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Abstract 

The extent to which genetic influences on complex traits and disease are mediated by 

changes in DNA methylation levels has not been systematically explored. We 

developed an analytical framework that integrates genetic fine mapping and Mendelian 

randomization with epigenome-wide association studies to evaluate the causal 

relationships between methylation levels and 14 cardiovascular disease traits.  

We identified 10 genetic loci known to influence proximal DNA methylation which 

were also associated with cardiovascular traits (P < 3.83 x 10-08). Bivariate fine 

mapping suggested that the individual variants responsible for the observed effects on 

cardiovascular traits at the ABO, ADCY3, ADIPOQ, APOA1 and IL6R loci were likely 

mediated through changes in DNA methylation. Causal effect estimates on 

cardiovascular traits ranged between 0.109-0.992 per standard deviation change in 

DNA methylation and were replicated using results from large-scale consortia.  

Functional informatics suggests that the causal variants and CpG sites identified in this 

study were enriched for histone mark peaks in adipose tissue and gene promoter 

regions. Integrating our results with expression quantitative trait loci data we provide 

evidence that variation at these regulatory regions is likely to also influence gene 

expression at these loci. 
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Introduction 

Approximately 88% of trait-associated variants detected using Genome Wide 

Association Studies (GWAS) reside in non-coding regions of the genome, which 

suggests that they may be influencing mechanisms which act through gene regulation1. 

Recent studies have incorporated data on genetic variants associated with gene 

expression (expression quantitative trait loci (eQTL)) into results from GWAS of 

complex traits to help identify the putative causal variant in a genomic region, as well 

as provide evidence suggesting which genes may be influenced by this variant2-5. This 

direction of inquiry can be extended to other ‘omic’ data types to gain further insights 

into the mechanistic pathway between genetic variant and causally associated trait. In 

this study, we introduce an analytical framework to integrate genetic predictors of DNA 

methylation levels with complex traits. 

DNA methylation is an epigenetic regulation mechanism which has been shown to play 

a key role in many biological processes and disease susceptibility6-8. Recent studies 

have had success in identifying genetic variants associated with DNA methylation 

(methylation quantitative trait loci (mQTL)) and report that they appear to overlap with 

eQTL at a large number of loci across the genome9; 10. This suggests that both DNA 

methylation and gene expression could reside along the causal pathway between 

genetic variation and disease, although thus far uncovering evidence of a mediated 

effect between mQTL and traits has been limited in contrast to using eQTL11-14. 

However, identifying epigenetic markers for disease risk should prove valuable in 

understanding the underlying biological mechanisms for trait-associated variants 15. 

Mendelian randomization (MR) is a method by which genetic variants robustly 

associated with modifiable exposures can be used as instrumental variables to infer 

causality amongst correlated traits 16; 17. If DNA methylation resides along the causal 

pathway between genetic variant and trait, we would expect it to be correlated with our 

trait of interest. However, much like other traits analysed in epidemiological studies, 

DNA methylation is prone to confounding and reverse causation. Using an MR 

framework we can investigate whether DNA methylation has a causal relationship with 

a phenotypic outcome, suggesting that it may reside along the causal pathway to disease 

18. Moreover, as discussed in a recent review, MR has advantages over alternative 
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approaches in mediation analysis (such as the Causal Inference Test 19), as it can detect 

the correct direction of effect in the presence of measurement error 20.  

Recent approaches to MR have shown that the robustness of causal inference is 

improved if there are many instruments because one can evaluate whether the SNP 

effects on the causal trait are proportional to the SNP effects on the consequential trait 

16; 21. We exploit this property to evaluate the causal influence of complex traits (which 

typically have many instruments) on DNA methylation (i.e. bi-directional MR22). But 

a pitfall of evaluating the causal influence of DNA methylation on complex traits is that 

DNA methylation is typically instrumented by only a single cis-acting variant. Hence, 

an unreliable MR estimate of causality could arise due to the mQTL simply being in 

linkage disequilibrium with a variant that influences the cardiovascular trait through 

means other than the methylation level.  

There are methods which have been devised to address this issue for eQTL within a 

two-sample framework or using multiple instruments 2; 23-25, although thus far there are 

no appropriate methods when effect estimates are obtained using the same sample and 

where only one valid instrument exists. Therefore, to distinguish linkage disequilibrium 

from mediation we integrate fine mapping to evaluate the likelihood of the mQTL being 

the same causal variant as the SNP influencing the cardiovascular trait. We have also 

undertaken functional informatics and incorporated eQTL data as this may support 

findings suggesting that DNA methylation resides on the causal pathway between 

variant and disease. However, a limitation of using single variant instruments in general 

is that it is not possible to reliably distinguish horizontal pleiotropy from mediation 26. 

Together, the causal relationships between DNA methylation and cardiovascular traits 

are delineated into four potential categories (Figure 1): 

1. The genetic variant has an effect on the phenotype, mediated by DNA 

methylation. 

