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Abstract

Phylogenetic techniques quantify intra-tumor heterogeneity by decon-
volving either clonal or mutational trees from multi-sample sequencing
data of individual tumors. Most of these methods rely on the well-known
infinite sites assumption, and are limited to process either multi-region or
single-cell sequencing data. Here, we improve over those methods with
TRaIT, a unified statistical framework for the inference of the accumula-
tion order of multiple types of genomic alterations driving tumor develop-
ment. TRaIT supports both multi-region and single-cell sequencing data,
and output mutational graphs accounting for violations of the infinite sites
assumption due to convergent evolution, and other complex phenomena
that cannot be detected with phylogenetic tools. Our method displays
better accuracy, performance and robustness to noise and small sample
size than state-of-the-art phylogenetic methods. We show with single-cell
data from breast cancer and multi-region data from colorectal cancer that
TRaIT can quantify the extent of intra-tumor heterogeneity and generate
new testable experimental hypotheses.

1 Introduction

Intra-tumor heterogeneity (ITH) is the final product of the complex interplay
arising from competition, selection and neutral evolution of cancer cell subpop-
ulations, and currently represents a major hurdle in the development of effective
diagnostic and therapeutic strategies for most cancer (sub)types [1–7]. For this
reason, in the last years an impressive number of computational approaches to
reconstruct the evolutionary history of tumors have been devised (see [8, 9] for
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recent reviews), taking advantage of the ever increasing resolution and avail-
ability of genomic data, as provided especially by multi-region and single-cell
sequencing (SCS) experiments.

Such multi-sample datasets allow to overcome some limitations of single-
sample bulk sequencing, which returns a noisy mixture of signals from the tumor
subpopulations detected in the sequenced biopsy (e.g., the TCGA data [10]).
In particular, the analysis of multiple spatially-separated regions of a tumor
and its metastases is recently producing a better and clearer picture of ITH in
various tumor types [11–16]. Accordingly, a number of algorithms to infer tumor
phylogenies from allele frequencies, which were originally ideated for single-
sample datasets, have been extended to multi-sample data [17–24].

Among multi-sample datasets, SCS data are likely to become predominant
in the next few years, as they provide the highest possible resolution [25]. Yet,
this technology still suffers from several technical challenges in cell isolation
and genome amplification of single cells, which produce a broad range of data-
specific errors, e.g., allelic dropouts, false alleles, missing data, non-uniform
coverage and doublets [26–32]. This state of affairs prevents straightforward
applications of perfect phylogeny algorithms to SCS data [33], and a growing
number of cancer-specific probabilistic approaches to infer phylogenies from SCS
data have being proposed [34–41]. Some of these approaches estimate the tempo-
ral ordering of accumulation of genomic alterations via mutational trees [36–38],
whereas others deconvolve clones and their evolutionary relations [39–41].

Most of these methods rely on the Infinite Sites Assumption (ISA), accord-
ing to which each mutation occurs at most once during the evolutionary history
of a tumor, and is never lost. Unfortunately, violations of the ISA are more
frequent than originally expected, due to chromosomal deletions and loss of
heterozygosity, which could lead to back mutations, and to convergent evolu-
tion, in which the same mutation is observed in independent clones or lineages
(i.e., parallel mutations) [34]. More in general, such methods usually depend
on a large number of ad-hoc technical assumptions and parameters, e.g., noise
model, search schemes, etc., which need to be opportunely tuned, often requir-
ing computationally demanding automated procedures and/ or prior biological
knowledge about the underlying phenomenon. Similarly, in many cases arbi-
trary heuristics are needed to disambiguate equivalently optimal solutions, e.g.,
when seeking for a maximum parsimony phylogenetic tree.

Here we introduce TRaIT (Temporal oRder of Individual Tumors), a compu-
tational framework to infer the order of accumulation of mutations in single
tumors that unifies several distinct approaches.

• TRaIT is the first method that explicitly supports both multi-region and
SCS data within a unique statistical framework, with remarkable perfor-
mances with both data types without the need for a model of noise specific
to them;

• TRaIT extends mutational trees by accounting for violations of the ISA
due to convergent evolution, for certain values of the observed probabili-
ties. In Figure 5-B the analysis of a multi-region colorectal cancer dataset
via TRaIT is shown, in which parallel mutations of a driver gene hit in-
dependent lineages. As the general validity of the ISA is debated [34],
this represents a major advantage of TRaIT with respect to tree-based
phylogenetic techniques.
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• TRaIT can detect other complex phenomena underlying ITH such as the
presence of multiple independent trajectories in the same tumor, or con-
founding factors annotated in the data. In the former case, these could be
due either to multiple cells of origin [42], or to tumour initiation triggered
by epigenetic states not annotated in the data (e.g., methylations). The
latter relates to the annotation, in the data, of events that are unrelated
to the progression.

• TRaIT can process any kind of genomic lesion, e.g., somatic mutations,
copy number alterations, fusions, etc., allowing for an unprecedented in-
formation integration among data types;

• TRaIT outperforms techniques specifically tailored for multi-region or SCS
data, in terms of accuracy and robustness to data-specific errors and small
sample size.

