filtering	of	genuine	somatic	mutations,	with	a	bias	against	synonymous	sites.	
	
Fig.	S1B,C	show	how	both	germline	SNP	contamination	and	over-filtering	of	SNP	sites	can	have	a	
considerable	impact	on	global	dN/dS	ratios,	resulting	in	signals	of	negative	and	positive	selection,	
respectively.	To	generate	this	figure,	we	first	simulated	ten	neutral	datasets	of	somatic	mutations	
by	 randomization	 of	 existing	 cancer	 genomic	 datasets	 (see	 Supplementary	Text	 S9).	 To	 these	
neutral	 datasets,	 we	 added	 5%	 or	 10%	 of	 randomly	 selected	 germline	 SNPs	 (Fig.	 1)	 or	 we	
subtracted	any	mutation	overlapping	known	polymorphic	sites	using	the	dbSNP	database.		
	
Interestingly,	this	analysis	confirms	that	global	dN/dS	ratios	detect	a	very	clear	signal	of	negative	
selection	even	when	only	5%	of	all	mutations	are	germline	SNPs.	This	 further	emphasizes	the	
remarkable	 lack	 of	 negative	 selection	 reported	 in	 Fig.	 3,	 and	 in	 particular	 in	 Fig.	 3G	 after	
comprehensively	removing	known	cancer	driver	genes.	
	
SNP	contamination	and	SNP	over-filtering	are	likely	to	affect	TCGA	public	somatic	mutation	calls	
from	different	datasets	to	different	extents.	This	was	apparent	when	we	calculated	global	dN/dS	
ratios	using	the	somatic	mutation	calls	publicly	released	by	TCGA.	For	example,	the	COAD,	READ	
and	KICH	datasets	showed	significantly	lower	dN/dS	ratios	than	expected:	COAD	=	0.92	(CI95%:	
0.91,	0.94),	READ	=	0.91	(CI95%:	0.87,	0.95)	and	KICH	=	0.94	(CI95%:	0.89,	1.00),	suggesting	the	
presence	of	SNP	contamination	in	these	datasets.	To	determine	whether	these	low	dN/dS	ratios	
are	truly	caused	by	SNP	contamination	of	the	public	catalogs	of	somatic	mutations,	we	calculated	
the	 fraction	of	mutation	calls	overlapping	common	germline	SNP	sites	 (dbSNP	database	build	
146).	 This	 revealed	 that	 these	 three	 datasets	 have	 a	 much	 higher	 fraction	 of	 somatic	 calls	
overlapping	 common	 dbSNP	 sites	 than	 other	 datasets,	 with	 11.0%,	 15.6%	 and	 12.2%	 of	 all	
somatic	 mutation	 calls	 from	 TCGA	 overlapping	 known	 SNP	 sites	 (Fig.	 S1C).	 In	 contrast,	 the	
median	percentage	of	overlapping	calls	in	all	other	cancer	types	from	TCGA	is	1.7%	(range:	0.66-
3.3%).	
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Studies	searching	for	evidence	of	negative	selection	based	on	public	mutation	calls	from	TCGA	
are	 likely	 to	be	affected	by	 the	confounding	effects	of	SNP	contamination	and	potentially	SNP	
over-filtering.	Having	 control	 over	 the	 strategy	 for	 SNP	 filtering	was	 the	main	motivation	 for	
uniformly	re-calling	somatic	mutations	across	TCGA	datasets	 in	 the	present	study.	 In	order	 to	
minimize	the	risk	of	germline	SNP	contamination,	we	required	a	minimum	coverage	of	10x	in	the	
matched	normal	sample	of	a	putatively	mutated	site.	To	entirely	avoid	any	risk	of	over-filtering	
of	SNP	sites	that	may	introduce	an	upward	systematic	bias	to	dN/dS,	we	did	not	perform	dbSNP	
filtering	 and	 all	 sites	 masked	 out	 by	 our	 unmatched	 normal	 panel	 were	 excluded	 from	 the	
calculation	of	available	sites	(L)	in	dN/dS.	Reassuringly,	CaVEMan	somatic	mutation	calls	for	all	
TCGA	datasets	showed	 the	expected	 low	overlap	with	common	dbSNP	sites,	with	a	median	of	
1.8%	(range:	1.1-3.2%),	a	figure	consistent	with	the	expectation	from	neutral	simulations.	
	