2. The genetic variant has an effect on the phenotype by alternative biological 

mechanisms, which then has a downstream effect on DNA methylation at this 

locus. 

3. The genetic variant which influences DNA methylation is simply in linkage 

disequilibrium (LD) with another variant which is influencing the associated 

trait. 
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4. The genetic variant is influencing both DNA methylation and phenotype by two 

independent biological pathways (also known as horizontal pleiotropy).  

We have developed a framework to systematically navigate through these scenarios and 

have applied it to analyse 14 different cardiovascular traits. In our discovery analysis 

we used genotype and DNA methylation data from prepubertal individuals to discover 

causal pathways on early childhood phenotypes. Replication was then undertaken using 

GWAS summary statistics from large-scale consortia. 
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Materials and Methods 

The Avon Longitudinal Study of Parents and Children (ALSPAC) 

ALSPAC is a population-based cohort study investigating genetic and environmental 

factors that affect the health and development of children. The study methods are 

described in detail elsewhere 27; 28 (http://www.bristol.ac.uk/alspac). Briefly, 14,541 

pregnant women residents in the former region of Avon, UK, with an expected delivery 

date between 1st April 1991 and 31st December 1992, were eligible to take part in 

ALSPAC. Detailed information and biosamples have been collected on these women 

and their offspring at regular intervals, which are available through a searchable data 

dictionary (http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). 

Written informed consent was obtained for all study participants. Ethical approval for 

the study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. 

Accessible Resource for Integrative Epigenomic Studies project (ARIES)  

Samples: Blood samples were obtained for 1,018 ALSPAC mother-offspring pairs 

(mothers at two timepoints and their offspring at three timepoints) as part of the 

Accessible Resource for Integrative Epigenomic Studies project (ARIES)29. The 

Illumina HumanMethylation450 (450K) BeadChip array was used to measure DNA 

methylation at over 480,000 sites across the epigenome.  

Methylation assays: DNA samples were bisulfite treated using the Zymo EZ DNA 

MethylationTM kit (Zymo, Irvine, CA). The Illumina HumanMethylation450 BeadChip 

(HM450k) was used to measure methylation across the genome and the following 

arrays were scanned using Illumina iScan, along with an initial quality review using 

GenomeStudio. A purpose-built laboratory information management system (LIMS) 

was responsible for generating batch variables during data generation. LIMS also 

reported quality control (QC) metrics for the standard probes on the HM450k for all 

samples and excluded those which failed QC. Data points with a read count of 0 or with 

low signal:noise ratio (based on a p-value > 0.01) were also excluded based on the QC 

report from Illumina to maintain the integrity of probe measurements. Methylation 

measurements were then compared across timepoints for the same individual and with 
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SNP-chip data (HM450k probes clustered using k-means) to identify and remove 

sample mismatches. All remaining data from probes was normalised with the Touleimat 

and Tost30 algorithms using R with the wateRmelon package31. This was followed by 

rank-normalising the data to remove outliers. Potential batch effect were removed by 

regressing data points on all covariates. These included the bisulfite-converted DNA 

(BCD) plate batch and white blood cell count which was adjusted for using the 

estimateCellCounts function in the minfi Bioconductor package32. 

Genotyping assays: Genotype data were available for all ALSPAC individuals enrolled 

in the ARIES project, which had previously undergone quality control, cleaning and 

imputation at the cohort level. ALSPAC offspring selected for this project had 

previously been genotyped using the Illumina HumanHap550 quad genome-wide SNP 

genotyping platform (Illumina Inc, San Diego, USA) by the Wellcome Trust Sanger 

Institute (WTSI, Cambridge, UK) and the Laboratory Corporation of America (LCA, 

Burlington, NC, USA). Samples were excluded based on incorrect sex assignment; 

abnormal heterozygosity (<0.320 or >0.345 for WTSI data; <0.310 or >0.330 for LCA 

data); high missingness (>3%); cryptic relatedness (>10% identity by descent) and non-

European ancestry (detected by multidimensional scaling analysis). After QC, 500,527 

SNP loci were available for the directly genotype dataset. Following QC the final 

directly genotyped dataset contained 526,688 SNP loci. 

Imputation: Imputation was performed using a joint reference panel using variants 

discovered through whole genome sequencing (WGS) in the UK10K project 33 along 

with known variants taken from the 1000 genomes reference panel. Novel functionality 

was developed in IMPUTE2 34 to use each reference panel to impute missing variants 

in their counterparts before ultimately combining them together. All variants were 

filtered to have Hardy-Weinberg equilibrium P > 5×10-7 and an imputation quality 

score ≥ 0.8 or higher.  

Phenotypes: ALSPAC individuals were measured for 14 different cardiovascular traits. 

These were body mass index (BMI), systolic blood pressure (SBP), diastolic blood 

pressure (DBP), total cholesterol (TC), triglycerides (TG), high density lipoprotein 

cholesterol (HDL), low density lipoprotein cholesterol (LDL), apolipoprotein A (Apo 

A1), apolipoprotein b (Apo B), interleukin 6 (IL-6), adiponectin, C-reactive protein 
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(CRP) and leptin. Methods for phenotyping can be found in the supplementary 

material. 

