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Abstract 1 

Bimodal gene expression by genetically identical cells is a pervasive feature of signaling 2 

networks, but the mechanisms modulating bimodality are poorly understood. We found that 3 

natural yeast strains induce the galactose-utilization (GAL) pathway with a variety of bimodal 4 

phenotypes in mixtures of glucose and galactose. The phenotypic variation can be described in 5 

terms of two uncorrelated features representing the fraction of cells that are induced and the 6 

expression level of the induced subpopulation. We mapped genomic loci underlying these two 7 

traits using bulk-segregant analysis, identified causal genes in 3 loci, and phenotyped allele-8 

replacement strains containing all allelic combinations of these genes. One gene affected only the 9 

induced fraction of the GAL response, another affected only the level of induction, and a third 10 

gene affected both traits. Additionally, the genetic effect on induced fraction could be 11 

phenocopied by varying the growth conditions prior to galactose induction. Our results show that 12 

different quantitative features of a bimodal signaling response can be tuned independently by 13 

genetic and environmental perturbations, and that this tuning can change the response from 14 

unimodal to bimodal. This modularity may help cells adapt to complex natural environments on 15 

physiological as well as evolutionary timescales.  16 
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Introduction 17 

Non-genetic heterogeneity is a pervasive feature of gene expression and cellular signaling [1–3]. 18 

Bimodal responses, where cells in an isogenic population adopt one of two distinct states, are 19 

particularly important for microbes coping with fluctuating environments [4,5] and cells of 20 

multicellular organisms differentiating into discrete types [6,7]. The galactose-utilization (GAL) 21 

pathway in Saccharomyces cerevisiae (budding yeast) is a well-characterized bimodal response 22 

and a classic model of microbial decision-making [8,9]. GAL enzymes are tightly repressed in 23 

glucose and activated almost 1000-fold in galactose [10]. In mixtures of glucose and galactose, 24 

GAL genes induce as a function of the galactose-to-glucose ratio [11] and display complex 25 

patterns of bimodal expression [12].  26 

Bimodality of GAL gene expression is attributed to bistability arising from positive feedback 27 

through the Gal1p kinase and Gal3p transducer [13,14]. However, perturbing other pathway 28 

components such as  Gal2p permease, Gal4p activator, and Gal80p repressor also affect 29 

quantitative features of the GAL response [14–17]. Additionally, the modality of the GAL 30 

response is affected by the metabolic conditions prior to encountering galactose [12]. Despite the 31 

complex response of GAL expression distributions to genetic and environmental perturbations, 32 

most studies of the pathway have focused on one quantitative feature such as the induced 33 

fraction [16,18,19], with a few recent exceptions [13,20]. How multiple quantitative features of 34 

the pathway are controlled and vary across perturbations is poorly understood. 35 

In previous work, we found that natural yeast isolates differed widely in the inducibility of GAL 36 

genes in glucose + galactose mixtures [19,21]. In particular, some strains displayed bimodal 37 

activation of GAL genes while other strains were unimodal in the same conditions. Similar 38 
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population heterogeneity has been seen in yeast maltose utilization [22] and bacterial utilization 39 

of various sugar mixtures [23]. This natural variation provides an opportunity to dissect the 40 

genetic variants modulating bimodality in nature and expand our knowledge of the repertoire of 41 

quantitative behaviors that can be achieved by this model circuit. 42 

In this work, we showed that natural yeast isolates induce the GAL pathway with a diverse array 43 

of bimodal and unimodal expression patterns that vary with sugar conditions. We analyzed this 44 

variation in terms of two traits representing the induced fraction of cells and the expression level 45 

the induced subpopulation, which vary in an uncorrelated way across natural isolates. Using bulk 46 

segregant analysis and CRISPR/cas9 allele replacement, we identified genetic variants 47 

underlying these two traits and showed that the variants can affect the traits independently of 48 

each other. Additionally, we found that the metabolic history of cells before inducing GAL genes 49 

also affects the bimodal response in a trait-specific way. The independent tuning of these two 50 

quantitative features of the GAL response can account for the diversity of unimodal and bimodal 51 

phenotypes observed in our natural isolates. This genetic flexibility may be advantageous for 52 