• TRaIT displays a significant improvement in terms of computational time
and scalability, which represents another key advantage in anticipation of
the increasing availability of large-scale studies/ datasets on single tumor
evolution.

TRaIT’s models are assembled by combining simple “building blocks”: if a
model contains edge x → y, then x+ mutants are ancestral to y+ ones, and
y+ mutants are statistically associated to x+. Such conditions describe the
underlying clock among x and y, and are estimated via simple inequalities from
data; their confidence is assessed via several statistical approaches, such as
testing, bootstrap and cross-validation.

The simplicity of the underlying theoretical framework has several computa-
tional advantages, which we exploited to implement a suite of efficient algorithms
that can model complex temporal structures, up to direct acyclic graphs (DAGs)
with disconnected components, hence capturing different key aspects of tumor
evolution and allowing for ISA violations (Figure 1-D). On the overall, despite
supporting a wider range of data and models compared to standard phyloge-
nies, our methods have state-of-the-art accuracy and more stable performance
with small sample size and different data types, as well as lower computational
complexity and higher scalability, as extensive tests on synthetic data suggest.

TRaIT can be used to infer the order of accumulating mutations in individual
tumors, but not to deconvolve tumor clones’ signatures. Thus, we show in this
paper how to couple TRaIT to methods for clones detection, so to draw a new
and all-encompassing pictures of tumor evolution and ITH, where one can infer
which clones were present in the input data (signatures), and how mutations
accumulated within each clone.

2 Materials and methods

TRaIT includes 4 optimal polynomial-time algorithms (Figure 2) that process
a binary matrix D with n columns and m rows [37]. D stores n variables
(mutations, CNAs, etc.) detected across m samples (single cells or multi-region
samples). If an entry in D is 1, then the associated variable is detected in the
sample. Missing data in SCS are handled by a standard EM procedure with
multiple imputations [43]. A priori estimates of false positives/ negatives rates
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Figure 1: A. A phylogenetic model of tumor progression describes the order of
accumulation of somatic mutations, CNAs, etc. The model describes a set of
possible genotype signatures, which are observed with an unknown spatial and
density distribution in a real tumor. B. Multi-region bulk sequencing processes a
signal mixed from different tumor subpopulations, with potential contamination
of non-tumor cells. Thus, a sample will be likely annotated with lesions from
different tumor lineages (green, red), creating spurious correlations in the data.
In this case, we expect the rate of false positives and negatives in the calling to be
symmetric. C. If we sequence genomes of single cells we can, in principle, have a
precise signal from each subpopulation. However, the inference with these data
is made harder by high levels of asymmetric noise, and errors in the calling. D.
We are interested in studying temporal models of cancer progression in 4 possible
scenarios. (i) when all annotated mutations are related to the progression, (ii)
when data harbours confounding factors, (iii) when a tumor might have multiple
cells of origin and, accordingly, multiple independent progressions and (iv) when
independent evolutionary trajectories converge toward a certain mutation (i.e.,
a confluence). Case (iv) is when the Infinite Sites Assumption (ISA) is violated,
as red mutations appear in two distinct evolutionary trajectories.

ε+, ε− ≥ 0 in D can be provided to each algorithm. All the algorithms are
implemented in R, in the TRONCO tool for Translational Oncology [44,45].

At their core, TRaIT’s algorithms exploit a bootstrap procedure to com-
pute 2 p-values per edge – one for temporal direction, one for association’s
strength, according to Suppes’ theory of probabilistic causation [47] (see Meth-
ods). Two algorithms infer mutational trees (Edm, Gbw) and two DAGs (ChL,
PRIM) (see Methods and Supplementary Information) – for this reason our
framework supports mutational graphs. All algorithms can return a model with
separate components, suggesting that data lacks statistically significant asso-
ciations, or harbours multiple progressions which can be inputed to tumour
triggers not annotated in the data (e.g., epigenetic lesions).

For these reasons, TRaIT can be used (Figure 1-D):

(i) when all D’s variables are actually involved in the progression (i.e., all the
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Figure 2: A. TRaIT’s input data is a binary matrix that stores the pres-
ence/absence of a variable in a sample (e.g., a mutation, a CNA, or a persistent
epigenomic lesion). Some of these observations harbour false positives and neg-
atives (noise). B. We estimate via bootstrap the prima facie ordering relation
vPF that satisfies Suppes’ conditions for probabilistic causation, here used as
estimators of temporal orderings. This, in turn, induces a graph G over vari-
ables xi. G can be weighted by information-theoretic measures for variables’
association. C. we weight G with pointwise mutual information (pmi), and we
use an heuristic that makes G acyclic by removing less confident edges (see [46]);
then we use Edmonds’ optimal solution for minimum directed spanning trees.
D. if we weight G with mutual information (mi) and disregard edges’ orien-
tation, we can use Prim’s optimal solution for minimum undirected spanning
trees. To find a direction for each edge, we use mutations’ frequencies. With
this algorithm, we can accomodate violations of the ISA due to confluent tra-
jectories when Suppes’ conditions are still valid among the parent/ child nodes
(see Methods). E. if we use Gabow’s optimal solution for path traversals of
cyclic component, we can detect the best tree that makes G acyclic. Then, we
can again use Edmonds’ algorithm for spanning trees. F. A Bayesian optimal
mode-selection strategy can compute the Chow-Liu tree that induces the dis-
tribution with minimum divergence from the true one. In this case, we process
G as in PRIM to detect edges’ direction. As for PRIM algorithm, these models
can accomodate violations of the ISA due to confluent trajectories according to
the parameter values (see Methods).