	
9.	Performance	of	different	dN/dS	models	for	driver	discovery	
	
Previous	 studies	 have	 highlighted	 the	 importance	 of	 adequately	 modeling	 the	 variation	 of	
mutation	 rates	 along	 the	 genome	 to	 identify	 driver	 (positively	 selected)	 genes	 with	 good	
specificity	 and	 sensitivity.	 Particularly,	 Lawrence	 et	 al.	 (Lawrence	 et	 al.,	 2013)	 showed	 how	
models	that	do	not	account	for	the	regional	variation	of	the	mutation	rate	along	the	genome	can	
yield	very	long	lists	of	false	positives.	
	
To	evaluate	the	specificity	of	different	methods	in	the	presence	of	realistic	levels	of	mutation	rate	
variation	along	the	genome,	we	can	use	realistic	neutral	simulations	of	somatic	mutations.	In	line	
with	 ongoing	 international	 benchmarking	 efforts	 of	 driver	 discovery	 methods,	 we	 generated	
simulated	neutral	datasets	by	local	randomization	of	somatic	mutations	from	real	whole-genome	
sequencing	studies.	Using	data	from	107	melanoma	whole-genomes	from	ICGC,	we	first	filtered	
out	coding	mutations	 from	a	panel	of	known	driver	genes,	 to	minimize	 the	presence	of	driver	
mutations,	and	then	reassigned	each	mutation	to	a	randomly	selected	position	with	an	identical	
trinucleotide	context	within	50kb	of	its	original	position.	This	randomization	procedure	results	
on	a	neutral	dataset	that	retains	the	same	variation	of	mutation	rates	and	mutational	signatures	
across	patients	and	across	regions	of	the	genome.	
	
In	a	neutral	dataset,	robust	methods	for	driver	discovery	with	good	specificity	should	not	yield	
any	significant	hit.	This	can	be	formally	evaluated	by	performing	false	discovery	rate	correction	
and	by	plotting	the	vector	of	P-values	under	the	null	model	(neutral	simulation)	in	a	QQ-plot.	The	
QQ-plot	 in	 Fig.	 S1F	 reveals	 that	 the	uniform	 rate	 dN/dS	model	 yields	 a	 large	 number	 of	 false	
positives	in	the	neutral	simulation	described	above,	as	expected	in	the	presence	of	large	neutral	
variation	of	 the	mutation	rate	along	 the	genome	(Lawrence	et	al.,	2013).	 In	contrast,	both	 the	
variable	 rate	 dN/dS	 model	 (which	 estimates	 the	 local	 mutation	 rate	 from	 the	 synonymous	
substitutions	 in	 each	 gene)	 and	 dNdScv	 (which	 uses	 the	 regression	 framework	 described	 in	
section	S1.3	 in	 addition	 to	 local	 synonymous	 substitutions)	have	perfect	 specificity	under	 the	
challenging	 conditions	 of	 the	 simulation	 above	 (Fig.	 S1F).	 This	 result	 is	 representative	 of	
simulations	 performed	 under	 a	 variety	 of	 assumptions	 and	 starting	 datasets,	 even	 using	
simulated	 datasets	 with	 thousands	 of	 samples.	 The	 specificity	 of	 dNdScv	 has	 also	 been	
demonstrated	by	an	 international	benchmarking	exercise	as	part	of	 the	Pancancer	Analysis	of	
Whole-Genomes	Consortium	(PCAWG-ICGC)	[manuscript	in	preparation].	
	
Although	both	the	variable	rate	dN/dS	model	(which	we	used	in	(Wong	et	al.,	2014))	and	dNdScv	
have	 good	 specificity	 under	 challenging	 conditions,	 they	 differ	 dramatically	 in	 terms	 of	 their	
sensitivity.	This	is	shown	in	Fig.	S1G,	which	depicts	the	number	of	significant	genes	identified	by	
both	methods	across	 the	TCGA	datasets	 analyzed	 in	 this	 study.	While	 the	variable	 rate	dN/dS	
model	can	detect	a	substantial	number	of	positively	selected	genes	in	large	datasets	(Wong	et	al.,	
2014),	 dNdScv	 has	 higher	 sensitivity	 across	 datasets	 of	 any	 size,	 both	 when	 analyzing	
substitutions	alone	or	when	combining	substitutions	and	indels.	dNdScv	has	also	been	found	to	
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have	similar	or	higher	sensitivity	than	all	other	driver	discovery	methods	benchmarked	in	the	
Pancancer	Analysis	of	Whole-Genomes	Consortium	(PCAWG-ICGC)	[manuscript	in	preparation],	
including	MutSgCV	(Lawrence	et	al.,	2014)	and	oncodriveFML	(Mularoni	et	al.,	2016).	
	