cells adapting to complex natural nutrient environments. 53 

Results 54 

Natural yeast isolates vary in the degree of bimodality of GAL induction 55 

To study natural variation in the population behavior of the GAL pathway response, we 56 

measured the expression of a GAL1 promoter driving YFP (GAL1pr-YFP) in 34 geographically 57 

and ecologically diverse yeast strains [21,24,25] grown in a titration of glucose plus a constant 58 

level of galactose. As expected, we found that all strains are uninduced in high glucose and fully 59 

induced in low or no glucose (Figure 1). However, at intermediate glucose concentrations, some 60 
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strains display a unimodal population with intermediate (i.e. sub-maximal) GAL expression 61 

(Figure 1B) while other strains display a bimodal mixture of uninduced and partially induced 62 

cells (Figure 1C). Additionally, strains with the same modality still have quantitatively different 63 

GAL induction profiles (Figure S1), raising the question of what mechanisms can give rise to 64 

these diverse signaling phenotypes. 65 

Variation in GAL bimodality phenotypes can be parameterized by two uncorrelated 66 
metrics 67 

Upon close inspection, the GAL induction phenotypes generally seem to be a mixture of two 68 

components: an induced subpopulation that decreases in YFP level as glucose increases, and an 69 

uninduced subpopulation that remains at the same YFP level regardless of glucose concentration 70 

(Figure S2A). The mixing of these components can be quantified as an induced fraction that 71 

decreases as a function of glucose concentration (Figure S2B). Simply by varying the glucose-72 

dependence of the induced fraction and of the induced subpopulation expression level, we can 73 

simulate many bimodal phenotypes, as well as unimodal phenotypes, reminiscent of the observed 74 

data (Figure S1, S4.2B-C). In this framework, a strain which is unimodal in a particular 75 

condition has an induced fraction of one (but a sub-maximal induced level), while a strain that is 76 

bimodal in this condition has an induced fraction of less than one. 77 

Applying this population decomposition framework to our data, we computationally separated 78 

induced and uninduced cells from each GAL reporter distribution (Figure 2E) and calculated two 79 

summary metrics for each strain’s phenotype: ���, the glucose concentration where the induced 80 

subpopulation reaches 10% of its maximal GAL expression level, and ���, the glucose 81 

concentration where 50% of cells in the population are induced (Figure 2F). For convenience, 82 

these metrics are in log2-transformed units, so a strain with ��� � �1 has an induced 83 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2017. ; https://doi.org/10.1101/131938doi: bioRxiv preprint 

https://doi.org/10.1101/131938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

5 

subpopulation that reaches 10% of maximal induction at 2�� � 0.5% w/v glucose. We find that 84 

the ��� and ��� are uncorrelated across natural isolates, suggesting the possible existence of 85 

genetic changes that can decouple them (Figure 2G). 86 

Bulk segregant analysis identifies genetic loci associated with GAL induction variation 87 

To analyze the genetic basis of ��� and ���, we crossed strains S288C and DBVPG1106 and 88 

phenotyped random haploid segregants from their hybrid. These parent strains differ in both 89 

traits, and their segregants display semi-continuous, correlated variation in these traits with a 90 

small number of outliers. Therefore, ��� and ��� are likely modulated by multiple genes, at least 91 

some of which affect both traits. 92 

To identify these genes, we performed bulk-segregant linkage mapping using a pooled sorting 93 

strategy (Figure 2B). We chose a glucose+galactose condition where the parental GAL1pr-YFP 94 

distributions were maximally different and used it to induce a pooled mixture of haploid (MATa) 95 

segregants (Figure 2C). We then used FACS to sort the segregants into pools of uninduced 96 

(“OFF”), induced and low-expression (“LOW”), and induced and high-expression (“HI”) cells 97 

(Figure 2C), and sequenced each pool to 15-33x coverage. We expected that a genomic locus 98 

affecting the induced level (and thus ���) will differ in allele frequency between the LOW and 99 

HI pools, while any locus affecting the induced fraction (and thus ���) would differ in parental 100 

allele frequency between the OFF pool and a computationally merged LOW+HI pool (“ON”) 101 