events are drivers);

(ii) when some of D’s variables are confounding factors (i.e., miscalled muta-
tions);

(iii) when D contains multiple independent progressions (i.e., multiple cells of
tumor origin);

(iv) when distinct evolutionary trajectories converge to the same variable (i.e.,
certain drivers are shared by distinct (sub)clonal histories).
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Edm and Gbw infer models for (i, . . . , iii), whereas only ChL and PRIM can
explicitly account for (iv); the latter case happens when the ISA is violated.
One can choose which TRaIT’s algorithm to use according to, e.g., research
goals or prior knowledge on the evolutionary process. A rule of thumb might
be the application of all TRaIT’s algorithms, followed by a comparative analysis
of their output models – as we show in the case studies. The creation of a
consensus model could be also effective to this end. In the Results section
we present results from simulations of different experimental conditions and
data; these tests allowed to assess the performance of the algorithms in the four
scenarios, thus providing indications to an appropriate choice according to the
specific case.

The detailed mathematical description of all TRaIT’s algorithm is included
in the Supplementary Information, whereas in the following some details on the
overall theoretical framework are provided.

Suppes’ probabilistic causation [47]

Let p(·) be multinomial estimates of the probabilities in D. For every pair of
variables x and y in D, x is a plausible cause of y if

p(x) > p(y) and p(y | x) > p(y | ¬x) . (1)

The former condition acts as an Infinite Sites Assumption (ISA), as we are
assuming that lesions are persistent; which can be weakened in certain situations
(see below). So, we estimate temporal precedence by marginal probabilities.
The latter implies condition statistical dependence: p(x, y) 6= p(x)p(y) [48]. For
an edge to be part of our models, both conditions must be satisfied. When this
is not the case, an edge is included and a non-significant p-value returned (see
below). By iterating this approach, we can create models.

This tool is the core ingredient of successful causal approaches for cancer evo-
lutionary inference [46]. It represents a necessary but not sufficient estimator of
selective advantage, and combined with a statistical frameworks to disentangle
true from spurious associations, can detect selection [49]. With data from a
single patient, we limit its power to predict just temporal orderings (see the
Supplementary Information).

Working scenarios (Figure 1-D)

Theres is a huge deal of variability in cancer data types, in cancer ITH, as well as
in our ability to call mutations etc. Besides, several aspects of cancer evolution
are yet undeciphered, so we considered four working scenarios representative
of different biologically and technologically-motivated assumptions, and defined
corresponding algorithms.

The simplest setting is (i) when all D’s variables are involved in the progres-
sion. Then, we generalize this to when (ii) some of D’s variables are annotated
in D, but irrelevant to tumor progression (e.g., calling uncertainty or other con-
founding factors). Besides, we account for a (iii) a tumor with multiple cells of
origin, and we aim at identifying multiple independent models from a unique
dataset. The fourth case is that of a tumor that shows (iv) selective pressures
that converge towards variable x. It seems reasonable to consider (i, ii) more
common than (iii, iv).
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Algorithms (Figure 2)

TRaIT’s algorithms use a non-parametric bootstrap strategy to assess Suppes’
conditions among variables pairs, and include them in a direct graph G. Then,
four different strategies can compute, from G, a model. Output models can be
interpreted as Suppes-Bayes Causal Networks [50–52], an extension of Bayesian
Networks, with maximum likelihood estimates of the parameters θ [53] – bearing
in mind that usually such models are used in truly causal approaches. The
output is the Maximum A Posteriori probabilistic model that best explains D.

The algorithms are inspired by (i − iv), which require us to infer (i) a mu-
tational tree T , (ii) T and some detached nodes for the variables identified as
confounding, (iii) a set of trees, {Ti}, usually called a forest and (iv) a di-
rect acyclic graph G (since confluent trajectories lead to a node with multiple
incoming edges).

TRaIT implements two algorithms to infer trees: Edm (Edmonds) (Figure
2-C), Gbw (Gabow) (Figure 2-E), based on weighted directed minimum spanning
tree reconstruction. These algorithms scan G to identify the T that maximizes
the edges’ weights, which are computed via information-theoretic measures of
the degree of association of variables – e.g., (pointwise) mutual information.
Edm and Gbw differ from the way they order strongly connected components
[54, 55] that appear in G because of finite sample bias. Computationally, Gbw
is more expensive and general than Edm.