Statistical Analysis 

We undertook a methylome-wide association study (MWAS) to evaluate the 

association between all eligible mQTL and each trait in turn. This was decided over a 

conventional epigenome-wide association study (EWAS) (i.e. evaluating the 

association between methylation levels at CpG sites and traits) due to a larger 

proportion of individuals in ALSPAC having genotype data rather than 450K data after 

merging on phenotypes. 

All variants with previous evidence of genetic association with DNA methylation in 

ARIES (referred to hereafter as mQTL) were eligible for analysis 8. We used a strict 

threshold to define mQTL (P<1.0 x 10-14) as we were unable to identify a suitable 

replication cohort for observed effects on methylation levels derived from blood. 

Furthermore, this strict threshold reduces the risk of MR analyses suffering from weak 

instrument bias. We also removed mQTL associated with 450K probes flagged for 

exclusion based on evaluations by Naeem et al 35, based on their criteria of overlapping 

SNPs at CpG probes, probes which map to multiple locations and repeats on the 450K 

array.  Moreover, we excluded mQTL associated with a CpG site which was over 1Mb 

distance away (known as trans-mQTL), therefore leaving mQTL which were only 

associated with a nearby CpG site (known as cis-mQTL). This was to reduce the 

possibility of pleiotropy in our analysis as variants which associated with methylation 

at multiple CpG sites across the epigenome may be influencing independent biological 

pathways simultaneously. However, we cannot rule out the possibility that in future 

studies that the mQTL included in this study are in fact influencing multiple CpG sites, 

although we do not currently have an adequate sample size to detect these additional 

trans effects. 

This was important to include in our study design as we anticipated that single 

instrument MR analyses may be necessary at a later stage when evaluating causal 

effects, which therefore restricts our ability to investigate pleiotropy using multiple 

valid instruments. GCTA was used to undertake a conditional analysis and determine 

independent loci for each CpG site 36. mQTL were analysed in turn with each trait using 

linear regression with adjustment for age and sex. Results were plotted using a 
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Manhattan plot using code derived from the qqman R package37. Scripts to generate 

this plot are available at https://github.com/MRCIEU/qqman_multiple_colours. 

Mendelian randomization analysis 

Observed associations between genotype and traits which survived a stringent multiple 

testing threshold (i.e. P < 0.05/number of tests undertaken) were then analysed using 

Mendelian randomization (MR) to discern whether a causal effect existed of DNA 

methylation on cardiovascular traits. This was undertaken using two stage least squares 

(2SLS) regression with DNA methylation as our exposure, phenotypic trait as our 

outcome and using the relevant mQTL as our instrumental variable. Measures of DNA 

methylation were initially taken from the childhood time point in ARIES (mean age: 

7.5, standard deviation: 0.15) as this was the closest time point to phenotype 

measurements. Follow-up analyses were also undertaken using methylation data from 

the birth time point (using cord blood) and the adolescent time point (mean age: 17.1, 

standard deviation: 1.01). The R package ‘systemfit’38 was used to obtain causal effect 

estimates using two-stage least squares.  

We replicated observed effects by undertaking a two sample MR analysis (2SMR)39 

using estimated effects between genetic variants and associated traits obtained from 

published studies. Moreover, a two-sample framework removes any potential bias 

encountered in the discovery analysis due to effects on both methylation and trait being 

obtained in the same sample. When observed effects for sentinel mQTL were not 

available from published studies we used variants in LD with these SNPs instead (r2 > 

0.8).  

Figure 1 illustrates the 4 possible explanations investigated where evidence of a causal 

effect was observed using MR. Figure 2 provides an overview of our approach to 

investigate these explanations. To robustly test explanation ii) we performed the reverse 

MR analysis, evaluating if the cardiovascular trait influenced the DNA methylation 

level.  Instruments for this analysis were identified using the NHGRI-EBI GWAS 

catalog40. Relevant GWAS for interleukin-6 were not available at the time of analysis 

and so we identified instruments based on findings from Naitza et al 41 (P < 5.0 x 10-

08).  A lack of evidence suggesting a causal relationship in this analysis would suggest 

that explanation ii) was unlikely in each instance.  
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Bivariate fine mapping 

Bivariate fine mapping was undertaken using FINEMAP42 at each locus detected in the 

previous analysis. FINEMAP generates a Bayes factor for each variant at a locus which 

reflects the likelihood that it is the underlying causal variant at this region. Bivariate 

fine mapping requires all variants at a locus to be fine mapped using two different effect 

estimates 1) observed effects between SNPs and DNA methylation and 2) observed 

effects between SNPs and outcome phenotypes. Estimates between all variants in high 

LD (r2 ≥ 0.8) with the sentinel SNP for each association signal were used for bivariate 

fine mapping analyses. 