(Materials and Methods). 102 

We found 5 loci with significantly different allele frequencies between OFF/ON pools or 103 

between LOW/HI pools, defined as genomic regions with a peak log-odds (LOD) score > 5 104 

calculated by MULTIPOOL [26] (Figure 3D; Materials and Methods). To look for causal 105 
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variants, we inspected gene annotations in a region of 2-LOD decrease around each LOD peak. 106 

The three most significant loci are centered at chrIV:457Kb, chrXIV:457Kb, and chrXVI:81Kb 107 

and contain the genes GAL3, MKT1, and GAL4, respectively (Figure 3D). GAL3 and GAL4 are 108 

direct regulators of galactose sensing, while MKT1 is known to have pleiotropic effects in 109 

crosses between S288C and natural isolates . The GAL3-associated locus was significant only in 110 

the OFF/ON comparison, while the GAL4-associated locus was only significant in the LOW/HI 111 

comparison, suggesting that the effect of these loci are specific to either ��� or ���. The MKT1-112 

associated locus was significant in both comparisons but had a higher LOD score in the LOW/HI 113 

than in the OFF/ON comparison. Unlike the other loci, the GAL4-associated locus was enriched 114 

for the S288C allele in the DBVPG1106-like segregant pool, suggesting the possibility of 115 

transgressive segregation. Two other loci, at chrXII:1053Kb and chrXIII:105Kb, were also 116 

significant and seemed to have phenotype-specific effects, but did not contain any obvious genes 117 

for follow-up. Therefore, we focused on the chrIV (GAL3-associated), chrXIV (MKT1-118 

associated), and chrXVI (GAL4-associated) loci for further investigation. 119 

GAL3 and GAL4 alleles specifically affect ��� and ��� while MKT1 alleles affect both traits 120 

To test if GAL3, MKT1, and GAL4 alleles are causal variants in the chrIV, chrXIV, and chrXVI 121 

loci, we used CRISPR/cas9 to replace the coding region and flanking regions of each gene 122 

(Materials and Methods) in both DBVPG1106 and S288C with the allele from the other parent 123 

(Figure S4). In DBVPG1106, replacing the endogenous GAL3 allele with GAL3S288C shifted ��� 124 

in the direction of the S288C parent (Figure S4A). MKT1 replacement also shifted ��� and had a 125 

small effect on ��� as well. GAL4 replacement had a small but clear effect on ��� and no 126 

detectable effect on ���. In the S288C background, allele replacements had similar trait-127 

specificity but much smaller effects (Figure S4B-C). In both parental backgrounds, the GAL4 128 
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allele replacement resulted in a change in ��� away from the value of the other parent. This is 129 

consistent with the sign of allele-frequency differences of the GAL4-containing locus between 130 

LOW and HI pools (Figure 2D) and confirms that GAL4 is a transgressive allele in this cross. 131 

Overall, these results show that GAL3, MKT1, and GAL4 are causal variants in their respective 132 

loci and corroborate the allelic effects inferred from our bulk segregant analysis.  133 

The single allele replacements only modestly altered the phenotype of the parent strains, 134 

suggesting that other genes make substantial contributions to the total phenotypic difference. 135 

Alternatively, there may be genetic interactions between our mapped genes such that allele 136 

replacement of 2 or 3 of them is sufficient to achieve conversion of one parental phenotype to the 137 

other. To assess these possibilities, we constructed all 16 combinations of strain background, 138 

GAL3 allele, MKT1 allele, and GAL4 allele from either the DBVPG1106 or S288C parent, and 139 

measured ��� and ��� of 2 independent isolates of each of the 16 genotypes. We examined the 140 

resulting phenotypic landscape (Figure 3A) in terms of pairs of strains differing in the allelic 141 

status of one gene (or strain background) while other genetic factors are held constant. The effect 142 

of switching from the the DBVPG1106 genetic variant to the S288C variant can be visualized as 143 

a vector in ��� versus ��� space (Figure 3B-E) or as a trait difference (Figure 3F). 144 