Two additional algorithms, ChL (Chow-Liu) (Figure 2-F), PRIM (Figure 2-
D), are available to infer direct acyclic graphs. ChL is a Bayesian model-selection
method to factorize a joint distribution over the input variables [56]. PRIM
is the equivalent to Edm for undirected structures, is applied by rendering G
undirected, and weighting it with mutual information (which is symmetric).
By assigning a posteriori an ordering to the undirected spanning trees that is
consistent with the variables’ frequency, we can retrieve confluent relations that
capture violations of the ISA. In TRaIT these cases can be detected under certain
conditions of the parameters: if – in the true progression – x and y converge to
z, we will not detect two confluent trajectories if p(x) ≤ p(z) or p(y) ≤ p(z);
see the Supplementary Information.

Detection of k independent progressions is a feature available for all algo-
rithms, as it is enforced by the bootstrap when G has k disconnected compo-
nents. Each group describes evolutions as triggered by multiple initiation cells.
Thus, by G’s estimation and by picking the proper TRaIT’s algorithm, one can
easily cover scenarios (i, . . . , iv).

Complexity

We observe that all TRaIT’s algorithms are optimal polynomial-time algorith-
mic solutions to each of their corresponding combinatorial problems. Thus, they
scale well with sample size, a problem sometimes observed with Bayesian ap-
proaches that cannot compute a full posterior and need to sample. TRaIT’s
algorithms, however, do not have a rich description of uncertainty since they
return a single model, but can be however paired with a posteriori forecasts’
assessment strategies (e.g., cross-validation/ bootstrap) rather easily [49].
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Data types

TRaIT’s algorithms work with both SCS and multi-region data. We expect D
to contain noisy observations of the unknown true genotypes (Figure 1-A-C).
The algorithms can be informed of the usual false positives and negatives rates
ε+ ≥ 0 and ε− ≥ 0, respectively. This adds no overhead to the computation, but
prevents to learn noise rates from D, as it is instead possible with techniques as
SCITE [37]. Since the algorithms show stable performance for slight variations
in the input noise rates, avoidance of complex noise-estimation schemas seems
a plus, especially when reasonable estimates of ε+ and ε− are known a priori.
This strategy is also used in OncoNEM [40].

For SCS with missing data we use a standard Expectation Maximization ap-
proach to input missing values; we repeat it n times, and then perform inference
and select the MAP best model out of the n trials.

Code availability

All the algorithms included in TRaIT are implemented in R, and are available
in the TRONCO tool for TRanslational ONCOlogy [44,45]. TRONCO is available
under a GPL3 license at its webpage: https://sites.google.com/site/troncopackage
or at Bioconductor: https://bioconductor.org.

Data availability

All data used in this paper are available from the supplementary material of [30]
and [57]. To allow the reviewers to replicate our case studies we provide the
source code as well as the input data at https://goo.gl/Ku13MM.

Additional file 1 — Supplementary Information

The detailed description of TRaIT’s algorithmic framework and the results of
extensive tests both on simulated data and several real datasets are provided in
the Supplementary Information.

3 Results

Simulations

We assessed the performance of TRaIT’s algorithms with simulated single cell
and multi-region data.

In particular, we generated multiple batches of independent synthetic datasets
from random phylogenies (generative models), with 5 ≤ n ≤ 20 nodes and dif-
ferent levels of topological complexity (Figure 1-D). SCS datasets with 10 ≤
m ≤ 100 cells and multi-region datasets with 5 ≤ m ≤ 50 regions (accounting
for sampling bias) were created. To test the robustness against imperfect data,
false positives, false negatives (highly asymmetric for SCS) and/or missing data
were introduced in the true genotypes, consistently with previous studies [37].
Multiple configurations of parameters were scanned, and we measured the ability
to infer true edges (sensitivity), and discriminate false ones (specificity); further
details on data generation are available as Supplementary Information.
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We compared our methods to SCITE, the state-of-the-art for phylogenetic
inference of mutational trees from SCS data [37]. In the test, we also included
previously developed approaches to causal inference from single-sample data
(CAPRESE [48] and CAPRI [46]).

Full results are in Supplementary Figures S3 and S5–S15. Here we show four
simulations in Figure 3; these settings are consistent with the results across all
tests. Figure 3 displays the results for TRaIT and SCITE1 in canonical settings
of noise and sample size, for case (i) (SCS and multi-region data), for case (ii)
(multi-region data), and for case (iii) (SCS data).

All the techniques achieve high sensitivity and specificity scores from SCS
generated by phylogenies with drivers only – Edm and Gbw highlighting the best
results (medians approx. 0.8 and 1). When we sampled multi-region data from
the same topology, performances worsened for all methods likely due to the
smaller sample size and the mixed bulk signal. The introduction of confound-
ing factors (2 out of n = 13 variables), does not to impact the performance
significantly, and all algorithms mostly discriminate the true generative model.
Finally, the inference of tumors with multiple independent progressions proves
to be a harder task, as sensitivity decreases and the performance of all methods
are similar. Notice that SCITE, in all tests, achieves the lowest specificity; this
might point at a mild-tendency to overfitting, probably due to the combination
of its search scheme and noise-learning model (see also Conclusion).