This analysis was undertaken to evaluate explanation iii), that the mQTL analysed may 

simply be in LD with the putative causal variant for the phenotypic trait. This was 

necessary as when evaluating the relationship between DNA methylation at a CpG site 

and outcome trait there may likely only be one valid instrumental variable (i.e. the 

mQTL at this region). Bivariate fine mapping in this instance therefore evaluates 

whether the causal mQTL at a locus is likely the same causal variant for the observed 

effect on outcome trait. However, it does not rule out the possibility of a single variant 

influencing DNA methylation and outcome trait through independent biological 

pathways (i.e. explanation iv). 

Concordance between the top SNPs for the two sets of fine mapping analyses would 

suggest that explanation i) may be responsible for the observed effect and that DNA 

methylation resides on the causal pathway between variant and phenotypic trait. 

Bivariate fine mapping using effect estimates for both methylation and cardiovascular 

traits was advantageous in this study as we were able to obtain estimates for all SNPs 

in our data set without having to rely on summary statistics. To further evaluate 

explanation iii), we also used the joint likelihood mapping (JLIM) approach23. 

Although JLIM doesn’t specify the likely causal variant at a region, it can be used to 

examine whether the underlying causal variation is responsible for observed effects on 

both methylation and cardiovascular trait in a two-sample framework. 

Impact of mQTL on gene expression and histone modification 

We applied 2SMR to evaluate the relationship between methylation and expression 

using observed effects between SNPs and expression in relevant tissue types from the 
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GTEx consortium43. When observed effects for sentinel mQTL were not available from 

GTEx we identified a surrogate SNP instead (r2 > 0.8). 

We also assessed whether any mQTL were in LD (r2 > 0.8) with any previously reported 

histone quantitative trait loci (hQTL)44. When this was true, we applied 2SMR to 

evaluate the causal relationship between methylation and histone modification at these 

loci. This analysis was for exploratory purposes as there are aspects of the relationship 

between DNA methylation and histone modification which remain unexplored, despite 

progress by recent studies45; 46. 

Functional informatics 

The variant effect predictor (VEP)47 was applied to the top ranked mQTL from the 

bivariate fine mapping analysis to calculate their predicted consequence. Regulatory 

data was obtained from Ensembl48 to evaluate whether mQTL and CpG sites were 

located within regulatory regions of the genome. Additional regulatory information was 

also obtained from the 450K annotation file from Illumina. As we were interested in 

cardiovascular and lipid traits in this study, adipose tissue data from the Roadmap 

Epigenomics Project49 was used to infer whether the potential causal variants and CpG 

sites at each locus resided within histone mark peaks.  

Enrichment analysis was undertaken to test whether lead SNPs and associated CpG 

sites were located in regulatory regions more than can be accounted for by chance. To 

calibrate background expectations, we obtained matched SNPs using snpSNAP50 and 

identified matched CpG sites by randomly sampling probes from the 450K array which 

were in similar regions across the genome (i.e. within CpG islands/1st Exons etc.).  

Enrichment was investigated using the hypergeometric test and multiple testing was 

accounted for by randomly sampling controls SNPs/probes and re-running analyses for 

10,000 iterations. 
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Results 

Mining for causal influences of methylation on cardiovascular traits 

We undertook 529,368 tests to evaluate the association between previously identified 

mQTL in ARIES with each trait in turn (37,812 unique variants x 14 traits). We 

identified 10 association signals which, after multiple testing correction, provided 

strong evidence of association (P < 9.45 x 10-08 (i.e. 0.05/529,368)) and can be found 

in Table 1. The 10 sentinel mQTL identified in this analysis were only strongly 

associated with DNA methylation at a proximal CpG site and not any other CpG sites 

in the epigenome based on our findings in ARIES. 

Inferring causal relationships 

Causal effect estimates between methylation and cardiovascular traits were obtained at 

each locus in the MR analysis using mQTL as our instrumental variables (Table 2). 

Taking these putative associations forward, we evaluated the potential for reverse 

causal relationships by performing MR of the cardiovascular traits against the DNA 

methylation levels using SNPs from GWAS as our instruments. There was no evidence 

to suggest that the putative associations were due to the cardiovascular traits influencing 

the methylation levels (Supplementary Tables 1) and therefore suggests that these 

effects can be attributed to explanation i) rather than explanation ii) at these loci (i.e. 

variation in DNA methylation is responsible for changes in cardiovascular function). 

Using methylation data from 2 other time points across the life course (at birth and 

adolescence (mean age: 17.1)) we observed consistent directions of effect as was 

observed using data from the childhood time point (mean age: 7.5) (Supplementary 

Tables 2 & 3). Evidence of association was observed at each locus in this analysis 

except for the ABO and IL6R loci when using the cord data.  