This analysis reveals that the trait-specificity of single genetic changes are broadly consistent 145 

across different genotypic backgrounds (i.e. combinations of strain background and alleles at the 146 

other loci). This can be seen in the fact that effect vectors from DBVPG1106 to S288C variants 147 

in ���-��� space are parallel (Figure 3B-E), or equivalently, that differential effects cluster by 148 

angle to the origin (Figure 3F). Across the combinatorial allele replacement strains, it is clear 149 

that GAL3 allele predominantly affects ���, GAL4 mostly affects ���, and MKT1 affects both 150 

traits. For example, a strain with GAL4S288C has a lower ��� than the congenic strain with 151 
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GAL4DBVPG1106 for all such strain pairs. These results show that ��� and ��� can be tuned 152 

independently in this cross. 153 

In contrast to trait-specificity, the effect sizes of single genetic changes across the combinatorial 154 

landscape are more complicated. In general, GAL3 allele effects on ��� are large, spanning up to 155 

half the phenotypic distance between the parents. MKT1 allele effects on ��� are almost as great, 156 

and combined with GAL3 allele replacement, can essentially phenoconvert DBVPG1106 to 157 

S288C, but only along the ��� axis (DSSD versus in DDDD in Figure 3A). However, the 158 

reciprocal replacement in the S288C background has a more modest effect (SDDS versus SSSS 159 

in Figure 3A). Consistent with these findings, the strain background effect on ��� (which can be 160 

interpreted as the residual variation after allele replacements) varies widely, from negligible to 161 

almost as large as that of GAL3 or MKT1. For the ��� trait, GAL4 allele effects span between a 162 

third and half the phenotypic distance between the parents, but in the opposite direction required 163 

for phenoconversion. Therefore, triple allele replacement strains DSSS (DBVPG1106 GAL3S288C 164 

MKT1S288C GAL4S288C) and SSSD still differ substantially in ��� from their respective wildtype 165 

SSSS and DDDD strains. Overall, strain background has effects on both ��� and ��� in most 166 

genotype backgrounds, indicating substantial variation in both traits not accessed by our allele 167 

swaps. 168 

Genetic and environmental perturbations that affect ��� do not affect ��� 169 

Our results above show that ��� can be tuned independently of ��� by some genetic variants in 170 

the S288C x DBVPG1106 cross. To see if this is true over a larger range of ���, we analyzed 171 

phenotypic data on S288C, BC187, and DBVPG1106 strains whose GAL3 loci have been 172 

replaced with a panel of natural GAL3 alleles that we previously showed to underlie a spectrum 173 
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of GAL inducibility phenotypes [19]. As expected, ��� varied widely as the GAL3 allele is 174 

changed (Figure 4A). However, variation in ��� with GAL3 allele was minimal and driven 175 

almost entirely by the strain background (Figure 4B). 176 

Previously, a laboratory yeast strain was found to induce GAL genes bimodally or unimodally 177 

depending on the carbon source prior to galactose induction [12]. To see how metabolic memory 178 

affects ��� and ��� across our natural isolates, we pre-grew six strains in raffinose, acetate, or 179 

glycerol prior to induction in glucose + galactose. These carbon sources are neither inducers of 180 

GAL genes nor signals for glucose catabolite repression [27]. Nevertheless, they caused the yeast 181 

strains to exhibit different ��� upon subsequent induction in glucose + galactose (Figure 4C). We 182 

did not observe a carbon source pre-conditioning effect on ��� (Figure 4D). This parallels the 183 

effect of GAL3 alleles, and suggests that the independent tuning of ��� and ��� is a consequence 184 

of how the GAL circuit is integrated with carbon metabolism more broadly. 185 

Independent tuning of ��� and ��� modulates the modality of the GAL response 186 

The definitions of the ��� and ��� metrics (Figure 1F, S4.2) imply that tuning either parameter 187 

independently should alter the apparent number of modes in GAL expression distributions. Since 188 

��� varies over a wider range of glucose concentrations than ��� does under the perturbations we 189 

tested, we asked if independently tuning ��� affects modality.  Indeed, plotting GAL reporter 190 

distributions shows that a number of allele replacements are able to convert strains from being 191 

bimodal to unimodal and vice versa. For example, DBVPG1106 is bimodal, but replacing alleles 192 

with GAL3S288C and MKT1S288C increases its ��� and makes it unimodal (Figure 5A-B). 193 