General conclusions can be drawn from the whole set of tests that we carried
out. As expected, performances improve with lower noise and larger datasets.
In particular, with SCS data Gbw, Edm and SCITE seem the best algorithms;
they generally achieve very similar sensitivity, even though the latter presents
(on average) lower specificity. For SCS data, all the tested algorithms seem very
efficient up to 20/30% of missing data, with SCITE showing a slightly greater
robustness (Supplementary Figure S11).

Results on multi-region data display similar trends, with Gbw and Edm show-
ing the overall best performance. In this case, however, SCITE is less effective
in retrieving both the true and the false relations, especially with small datasets
and/or low noise levels.

Interestingly, by systematically analyzing the impact of a variation of the
input ε+ and ε− with respect to the true noise values, we discovered that the
performance is rather stable for all algorithms (in Figure 3-D we show Gbw
algorithm); this supports our choice – in line with other tools [40]. – of not
implementing sophisticate noise-learning strategies in TRaIT.

Finally, a computation time assessment allowed to record a 3× speedup of
all the algorithms included in TRaIT with respect to SCITE, on standard CPUs
(Supplementary Table 10).

SCS data: Triple-Negative Breast Cancer

We applied TRaIT to a SCS dataset of Triple-Negative Breast Cancer (patient
TNBC in [30]). The input data consists of single-nucleus exome sequencing of
32 cells: 8 aneuploid (A) cells, 8 hypodiploid (H) cells and 16 normal cells (N)
(Figure 4-A).

1SCITE can return a posterior with many equivalent-scoring mutational trees; in those
cases, to compute its error, we selected the first of those models.
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Figure 3: We estimate from simulations the rate of detection of true posi-
tives (sensitivity) and negatives (specificity), visualized as box-plots from 100
independent points. We compare TRaIT’s algorithms and SCITE, the state-
of-the-art for mutational trees inference. For each data type, here we show
here a mild-noise setting with canonical sample size: in SCS data noise is
ε+ = 5× 10−3; ε− = 5× 10−2, in multi-region ε− = 5× 10−2. Extensive results
for different models, data type, noise and sample size are in Supplementary Fig-
ures 3–14. A. Here we use a generative model from [39] (Supplementary Figure
5). (left) SCS datasets with m = 50 single cells, for a tumor with n = 11 muta-
tions. (right) Multi-region datasets with m = 10 spatially separated regions, for
a tumor with n = 11 mutations. B. We augment the setting in A-right with 2
random variables (with random marginal probabilty) to model confounding fac-
tors, and generated SCS data. C. We generated multi-region data from a tumor
with n = 21 mutations, and a random number of 2 or 3 distinct cells of origin to
model independent progressions. D. Spectrum of average sensitivity and speci-
ficity for Gbw algorithm estimated from 100 independent SCS datasets sampled
from the generative model in Supplementary Figure 5 (m = 75, n = 11). The
true noise rates are ε+ = 5× 10−3; ε− = 5× 10−2; we scan input ε+ and ε− in
the ranges: ε+ = (3, 4, 5, 6, 7)× 10−3 and ε− = (3, 4, 5, 6, 7)× 10−2.

In [30], with a bulk sequencing control, mutations detected both in the bulk
and in the majority of the cancer cells were annotated as clonal, whereas those
undetected in the bulk as subclonal. The authors then manually curated a qual-
itative phylogenetic tree (Figure 4-B). We here run TRaIT with the mutational
profiles of each single cell describing the presence/ absence of nonsynonymous
point mutations of the 22 genes selected in [30]. The rate of missing values in
this dataset is very low (around 1%); as suggested in [30], we used 9.73× 10−2

for allelic dropout rate and 1.24× 10−6 for false positive rate.
For these data, all TRaIT’s algorithms return trees, suggesting consistency

with the ISA (Supplementary Figures S16-S17); here, we discuss Edm’s one since
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that algorithm achieved the best performance in the simulations with drivers
and confounding factors (Figure 4-C). To improve the analysis, from the same
dataset we also deconvolve the signatures of putative clones with OncoNEM,
and compare the predictions (Figure 4-D).

TRaIT allows to characterize the qualitative phylogeny provided in [30] by
identifying the gradual accumulation of point mutations, expectedly due to de-
fects in DNA repair or replication machineries, both in the clonal and subclonal
histories of the tumor.

On the one hand, Edm’s model displays high-confidence branched evolu-
tion consistent with subclone A1 (ppp2r1a, syne2 and aurka mutations), A2
(ecm2, chrm5 and tgfb2 mutations), and H (nrrk1, aff4, ecm1, cbx4 mu-
tations) [30]. On the other hand, TRaIT provides a notably higher resolution in
the description of the mutations annotated as clonal in [30], e.g., pten, tbx3
and notch2, are suggested to trigger tumor initiation. These results are also
consistent with the presence of different molecular clocks operating at different
stages of tumour growth [30]. TRaIT allows to formulate new hypotheses about
undetected subclones, possibly characterized by private mutations in akap9, or
in jak1, setbp1 and cdh6, which however would require further experimental
confirmations.