We reproduced similar effects for 9 of the 10 mQTLs on cardiovascular traits using 

effect estimates from published studies (Table 3). The only locus we were not able to 

find a replication effect estimate for was the mQTL at IL6R as it was not in LD (r2 > 

0.8) with any previously published findings for interleukin 6. Effect estimates 

suggested a direct relationship between methylation and cardiovascular traits at the 

IL6R, APOB, CELSR2 and ADCY3 loci (i.e. increased methylation results in an 
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observed increase in the cardiovascular trait), whereas an inverse relationship was 

observed at the ADIPOQ, ABO, LEPR, APOA1 and FADS1 loci (i.e. increased 

methylation causes a decrease in cardiovascular trait levels).  

Evaluating causal variants to infer mediated effects 

There was concordance amongst the top SNPs in the bivariate fine mapping analyses 

at the ABO, ADCY3 and ADIPOQ (common signal) loci, as the variant with the largest 

Bayes factor was the same for the effect on DNA methylation and outcome trait 

(Supplementary Tables 4). These results lend support to the hypothesis that DNA 

methylation resides on the causal pathway between genetic variant and outcome trait 

(i.e. explanation i). At the APOA1 and IL6R loci, the variant with the largest Bayes 

factor based on effect estimates on DNA methylation had the second largest Bayes 

factor for observed effect on outcome traits. There was a lack of concordance for the 

results at the ADIPOQ (low frequency signal), APOB, CELSR2, FADS1 and LEPR loci, 

suggesting that the mQTL may be in LD with the putative causal variant for the 

phenotypic trait (i.e. explanation iii). Results of the JLIM method supported evidence 

at the ADIPOQ, ADCY3 & APOA1 loci, although we were unable to further evaluate 

signals at the ABO & IL6R regions due to unavailable GWAS summary results for 

interleukin-6 (Supplementary Table 5).  

Investigating the role of DNA methylation with gene expression and histone 

modification 

To further dissect the relationship between DNA methylation and complex traits we 

sought to evaluate the influence of the methylation levels on local gene expression. We 

observed evidence of a causal relationship between methylation and expression at 8 of 

the 10 loci using data from the GTEx consortium (Table 4). Effect estimates suggest an 

inverse relationship (i.e. increased methylation results in decreased gene expression) at 

the ADIPOQ (low frequency signal) and APOA1 loci, whereas a direct relationship was 

observed at the other 6 loci (i.e. increased methylation results in increased gene 

expression). We were unable to identify a surrogate variant (r2 > 0.8) to obtain a suitable 

effect estimate at the LEPR and ADIPOQ (common signal) loci. 

mQTL at the APOA1 and IL6R loci were also in high LD with previously reported 

histone quantitative trait loci (hQTL) based on findings by Grubert et al44. Results from 
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our 2SMR analyses to evaluate the influence of methylation levels on histone 

modification provided strong evidence of a causal effect as well as an inverse 

relationship in each instance (Supplementary Table 6). 

Functional informatics 

To better understand the functional role underlying these putative causal associations, 

variants which were ranked as the lead SNP based on the bivariate fine mapping 

analysis (using effect estimates on DNA methylation) were evaluated using VEP. 

Variants at the ADIPOQ, ABO, LEPR, IL6R and APOA1 loci are located within histone 

mark peaks in adipose tissue according to data from the Roadmap Epigenomics Project 

and variants at APOA1 & CELSR2 reside within promoter flanking regions 

(Supplementary Table 7).  

Every associated CpG site identified in this study resides within multiple histone mark 

peaks based on adipose tissue data from the Roadmap Epigenomics Project 

(Supplementary Table 8). All sites also reside in either enhancer or promoter regions 

with the exception of the CpG site near ADIPOQ (Supplementary Table 9). There was 

strong evidence of enrichment for regulatory annotations for both SNPs and CpG sites 

which supports previous evidence that they are likely to have a causal downstream 

effect on phenotypic variation (Supplementary Table 10). 
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Discussion 

We have designed a framework to evaluate the causal influences of DNA methylation on 

complex traits and disease using Mendelian randomization. For observed effects on 

cardiovascular traits that appear to be caused by methylation, we used bivariate fine mapping 

and joint likelihood mapping to evaluate if the putative causal variant influencing methylation 

was the same causal variant responsible for influencing the trait. This approach provides 

compelling evidence that cardiovascular traits are influenced by altered DNA methylation 

levels at the following 5 genes; ABO, ADCY3, ADIPOQ, APOA1 and IL6R. Furthermore, two 

sample MR analyses provided evidence that DNA methylation levels influenced gene 

expression at these loci, suggesting that predicted functional effects for the causal variants 

indicate a coordinated system of effects that are consistent with causality. This was important 

to demonstrate, as single valid instruments meant that we were unable to robustly show that 

variants were not influencing methylation and traits independently. This type of approach is 

particularly attractive for therapeutic evaluation of drug targets as it can provide valuable 

insight into the underlying mechanisms between genetic variants and disease. 