	
10.	Factors	contributing	to	the	weakness	of	negative	selection	in	somatic	evolution	
	
Negative	 selection	 on	 somatic	 mutations	 during	 cancer	 evolution	 has	 been	 long	 anticipated	
(Beckman	and	Loeb,	2005;	McFarland	et	al.,	2014;	Nowell,	1976;	Stratton	et	al.,	2009).	However,	
several	authors	have	also	predicted	that,	while	present,	negative	selection	should	be	weaker	in	
somatic	evolution	owing	to	a	number	of	factors	(e.g.	(McFarland	et	al.,	2013;	Morley,	1995)).	Some	
relevant	factors	are	listed	below:	

1. Diploidy:	Having	two	(or	more)	copies	of	every	gene	 is	a	major	buffer	against	negative	
selection	(Morley,	1995),	as	shown	in	Fig.	3G.	This	 is	different	 for	germline	mutations,	
since,	owing	to	sexual	recombination,	selection	acts	on	recessive	deleterious	alleles	by	
purging	 homozygous	 individuals.	 The	 loss	 of	 a	 single	 copy	 of	 a	 gene	 can	 still	 have	
deleterious	effects	owing	to	haploinsufficiency,	but	selection	against	such	alleles	will	still	
be	expected	to	be	weaker	in	the	absence	of	sexual	recombination.	

2. Large	fraction	of	dispensable	genes	in	somatic	cells:	For	any	given	somatic	lineage	a	large	
number	of	genes	are	likely	to	be	dispensable	(Morley,	1995),	as	shown	by	Fig.	3G.	This	is	
different	 for	 germline	mutations,	which	will	 be	 exposed	 to	 selection	 even	 if	 they	 only	
manifest	 as	 deleterious	 in	 certain	 tissues,	 in	 certain	 conditions	 or	 in	 certain	 stages	 of	
development,	for	example.	Also,	it	has	been	argued	that	somatic	cells	defective	in	certain	
functions	can	still	prosper	within	a	tissue	by	exploiting	the	effort	of	wild-type	cells	around	
them	(Morley,	1995).	

3. Frequent	hitchhiking	with	drivers:	Very	weakly	deleterious	alleles	(e.g.	alleles	reducing	the	
survival	 probability	 of	 a	 cell	 per	 year	 by	 a	 few	percent)	 require	 time	 to	 be	 effectively	
purged	from	a	population.	The	random	occurrence	of	a	very	advantageous	mutation,	such	
as	a	cancer	driver	mutation,	 in	a	cell	 carrying	weakly	deleterious	mutations	can	offset	
their	fitness	effects	and	lead	to	the	fixation	of	deleterious	mutations	in	a	cancer.	Frequent	
rounds	of	clonal	expansions	and	hitchhiking	with	potent	driver	mutations	is	expected	to	
significantly	 reduce	 the	efficiency	of	negative	 selection	 to	 remove	deleterious	variants	
(McFarland	et	al.,	2013;	McFarland	et	al.,	2014).	

4. Muller’s	ratchet:	Somatic	evolution	is	effectively	asexual	and	so	deleterious	mutations	will	
be	expected	to	accumulate	in	somatic	cells	even	in	the	absence	of	hitchhiking	with	driver	
mutations	(McFarland	et	al.,	2013;	McFarland	et	al.,	2014).	Muller’s	ratchet	is	expected	to	
be	 stronger	 the	 higher	 the	 mutation	 rate	 per	 division,	 which	 predicts	 that	 negative	
selection	will	be	even	weaker	in	hypermutator	samples.	

	
All	 of	 the	 factors	 above,	 among	 others,	 are	 likely	 to	 contribute	 to	 the	 observed	weakness	 of	
negative	 selection	 during	 cancer	 evolution.	 Nevertheless,	 the	 extreme	 weakness	 of	 negative	
selection	observed	in	cancer	genomes	remains	surprising,	extending	to	mutations	with	dominant	
phenotypes,	 including	coding	mutations	predicted	to	create	neoantigens,	as	well	as	 truncating	
mutations	in	highly	expressed	genes	and	haploid	regions	of	the	genome.	
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Figures	S1-S4	
	