Clones’ analysis via OncoNEM detects 10 clones, their lineages and tempo-
ral relations, thus refining the qualitative analysis of [30]. Remarkably, such
results are mostly consistent with ours, as the mutational ordering predicted by
OncoNEM (obtained by estimating the assignment of mutations to clones, as
suggested in [40]) largely overlaps with that inferred via TRaIT. This is particu-
larly evident for early events, and for most of the late subclonal ones; exception
made for subclone H, which is not detected by OncoNEM. As mutations in araf,
akap9, notch3 and jak1 have the same marginal probability, their temporal
ordering can not univocally determined from these data. TRaIT, in fact, pro-
vides a p-value p > 0.05 for the direction of those edges, suggesting that any
permutation of their ordering would be possible. For this reason, unless more
sequenced cells were available, we can not univocally match the clonal signa-
tures obtained with OncoNEM and the temporal orderings identified by TRaIT
for these temporally-intermediate events.

This result proves that the concerted use of techniques for the inference of
mutational ordering, together with clonal deconvolution approaches, can pro-
vide a picture of tumor evolution and ITH at an unprecedented resolution and
accuracy.

Multiple-biopsy data: MSI-high Colorectal Cancer

We applied TRaIT to a moderately-differentiated MSI-High colon cancer char-
acterized by a primary tumor and a right hepatic lobe metastasis, with no prior
treatments (patient “P3” in [57]). For this patient, targeted DNA resequenc-
ing of three regions of the primary tumor (P3-1, P3-2, and P3-3) and of two
metastatic regions (L-1 and L-2), allowed to identify 47 nonsynonymous point
mutations and 11 indels [57] (Figure 5-A).

To process this dataset with TRaIT, we first grouped the mutations with
the same signature across the five regions, hence obtaining: (a) a clonal group,
including the 34 mutations detected in all the samples, (b) a subclonal group,
including the 3 mutations detected only in the L regions, and (c) 8 mutations
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with different mutational profiles. Our methods will not resolve their ordering
since their signals are statistically undistinguishable. However, we will be able
to order the groups against the mutations.

With these data both PRIM and ChL predict confluent evolutionary trajecto-
ries (Supplementary Figures S19), suggesting a violation of the ISA. In Figure
5-B we show PRIM’s direct acyclic graph and Edm’s tree. Both models pre-
dict branched tumor evolution and high ITH among the subclonal populations,
consistently with the phylogenetic analysis carried out in [57].

First, the clonal lesions – the clonal root – trigger the first expansions of
this tumor, with mutations in the key colorectal drivers apc, kras, pik3ca
and tp53 [49]. These biomarkers are ubiquitous, and could not be used to
disentangle the mutational spectrum of the primary tumor from the metastatic
lesions, in accordance with [58].

Second, the models identify distinct branches outgoing from the trunk, which
discriminate the different subclonal evolutions. In both models one subclonal
trajectory is initiated by a stopgain SNV in the DNA damage repair gene atm.
Edm, in particular, characterizes region P3-1 by a subsequent accumulation of
inhba and cdkn2a nonsynonimous mutations, whereas P3-3 by smad4 (stop-
gain SNV) and kmt2c (frameshift). Conversely, PRIM infers a more complex
model, in which two confluent trajectories anticipate common late mutations
in different regions: mutations of either inhba or of tgfbr2 may precede mu-
tations of cdkn2a in region P3-1, whereas in region P3-3 alterations of either
inhba or of smad4 might precede alterations of kmt2c. Interestingly, the al-
terations of cdnk2a might point to a cell cycle arrest hallmark for this tumor.
Notice that the model inferred via PRIM exactly fits in scenario (iv), which
could not be identified with canonical phylogenetic approaches.

Third, in both models the subclonal metastatic expansion is originated by a
stopgain SNV in gnaq, anticipating mutations in smad4, setd2, ar (i.e., the
subclonal group) and ppp2r1a. The models suggest canonical convergent evolu-
tion (i.e., parallel) towards smad4 (a stopgain SNV in the primary tumor, and
a nonsynonimous mutation in the metastasis). The transducer of transforming
growth factor-β superfamily signaling smad4 regulates cell proliferation, differ-
entiation and apoptosis [59], and its loss is usually correlated with colorectal
metastases [60]. ar is a transcription factor that regulates cell migration and
inhibites hepatocellular carcinoma metastases [61]; its splice variants are known
to promote metastasis in several tumor types [62]. Similarly, gnaq is supposed
be relevant in metastases development in certain tumor types [63]. ppp2r1a is
a negative regulator of signal transduction, gene expression and cell cycle [64],
and its mutation influences tumor-endothelium interaction in melanoma metas-
tases [65]. Notice that many other genes that are supposed to characterize
MSI-high progression are wildtype in this tumor, e.g., fbxw7, braf, arid1a,
fam123b, etc., [49], as a further evidence of the high level of ITH even within
the same tumor subtype.