The ABO locus identified in this study has been associated with many different traits and 

diseases by previous studies24; 51; 52, as well as evidence implicating expression quantitative 

trait loci as putative causal SNPs for this effect 53. Here we provide evidence that DNA 

methylation may reside along the causal pathway to these observed effects (MR effect estimate: 

0.29 (Standard error=0.06) change in trait per standard deviation change in methylation). A 

deletion (rs200533593) was found to be the putative causal variant for both the observed effect 

on DNA methylation and phenotypic variation.  

The observed effect of genetic variation at ADCY3 on body mass index is a relatively new 

finding54-56. In this study, our bivariate fine mapping analysis suggests that an intergenic variant 

(rs6737082) may be responsible for the observed signal which is mediated through DNA 

methylation at this locus (MR effect estimate: 0.11 (0.05)).  Furthermore, a variant in LD with 

rs6737082 (rs713586, r2=0.80) has been previously reported to regulate DNA methylation at 

this location in adipose tissue7.  

There were two independent effects detected in our study near the ADIPOQ gene which were 

associated with adiponectin. The common variant signal was located upstream of ADIPOQ 

within the RFC4 gene but associated with DNA methylation levels proximal to ADIPOQ, 
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which can help explain this variant’s observed effect on adiponectin (MR effect estimate: -0.36 

(0.12)). Concordance in the bivariate fine mapping analysis suggested a non-coding transcript 

variant (rs169109) was responsible. The lead SNP from the ADIPOGen consortium57 at this 

locus (rs6810075) is neither an mQTL nor in high LD with rs169109 (r2 = 0.20), suggesting 

that these two association signals are influencing adiponectin levels by alternative biological 

mechanisms. The low frequency variant signal was previously detected by the UK10K project 

33, although bivariate fine mapping results as this locus suggest that the causal mQTL was in 

linkage disequilibrium with the trait-associated variant. 

The CpG site associated with the mQTL at this locus resides between the APOA1 gene and 

APOA1-antisense (APOA1-AS), a negative transcriptional regulatory of APOA1 which has 

been shown to increase APOA1 expression both in vitro and in vivo58. The highest ranked 

mQTL based on our bivariate fine mapping using estimates with DNA methylation is in a 

promoter region upstream of APOA1, suggesting that it may be more likely influencing APOA1 

rather than APOA1-AS. There are previously reported GWAS association signals at this locus 

with lipid traits59; 60. However, given the evidence in this study of a causal effect with DNA 

methylation (MR effect estimate: -0.30 (0.08)) it is likely that these are downstream effects of 

the observed effect on Apo A1 variation. Furthermore, it is more biologically plausible this is 

the case as this gene is responsible for the protein synthesis of Apo A1.  

The signal at the IL6R locus has been previously associated with a range of traits related to 

respiratory and cardiovascular health 61-63. Our results suggest that genetic variation at IL6R 

influences DNA methylation at this region, which in turn will have a downstream effect on 

interleukin-6 and subsequently other traits and diseases (MR effect estimate: 0.47 (0.18)). 

Furthermore, this association signal was not in LD with a previously reported missense variant 

at this locus (rs2228145, r2 = 0.47 in ALSPAC) which was also supported by findings from an 

in-depth functional study of this variant 64.  

Evidence from the GTEx consortium suggests that mQTL at all eight of the loci with available 

expression data overlap with eQTL effects, which serves as an independent replication of the 

relationships discovered through DNA methylation levels. It is biologically plausible that a 

variant’s impact of DNA methylation levels may have a downstream effect on gene expression 

along the causal pathway to disease65; 66, which may help explain these observations. Effects at 

four loci in particular appear to be biologically plausible in this regard, as the likely genes 

influenced by these variants are involved in the protein synthesis of the associated trait (i.e. 
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ADIPOQ with adiponectin, APOB with Apo B, APOAI with Apo A1 and IL6R with interleukin-

6). Furthermore, each CpG site identified in this study resides within histone mark peaks in 

adiposity tissue according to data from the Roadmap Epigenomics project where we observed 

enrichment compared to matched CpG sites in similar regions of the genome. 

As with any study which applies MR using a single instrument to investigate causal 

relationships in epidemiology, an important limitation is the inability to disentangle potential 

pleiotropic effects where the same causal variant influences both exposure (i.e. DNA 

methylation) and outcome (i.e. cardiovascular trait) through independent pathways. To reduce 

the possibility of this we selected mQTL in our study that were only influencing proximal CpG 

sites and not elsewhere in the epigenome, as such instruments would be more likely to 

influencing traits via alternative biological mechanisms. Future studies which continue to 

uncover mQTL across the genome (as well as across various tissue types) should facilitate 

analyses which are able to robustly address concerns over pleiotropy by using methods such as 

MR-Egger 67. 

Weak instrumental variables and reverse causation are other factors which can bias MR 

analyses. Our analysis is unlikely to have suffered from the former as each mQTL had a large 

effect on DNA methylation in cis (P < 1.0 x 10-14) and were robustly associated with traits 

which we were able to replicate using results from studies with large population samples. We 

conducted analyses to evaluate whether reverse causation was an issue in our study (i.e. trait 

variation was causal to changes in DNA methylation at each locus), although results suggested 

that this was not the case. 