Conversely, BC187 is unimodal, but decreasing its ��� by introducing GAL3YJM978 makes it 194 

bimodal (Figure 5C-D). Finally, Y12-WashU, one of the most obviously bimodal strains, is 195 
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rendered unimodal when pre-conditioned in acetate rather than raffinose before galactose 196 

induction (Figure 5E-F).  197 

Discussion 198 

Independent tuning and the molecular mechanism of bimodality 199 

It is known that positive feedback on GAL gene expression through GAL3 tunes the switching 200 

rate of cells between uninduced and induced states [14] and is a key contributor to the bistability 201 

of the pathway [13]. Changes in GAL3 dosage affects the induced fraction of GAL genes [16], 202 

and a panel of natural GAL3 variants confers a spectrum of GAL induction phenotypes [19]. We 203 

put these previous observations in context by showing that natural GAL3 alleles specifically 204 

affect the sugar threshold where individual cells to switch to an induced state, while the level of 205 

induction in that state is set by GAL4 and other unknown genes. Both these features combine to 206 

yield the population level behavior of the circuit, including apparent patterns of bimodality. 207 

Underscoring this point, we found that GAL3 allele replacement is sufficient to convert a 208 

unimodal response to bimodal, and vice versa, while the level of the induced subpopulation 209 

remains unchanged. This degree of modularity in the quantitative behavior of the GAL circuit 210 

was previously unappreciated. 211 

GAL4 is the transcription factor activating all inducible GAL genes [10,28]. Previously, changes 212 

in dosage of GAL4 was found to have no effect on the GAL induced fraction [16]. The S288C 213 

variant of GAL4 contains a non-conservative R95G mutation, as well as a conservative R508K 214 

mutation, relative to DBVPG1106 and other natural isolates. Residue 95 is on a loop linking the 215 

DNA-binding and regulatory domains of GAL4 and directly participates in interactions with 216 

Gal11p [29,30], a component of the RNA polymerase II mediator complex that enhances 217 
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expression of GAL genes [31]. These observations suggest that the S288C and DBVPG1106 218 

GAL4 alleles might differ in their ability to activate transcription of GAL genes. This effect 219 

could be specific to induced level if differences in GAL4 activity only affect GAL promoters that 220 

are in an active state and the latter variable is separately dictated by feedback loops such as 221 

GAL3. An important question for future work is whether this scenario is quantitatively plausible 222 

in a mathematical model of the GAL circuit, and what general features of this and other circuits 223 

allow for independent tuning. 224 

Modularity of the GAL pathway, genetic background, and metabolic state 225 

We also find that MKT1 alleles affect the GAL response and can play almost as large a role as 226 

GAL3. MKT1 is involved in maintaining killer toxin [32], regulating translation [33], and affects 227 

numerous traits in crosses between S288C and natural isolates [34–39]. The S288C allele of 228 

MKT1 is a loss-of-function variant relative to natural alleles and causes lower expression of 229 

mitochondrial genes [40,41]. In turn, deletion mutants of mitochondrial genes tend to exhibit 230 

aberrant GAL induction; this effect is more pronounced on the induced fraction than on induced 231 

level [42], echoing our observations. Therefore, it is likely that the effect of MKT1 allele on GAL 232 

induction is due to perturbations to mitochondrial function. 233 

We found that much of the variation in ���, and to a lesser extent ���, must be attributed to 234 

unknown alleles in the genetic background. This dovetails with other recent reports that many 235 

traits in yeast are dominated by large effects from one or a few loci but can be tuned 236 

quantitatively by many small-effect loci [19,42–44]. Moreover, MKT1 is not a member of the 237 

canonical GAL pathway, and nor are any genes in 2 other loci that reached significance in our 238 

linkage mapping. Combined with observations that deletion mutants of up to quarter of all yeast 239 
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genes have quantitatively perturbed GAL signaling [42], our results indicate that decision-240 

making circuits are not as modular with respect to genetic variation as is often assumed. 241 

In addition to genetic effects on GAL induction, we found that culturing cells in raffinose, 242 

glycerol, or acetate prior to induction in a glucose + galactose led to very different GAL 243 

phenotypes. Raffinose is commonly used to pre-culture cells for GAL induction studies 244 