We finally compared the ordering estimated by TRaIT to the predictions
obtained by SCITE (Supplementary Figure S20). Both approaches predict the
same formation of the metastatic lesion, yet some significant differences are
present. First, SCITE predicts that the mutation of atm triggers tumor initia-
tion, prior to the mutations included in TRaIT’s clonal group, which are ordered
in a 34 events-long linear chain. Yet, this specific order has score equivalent to
several other models (Supplementary Figure S20) and, thus, might be unreliable.
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Besides, in SCITE’s model tgfbr2 is associated to region P3-1 (in accordance
with PRIM, but not with Edm), gnaq’s stopgain is upstream to both P3-3 and
L branches, and some relations appear in inverted temporal ordering, e.g., be-
tween smad4 and kmt2c. Finally, by construction, SCITE can not infer any
confluent evolutionary trajectory, as its statistical model relies on the ISA.

4 Conclusion

The increasing availability of high-resolution multi-sample sequencing data al-
lows one to study ITH at an unprecedented resolution, to understand origination
and development of tumors both at the genotype and phenotype level, and to
better stratify and treat cancer patients.

Multi-region and SCS data harbours signals that can be informative of dif-
ferent aspects of tumor evolution. In fact, several techniques have been devel-
oped that either deconvolve clonal signatures, determine the ordering of grow-
ing clones or accumulating mutations, or estimate clonal fractions and cellular
prevalence. The concerted application of these techniques allows to draw com-
plex pictures of cancer evolution. As we show for a triple negative breast can-
cer, one can use the same dataset to detect both the signatures of the prevalent
clones, and to infer the temporal precedence (i.e., ordering) of mutations that
generated them. With the right tools, one can hence understand which clones
are annotated in the data, and how they were shaped by evolutionary pressures.

The majority of techniques that perform such analyses ground their roots
in standard phylogenetic theory, or in some of its cancer-specific derivations.
These techniques are very effective, but sometimes they also implement a note-
worthy deal of technical assumptions regarding sequence substitution models,
alleles fixation, noise or search scheme etc. As a consequence, it could be hard to
quantify how much the final predictions are shaped by the model and its assump-
tions, or actually suggested by the data. For instance, complex noise-learning
models to leverage the imbalances of SCS data might resolve the ordering of
clonal mutations in arbitrary ways. This manifests as long trunks whose actual
order can not be estimated from current data, and the inclusion of subclonal
mutations in dubious positions in the trunk (Supplementary Figure S19).

Similarly, when one seeks for a maximum parsimony phylogenetic tree of
tumor evolution, several equivalent-scoring solutions could be returned. When
that happens, one has to implement disambiguation heuristics to select one
output model [11, 12]. This could be one of the computed trees, or a new tree
that is a combination of those (e.g., a bootstrap consensus [66]). Despite these
routines are often adopted, they are somewhat arbitrary and some deal of care
should be warned.

On top of these, recent evidences on the violation of the ISA suggest that
this assumption might not be always appropriate; the ISA is preponderant in
the derivation of most inferential techniques, and future methods should find a
way to consistently account for its violations [35].

In this paper, we deviate from phylogenetic methods and present the TRaIT
computational framework, whose methods give statistically robust estimates of
mutational orderings in a variety of settings. Our models are simple, and can
be interpreted straightforwardly: if an edge connects two mutations (i) it statis-
tically resolves their temporal ordering and (ii) the mutations are statistically
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dependent. Both conditions are estimated from data without using complex
inferential models, and assessed via statistical testing, which leads to p-values.
Further assessment of models’ confidence can be obtained by usual bootstrap
or cross-validation approaches [49]. One should be warned that, as mutational
trees or other phylogenies, TRaIT’s models will display in output all mutations
annotated in the input data. So, x and y could be passengers mutations ob-
served by hijacking in this patient; nonetheless, their temporal relation can be
disentangled, but for a more thorough carachterization of divers against passen-
ger mutations, one would arguably need more complex tools and data combined
with causal approaches [46,48,49].

The simplicity of our framework has major advantages, both from an evolu-
tionary and a computational point of view. First of all, TRaIT’s models can
account for any variable that can be annotated in a tumor sample. Thus,
with TRaIT one can introduce high-level information on pathways, hallmarks,
phenotypic-triggering lesions or epigenetic states (e.g., methylations), as long
as they are persistent during tumor evolution. Inclusion of these information
in traditional sequence-based phylogenetic methods that work with sequences
could be harder. Second, TRaIT implements four optimal (i.e., polynomial-time)
algorithms that look for different types of signals in the sequencing data and
can model more complex topologies than trees, such as direct acyclic graphs
with disconnected components. Therefore, TRaIT can be used to investigate
whether data suggest the presence of confounding factors, or if the tumor’s data
harbours several progressions, or if late mutations associate to multiple evolu-
tionary trajectories. This latter case is a first attempt at performing inference
when the ISA is violated by convergent evolution, a possibility that is missing in
classical phylogenetic methods that are limited to estimating single trees from
data 2. Thus, with TRaIT’s algorithms one can test a broad set of hypotheses
on tumor evolution as we show in a colorectal cancer case study where we find
convergent evolution towards cdkn2a, which might point to a cell cycle arrest
hallmark for this tumor type.