In this study we have demonstrated the value of two-sample Mendelian randomization (2SMR) 

to undertake MR analyses using summary statistics 39; 68. This allowed us to provide evidence 

of replication for the observed effects in our study as well as investigate the relationship 

between DNA methylation and expression along the causal pathway to disease. This approach 

has the attractive advantage of enabling the potential epigenetic-complex trait interplay to be 

interrogated on a much wider scale, foregoing the requirement that ‘omic’ data and phenotypes 

are measured in the same sample. 
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Description of Supplemental Data 

Supplemental Data include one descriptive methods section for phenotyping and 10 tables. 
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Figures 

Figure 1: Explanations evaluated to explain observed associations between 

methylation quantitative trait loci and trait outcomes 

 

i) The genetic variant has an effect on the phenotype, mediated through DNA methylation. ii) 

The genetic variant has an effect on the phenotype by alternative biological mechanisms, which 

then has a downstream effect on DNA methylation at this locus. iii) The genetic variant which 

influences DNA methylation is simply in linkage disequilibrium with another variant which is 

influencing the associated trait. iv)  The genetic variant is influencing both DNA methylation 

and phenotype by two independent biological pathways (also known as horizontal pleiotropy).  
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Figure 2: Analysis pipeline to evaluate explanations for observed associations between methylation quantitative trait loci and trait 

outcomes 

 

This flowchart provides an overview of the analysis plan in this study to evaluate 4 different explanations which may explain trait-associated methylation 

quantitative trait loci (mQTL). LD – linkage disequilibrium, GWAS – Genome-wide association study.
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Figure 3: Manhattan plot illustrating observed association between methylation quantitative trait loci and cardiovascular traits 

Manhattan plot illustrating the observed association between methylation quantitative trait loci (mQTL) and various cardiovascular traits. Points represent –

log10 p-values (y-axis) for genetic variants according to their genomic location (x-axis). Effects that survive the multiple testing threshold in our analysis (P < 

9.45 x 10-08 – represented by the red horizontal line) are coloured according to their associated trait and annotated according to the likely impacted gene. 
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Tables 

Table 1: Results of linear regression analysis between methylation trait loci (mQTL) and traits – MAF In these tables 

SNP Gene CpG Trait Sample Size Beta SE P-value % explained 

rs266772 ADIPOQ cg05578595 Adiponectin 4248 -0.992 0.070 1.72 x 10-44 4.51% 

rs687621 ABO cg21160290 Interleukin-6 4241 -0.265 0.022 1.15 x 10-31 3.05% 

rs13375019 LEPR cg04111102 C-reactive protein 4251 -0.213 0.022 2.65 x 10-22 2.20% 

rs7549250 IL6R cg02856953 Interleukin-6 4241 -0.176 0.022 9.71 x 10-16 1.40% 

rs169109 ADIPOQ cg05578595 Adiponectin 4248 -0.167 0.022 1.44 x 10-14 1.34% 

rs541041 APOB cg25035485 Apo B 4251 -0.209 0.028 3.76 x 10-14 1.32% 

rs7528419 CELSR2 cg00908766 Apo B 4251 -0.196 0.026 4.63 x 10-14 1.30% 

rs625145 APOA1 cg04087571 Apo A1 4251 0.200 0.027 9.78 x 10-14 0.94% 

rs174544 FADS1 cg19610905 Cholesterol 4250 -0.143 0.023 8.61 x 10-10 0.86% 

rs6749422 ADCY3 cg01884057 Body mass index 6076 0.109 0.018 1.28 x 10-9 0.55% 

- SNP – Single Nucleotide Polymorphism, Gene – likely implicated gene, CpG – 450K probe ID, Trait – Associated Trait, Sample Size – sample size for 

this effect, Beta – Observed effect size (units in standard deviations), SE – Standard Error of the effect size, P-value – P-value for observed effect, % 

explained – proportion of variance in trait explained by mQTL. 
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Table 2: Results of Mendelian randomization analysis between DNA methylation and traits 

SNP Gene CpG Trait Sample Size Beta SE P-value 

rs266772 ADIPOQ cg05578595 Adiponectin 646 -0.846 0.168 5.93 x 10-7 

rs687621 ABO cg21160290 Interleukin-6 646 -0.293 0.061 1.77 x 10-6 

rs13375019 LEPR cg04111102 C-reactive protein 646 -0.265 0.076 0.001 

rs7549250 IL6R cg02856953 Interleukin-6 646 0.468 0.175 0.008 

rs169109 ADIPOQ cg05578595 Adiponectin 646 -0.363 0.121 0.003 

rs541041 APOB cg25035485 Apo B 646 0.298 0.114 0.009 

rs7528419 CELSR2 cg00908766 Apo B 646 0.271 0.064 2.74 x 10-5 

rs625145 APOA1 cg04087571 Apo A1 646 -0.301 0.082 2.68 x 10-4 

rs174544 FADS1 cg19610905 Cholesterol 646 -0.363 0.121 0.003 

rs6749422 ADCY3 cg01884057 Body mass index 846 0.106 0.048 0.028 
- SNP – Single Nucleotide Polymorphism, Gene – likely implicated gene, CpG – 450K probe ID, Trait – Associated Trait, Sample Size – sample size for 

this effect, Beta – Observed effect size (units in standard deviations), SE – Standard Error of the effect size, P-value – P-value for observed effect 
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Table 3: Results of replication analysis using two-sample Mendelian randomization 