Figure	S1.	[Related	to	Figures	1-4]	Impact	of	different	confounding	factors	on	analyses	of	
selection,	including	simplistic	substitution	models,	SNP	contamination,	SNP	filtering	and	
inadequate	background	models	of	the	variation	of	the	mutation	rate.	(A)	Impact	of	simplistic	
mutation	models	on	the	accuracy	of	dN/dS	in	different	scenarios.	Each	boxplot	represents	the	
dN/dS	ratios	estimated	from	100	neutral	simulations	of	10,000	random	coding	substitutions.	To	
exemplify	 the	 impact	on	dN/dS	of	different	mutational	spectra,	we	simulated	neutral	datasets	
using	 the	 trinucleotide	spectra	observed	 in	 the	 three	different	cohorts	of	 samples	 (pancancer,	
melanoma	and	lung	adenocarcinoma).	Different	panels	depict	dN/dS	ratios	for	missense	(wmis)	or	
nonsense	 (wnon)	 mutations.	 (B)	 Simulations	 of	 the	 impact	 on	 dN/dS	 of	 germline	 SNP	
contamination	and	SNP	over-filtering	in	catalogs	of	somatic	mutations.	10	neutral	datasets	were	
generated	 by	 local	 randomization	 of	 607	 cancer	whole-genomes	 (Alexandrov	 et	 al.,	 2013),	 as	
described	 in	 Supplementary	 Text	 S9.	 Datasets	 with	 varying	 degrees	 of	 germline	 SNP	
contamination	were	simulated	by	adding	5%	or	10%	of	germline	common	SNPs	(minor	allele	
frequency	>=5%)	 from	1000	genomes	phase	3	(Auton	et	al.,	2015)	 to	 the	neutral	simulations.	
Datasets	with	varying	levels	of	SNP	over-filtering	were	simulated	by	removing	any	mutation	from	
the	neutral	datasets	that	overlapped	a	polymorphic	site	in	dbSNP	build	146	(either	using	common	
sites	or	all	sites)	(Sherry	et	al.,	2001).	(C)	Percentage	of	mutations	from	the	public	TCGA	catalogs	
of	 somatic	calls	 that	overlap	a	common	dbSNP	site.	Based	on	simulations,	an	overlap	of	1-3%	
might	 be	 expected	 depending	 on	 the	 dominant	 mutational	 signatures	 present	 in	 a	 dataset	
(Supplementary	 Text	 S8),	 but	 several	 public	 TCGA	 catalogs	 show	 a	 much	 higher	 overlap	
suggesting	extensive	germline	SNP	contamination.	As	predicted	from	Fig.	S1B,	 this	 leads	to	an	
artefactual	 signal	 of	 negative	 selection	 in	 these	 datasets	 (Supplementary	 Text	 S8).	 (D)	
Consistency	between	genome-wide	dN/dS	estimates	using	the	trinucleotide	and	pentanucleotide	
substitution	models	across	cancer	types.	Green	dots	represent	genome-wide	dN/dS	estimates	for	
each	cancer	type	separately,	and	the	orange	dot	depicts	the	pancancer	estimates	(using	the	24	
cancer	types	with	CaVEMan	mutation	calls).	(E)	Corresponding	estimates	of	the	average	number	
of	driver	coding	substitutions	per	tumor,	calculated	as	described	in	Supplementary	Methods	S5.2.	
For	the	purpose	of	estimating	the	excess	of	mutations	from	dN/dS	ratios,	dN/dS	values	below	1	
are	 set	 to	 1.	 Error	 bars	 depict	 confidence	 intervals	 95%.	 (F,	 G)	 Evaluation	 of	 the	 relative	
performance	of	the	three	different	dN/dS	models	for	the	detection	of	positive	selection	at	gene	
level	(driver	gene	discovery).	(F)	QQ-plots	for	the	different	dN/dS	models	on	a	neutral	dataset	
obtained	by	randomization	of	107	melanoma	whole-genomes	 from	ICGC	(Supplementary	Text	
S9).	The	uniform	rate	dN/dS	model	displays	a	great	inflation	of	low	P-values,	leading	to	a	large	
number	of	 false	positives	after	multiple	testing	correction	(368	genes	with	q-value<0.05),	and	
should	be	generally	avoided.	In	contrast,	both	the	variable	rate	dN/dS	model	and	dNdScv	behave	
as	expected	for	a	neutral	dataset,	yielding	no	significant	hits	after	multiple	testing	correction.	(G)	
Sensitivity	of	dNdScv	and	of	the	variable	rate	dN/dS	model.	The	bar	plot	depicts	the	number	of	
significant	genes	(q-value<0.05)	identified	by	both	methods	in	the	29	TCGA	datasets.	Bars	colored	
in	a	lighter	shade	show	the	number	of	significant	genes	that	are	present	in	the	Cancer	Gene	Census	
version	74	(Forbes	et	al.,	2015).	dNdScv	shows	good	specificity	and	sensitivity	under	all	tested	
conditions.		