The computational burden of our techniques is limited, compared to stan-
dard Bayesian approaches (which, however, include an estimation of uncertainty
within the model). We do not compute a full posterior over our estimates, but
rather a Maximum A Posteriori model constrained by Suppes’ conditions. These
conditions impose minimum levels of significance to the ordering predicted by
our models, and are enforced as empirical Bayes priors. In light of the in-
creasingly available data – especially from SCS – TRaIT’s scalability properties
represent an important algorithmic advancement over Bayesian computations
that might become impractical with larger datasets. Our methods accommo-
date low-effort parallel implementations [67], which we provide in the TRONCO
tool for TRanslational ONCOlogy [44,45].

TRaIT could be improved in several ways. For instance, we could pair bulk
sequencing samples to either SCS or multi-region inputs; in fact, the combi-
nation of these has been recently shown to improve the estimation of the mu-
tational ordering [38]. Furthermore, we could extend our framework to infer,
besides mutational orderings, clonal signatures and architectures, in the attempt
of defining a unified framework for cancer evolutionary inference. A general ex-

2We refer to Supplementary Information for a discussion of the statistical compli-
cations arising from such a generalization, in our framework.
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tension to models where the ISA is violated could also be investigated. From a
broader perspective, our methods build on our earlier contributions on tumor
evolution from single-sample bulk sequencing data [46, 48, 49] (see the Supple-
mentary Information for further discussion). These models allowed us to define
the first automatic pipeline to quantify inter-tumor heterogeneity across multi-
ple patients [49].

To conclude, we advocate the use of our methods as complementary to phy-
logenetic tools for clone deconvolution, in a joint effort to better quantify the
extent of ITH. To this end TRaIT represents an innovative and powerful tool to
raise precision and effectiveness of large-scale analyses of single tumor evolution.
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Figure 4: A. Input data from single-nucleus sequencing of a triple-negative
breast cancer [30] (32 cells). The rate of missing values for this dataset is
very low (around 1%), allelic dropout has rate 9.73× 10−2, and false discovery
1.24×10−6. B Manually curated phylogenetic tree estimated in [30]. Mutations
are annotated to the trunk if they are ubiquitous across cells, and detected also
in a bulk control sample [30]. Subclonal mutations are those appearing only in
more than one cell. C. Temporal mutational tree obtained with Edm algorithm;
p-values are obtained by 3 tests for Suppes’ conditions and overlap (hypergeo-
metric test), and edges annotated with a posteriori non-parametric bootstrap
scores (100 estimates). For these data, all TRaIT’s algorithms return trees (Sup-
plementary Figure 16), consistently with the manually curated phylogeny (A).
Most edges are highly confident (p < 0.05), expect for groups of variables with
the same frequency which have unknown ordering (red edges). The ordering
of mutations in subclones A1, A2 and tumor initiation has high bootstrap esti-
mates (> 75%). D. We perform a concerted analysis to estimate both clones’
signatures and their formation, at least for mutations with a clear statistical
signal in these data. We do this by computing a clonal tree with OncoNEM,
which predicts 10 clones. Mutations are assigned to clones via maximum a pos-
teriori estimates. The mutational ordering of the early clonal expansion of the
tumor, which involves mutations in pten, tbx3, notch2, is consistent among
both models. The same happens for most of the late subclonal events, e.g.,
mutations in map2k7, map3k4, ppp2r1a, syne2 and aurka in subclone A1.
However, the temporal ordering of intermediate events has weaker support as
they have the same marginal probability, and any permutation of their ordering
would be equivalent for our method.
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Figure 5: A. Multi-region sequencing data for a MSI-high colorectal cancer [57],
with three regions of the primary cancer: p3-1, p3-2 and p3-3, and two of one
metastasis: L-1 and L-2. To use this data with TRaIT we merge mutations
that have the same signature across all regions, obtaining a clonal group (light
blue) including 34 mutations and sublclonal group (light yellow) including: non-
synonymous SNVs of smad4 and setd2, and non-framshift insertion of AR. B.
Models obtained by Edm and PRIM algorithms, with their confidence annotated
and the overlap in the predicted ordering obtained by SCITE. PRIM predicts
convergent evolution – which violates the ISA – towards a non-synonymous
mutation in cdkn2a, which is also predicted by ChL (Supplementary Figure
18). All edges, in all models, are statistically significant for Suppes’ conditions
(temporal precedence and selection strengths). C. Four of the predicted ordering
relations are consistently found across all TRaIT’s algorithm, which gives a high-
confidence explanation for the formation of the L2 metastasis. This finding is
also in agreement with predictions by SCITE (Supplementary Figure 19).
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