(including most experiments here) because unlike glucose, it does not visibly repress GAL genes 245 

[14,45]. We chose glycerol and acetate by the same criterion. Otherwise, however, these carbon 246 

sources elicit very different physiological responses. Raffinose is hydrolyzed to release fructose 247 

[46], which can then be fermented [47,48]. Glycerol and acetate, by contrast, must be utilized via 248 

respiration [49], which entails expression changes in many genes [50] as well as differences in 249 

ATP/ADP ratio and redox state [51]. Therefore, our results suggest that factors other than 250 

canonical glucose catabolite repression may be important in setting the inducibility of GAL 251 

genes. 252 

Our results indicate that memory of metabolic state is encoded by the GAL circuit and persists 253 

even after the cells have reached steady-state in inducing conditions (Figure 5B, Materials and 254 

Methods). This appears to be a distinct phenomenon from the “memory” of glucose or galactose 255 

pre-induction conditions previously attributed to bistability of the GAL network [14,52]. 256 

However, the fact that pre-induction carbon source specifically affects ���, just as GAL3 allele 257 

does, suggests that this positive feedback loop may be a nexus of regulation of GAL genes by 258 

multiple signals in the cell. Indeed, recently it was shown that NAD(P) can directly bind Gal80p 259 

and thereby impact downstream GAL pathway expression [53,54]. Since these studies relied on 260 

bulk measurements, it will be interesting to revisit these investigations using quantitative, single-261 

cell readouts of pathway behavior. 262 
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Physiological and ecological role of independent tuning 263 

Our results raise the question of why independent tuning of induced fraction and induced level 264 

would exist in nature. Previously we showed that natural variation in the timing of GAL 265 

induction during diauxic growth leads to a fitness tradeoff—some strains prepare for glucose 266 

exhaustion at an upfront cost while others maximize their growth rate on glucose but suffer a 267 

diauxic lag [21]. Related work showed that both strategies could be implemented by the same 268 

strain as part of a bimodal response [20], and that this may be an evolutionarily stable strategy 269 

[55]. Under this framework, tuning ��� and ��� separately would allow the timing of the 270 

inducing population, and its level of induction, to evolve separately. This could provide fitness 271 

benefits in certain conditions, although exactly what these conditions are would depend on the 272 

quantitative details of the costs and benefits of induction, an interesting issue to be explored in 273 

future work. 274 

Materials and Methods 275 

Strains and media 276 

Strains were obtained as described in [21]. An initial set of 42 strains were assayed in glucose 277 

gradients + galactose. Strains CLIB324, L-1528, M22, W303, YIIC17-E5, YJM975, YJM981 278 

were excluded from downstream analysis due to poor growth in our media conditions. Strain 279 

378604X was also excluded due to a high basal expression phenotype that was an outlier in our 280 

collection. The genetic basis of this behavior is likely an interesting topic for follow-up studies. 281 

All experiments were performed in synthetic minimal medium, which contains 1.7g/L Yeast 282 

Nitrogen Base (YNB) (BD Difco) and 5g/L ammonium sulfate (EMD), plus D-glucose (EMD), 283 

D-galactose (Sigma), or raffinose (Sigma). Cultures were grown in a humidified incubator 284 
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(Infors Multitron) at 30°C with rotary shaking at 230rpm (tubes and flasks) or 999rpm (600uL 285 

cultures in 1mL 96-well plates). 286 

Flow cytometry assay in glucose gradient 287 

GAL induction experiments were performed in a 2-fold dilution series of glucose concentration, 288 

from 20% to 2-9% w/v, with constant 0.25% galactose. 2% glucose and 2% galactose conditions 289 

were also included with each glucose titration experiment. To assess and control for well-to-well 290 

variation, experiments were performed as a co-culture of a “query” strain to be phenotyped and a 291 

“reference” strain that was always SLYB93 (natural isolate YJM978 with constitutive mCherry 292 

segmentation marker). 293 

To start an experiment, cells were struck onto YPD agar from -80C glycerol stocks, grown to 294 

colonies, and then inoculated from colony into YPD liquid and cultured for 16-24 hours. Then, 295 

query and reference strain cultures were mixed 9:1 by volume and inoculated in a dilution series 296 