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Figure	S2.	[Related	to	Figure	3]	dN/dS	distributions	inferred	for	different	mutation	types	
and	copy	number	states.	These	distributions,	obtained	as	described	for	Fig.	3C,	represent	the	
percentage	 of	 genes	 estimated	 to	 be	 under	 a	 certain	 selection	 regime.	 The	 four	 distributions	
correspond	 to:	 missense	 (A)	 and	 truncating	 (B)	 substitutions	 in	 regions	 without	 loss	 of	
heterozygosity,	 and	 missense	 and	 truncating	 substitutions	 in	 haploid	 regions	 (C	 and	 D,	
respectively).	Note	that	Fig.	S2A	is	an	extension	of	Fig.	3C,	with	an	added	middle	bar	for	genes	
with	dN/dS	very	close	to	1	(0.9-1.1),	which	can	be	considered	to	evolve	largely	neutrally.	Only	
samples	with	CaVEMan	mutation	calls,	excluding	melanoma	samples,	were	considered	for	this	
analysis	for	the	reasons	explained	in	Supplementary	Methods	S4.1.	For	each	figure,	all	mutations	
with	 the	 appropriate	 ploidy	 were	 included	 in	 the	 analysis	 and	 only	 genes	 with	 at	 least	 one	
mutation	 (either	 synonymous	 or	 non-synonymous)	 participate	 in	 the	 fitting	 of	 dN/dS	
distributions	(Supplementary	Methods	S4.2.2).	Hence,	the	percentages	of	genes	shown	in	the	y-
axes	are	relative	to	the	total	number	of	genes	with	at	least	one	mutation	in	regions	with	the	ploidy	
considered	in	each	figure.	Error	bars	depict	95%	confidence	intervals.	
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Figure	 S3.	 [Related	 to	 Figure	 3]	 Gene	 ontology	 groups	 deviating	 significantly	 from	
neutrality	 after	 removing	 known	 cancer	 genes.	 See	 Supplementary	 Methods	 S4.4	 for	 a	
detailed	description	of	this	analysis.	27	gene	ontology	classes	are	found	to	be	under	significant	
positive	 selection	 after	 comprehensively	 removing	 987	 known	 putative	 cancer	 genes.	 This	
suggests	the	presence	of	undiscovered	cancer	genes	in	these	functional	groups.	No	gene	ontology	
class	was	 found	 to	 be	 under	 significant	 negative	 selection.	 Error	 bars	 depict	 95%	 confidence	
intervals.	
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Figure	S4.	[Related	to	Figure	4]	Supplementary	analyses	on	the	number	of	coding	driver	
substitutions	 per	 tumor.	 (A)	 Comparison	 of	 the	 number	 of	 coding	 driver	 substitutions	
estimated	by	dN/dS	and	the	number	estimated	by	manual	annotation	of	driver	mutations	across	
560	breast	cancers.	The	figure	depicts	the	total	number	of	coding	substitutions	(grey	bar)	and	the	
estimated	number	of	driver	substitutions	in	a	list	of	723	putative	cancer	genes	across	560	breast	
cancer	whole-genomes.	A	total	of	2,786	coding	substitutions	are	found	in	these	genes	across	the	
560	patients	(data	from	(Nik-Zainal	et	al.,	2016)).	Of	these,	579	were	annotated	as	likely	driver	
mutations	by	a	careful	and	conservative	manual	curation	in	the	original	publication	(Nik-Zainal	
et	al.,	2016)	(blue	bar).	Using	the	trinucleotide	dN/dS	model	on	this	dataset,	restricted	to	these	
723	genes,	yielded	a	global	dN/dS	for	all	non-synonymous	substitutions	of	1.42	(CI95%:	1.29,	
1.58).	 Reassuringly,	 this	 led	 to	 an	 estimated	 number	 of	 drivers	 consistent	 with	 the	 manual	
annotation:	668.9	(CI95%:	507.5,	815.3).	Error	bars	depict	confidence	intervals	95%.	(B)	Scatter	
plot	of	 the	estimated	average	number	of	 coding	driver	 substitutions	per	 tumor	 in	369	known	
cancer	genes	and	in	all	genes	of	the	genome.	This	is	a	scatter	plot	representation	of	the	bottom	
panels	of	Fig.	4A,B,	to	emphasize	the	extent	of	coding	driver	substitutions	occurring	outside	of	
the	list	of	369	cancer	genes.	Error	bars	depict	confidence	intervals	95%.	Note	that	the	two	cancer	
types	whose	estimates	appear	under	the	diagonal	(mesothelioma	–MESO-	and	thymoma	–THYM-
)	have	confidence	intervals	extending	above	the	diagonal,	as	expected.	
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