SNP Gene CpG CpG effect Trait effect 2SMR effect P-value Study 

rs266772 ADIPOQ cg05578595 0.982 (0.103) -0.629 (0.143) -0.641 (0.160) 6.50 x 10-5 
UK10K Consortium (TwinsUK 

individuals only) (2015) 

rs687621 ABO cg21160290 0.912 (0.036) -0.245 (0.026) -0.269 (0.03) 9.16 x 10-19 Naitza et al (2012) 

rs2211651* LEPR cg04111102 0.682 (0.036) -0.170 (0.022) -0.249 (0.035) 3.09 x 10-13 Reiner et al (2012) 

rs541041 APOB cg25035485 0.627 (0.053) 0.098 (0.013) 0.156 (0.025) 2.05 x 10-10 Kettunen et al (2016 

rs169109 ADIPOQ cg05578595 0.383 (0.036) -0.052 (0.005) -0.136 (0.017) 2.58 x 10-15 Dastani et al (2013) 

rs7528419 CELSR2 cg00908766 -0.980 (0.037) -0.089 (0.012) 0.091 (0.013) 9.20 x 10-13 Kettunen et al (2016) 

rs625145 APOA1 cg04087571 -0.884 (0.044) 0.057 (0.013) -0.064 (0.015) 1.84 x 10-5 Kettunen et al (2016) 

rs174544 FADS1 cg19610905 -0.655 (0.031) 0.047 (0.004) -0.072 (0.007) 9.73 x 10-25 
Global Lipids Genetics 

Consortium (2013) 

rs6749422 ADCY3 cg01884057 0.908 (0.026) 0.068 (0.007) 0.075 (0.008) 8.05 x 10-21 Felix et al (2016) 
- * indicates surrogate variant used (r2 >0.8), SNP – Single Nucleotide Polymorphism, Gene – likely implicated gene, CpG – 450K probe ID, CpG effect 

– effect estimate of SNP on methylation, Trait effect – effect estimate of SNP on trait, 2SMR effect – effect estimates from 2-Sample MR analysis, P-

value – P-value for observed effect, Study – published study where effect estimates for traits were obtained.
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Table 4: Results of analysis investigating causal relationship between methylation and expression using Two-Sample Mendelian 

randomization 

SNP Gene CpG CpG effect eQTL effect eQTL P-value eQTL tissue 2SMR P-value 

rs116552240* ABO cg21160290 0.912 (0.036) 0.548 (0.069) 1.316 x 10-13 Adipose 0.601 (0.079) 3.28 x 10-14 

rs6737082 ADCY3 cg01884057 0.908 (0.026) 0.208 (0.047) 1.456 x 10-5 Adipose 0.229 (0.052) 1.13 x 10-5 

rs266772 ADIPOQ cg05578595 0.982 (0.103) -0.339 (0.078) 1.893 x 10-5 Adipose -0.345 (0.087) 7.67 x 10-5 

rs688456 APOA1 cg04087571 -0.884 (0.044) 0.420 (0.095) 1.789 x 10-5 Heart -0.475 (0.11) 1.58 x 10-5 

rs541041 APOB cg25035485 -0.627 (0.053) -0.370 (0.066) 6.326 x 10-08 Heart 0.590 (0.116) 4.06 x 10-7 

rs646776 CELSR2 cg00908766 -0.980 (0.037) -1.11 (0.117) 2.463 x 10-15 Liver 1.133 (0.127) 4.20 x 10-19 

rs174559 FADS1 cg19610905 -0.655 (0.031) -0.707 (0.089) 5.629 x 10-13 Pancreas 1.079 (0.145) 1.04 x 10-13 

rs10908837 IL6R cg02856953 -0.303 (0.039) -0.120 (0.020) 4.171 x 10-09 Whole Blood 0.396 (0.083) 2.05 10-6 
* indicates surrogate variant used (r2 >0.8), SNP – Single Nucleotide Polymorphism, Gene – likely implicated gene, CpG – 450K probe ID, CpG 

effect – effect estimate of SNP on methylation, eQTL effect – effect estimate of SNP on expression based on GTEx data, eQTL P – P-value for eQTL 

from GTEx, eQTL tissue – tissue type for observed effect according to GTEx, 2SMR effect – effect estimates from 2-Sample MR analysis, P-value – 

P-value for observed 2SMR effect 
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