(1:200 to 1:6400) in S + 2% raffinose medium. The raffinose outgrowths were incubated for 16-297 

20 hours, and then their optical density (OD600) was measured on a plate reader (PerkinElmer 298 

Envision). One outgrowth culture with OD600 closest to 0.1 was selected for each strain, and then 299 

washed once in S (with no carbon sources). Washed cells were diluted 1:200 into glucose + 300 

galactose gradients in 96-well plates (600uL cultures in each well) and incubated for 8 hours. 301 

Then, cells were harvested and fixed by washing twice in Tris-EDTA pH 8.0 (TE) and 302 

resuspended in TE + 0.1% sodium azide before transferring to a shallow microtiter plate 303 

(CELLTREAT) for measurement. Flow cytometry was performed using a Stratedigm S1000EX 304 

with A700 automated plate handling system. Data analysis was performed using custom 305 

MATLAB scripts, including Flow-Cytometry-Toolkit (https://github.com/springerlab/Flow-306 

Cytometry-Toolkit). 307 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2017. ; https://doi.org/10.1101/131938doi: bioRxiv preprint 

https://doi.org/10.1101/131938
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

15

Experiments using glycerol and acetate as pre-induction carbon sources were done as above, 308 

except S + 3% glycerol or S + 2% potassium acetate were used instead of raffinose medium for 309 

the outgrowth step. 310 

Crossing and generating segregants 311 

To prepare parent strains for crossing and sporulation, we sporulated diploid natural isolates 312 

bearing the hoΔ::GAL1pr-YFP-hphNT1 reporter cassette and isolated random spores that 313 

displayed MATa or MATα  phenotypes in test crosses. We then introduced a constitutive 314 

fluorescent marker in tandem with the GAL reporter, to obtain MATa; hoΔ::GAL1pr-YFP-315 

mTagBFP2-kanMX4 or MATα; hoΔ::GAL1pr-YFP-mCherry-natMX4 parent strains. To the 316 

MATa parent we also introduced a pRS413-derived plasmid bearing STE2pr-AUR1-C and 317 

hphNT1. This plasmid is maintained by hygromycin selection but also allows selection for  318 

MATa cells by Aureobasidin A [56]. This plasmid design is inspired by a similar mating-type 319 

selection plasmid used in a recent study [57]. 320 

To isolate segregants for phenotyping, we crossed a parent with BFP-kanMX + MAT-selection 321 

plasmid to a parent with mCherry-natMX and isolated a G418RNatRHygR diploid hybrid with the 322 

plasmid. We sporulated the hybrid by culturing it to saturation in YPD, diluting 1:10 in YP+2% 323 

potassium acetate and incubating at 30C for 8 hours, and washing and resuspending into 2% 324 

potassium acetate and incubating at 30C until >20% of cells were tetrads, or about 3 days. We 325 

incubated ~5x106 tetrads in 100uL water with 50U of zymolyase 100T (Zymo Research) for 5 326 

hours at 30C, and then resuspended tetrads in 1mL of 1.5% NP-40 and sonicated for 10 seconds 327 

at power setting 3 on a probe sonicator (Fisher Scientific). The resulting segregants were plated 328 

on YPD + 0.5ug/mL Aureobasidin A (“AbA”; Clontech) and random colonies were picked into 329 
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YPD liquid and saved as glycerol stocks. Haploidy was confirmed by mating to tester strains 330 

with known mating type. 90 segregants were phenotyped for GAL induction as described above. 331 

Sorting-based bulk-segregant analysis 332 

To generate segregant pools, we prepared a diploid hybrid and sporulated it as described above. 333 

To reduce the size of recombination blocks and improve the resolution of linkage mapping [58], 334 

we then performed the following “intercross” protocol 4 times: from spore suspension, use Sony 335 

SH800 Cell Sorter to sort 4x106 BFP+ or mCherry+ (but not +/+ or -/-) cells into 100uL YPD + 336 

40ug/mL tetracycline; incubate for 16 hours at 30C without shaking; add 5mL YPD + 200ug/mL 337 

G418 + 100ug/mL ClonNat + 200ug/mL Hygromycin B and incubate 48 hours at 30C with 338 

shaking; sporulate cultures and prepare sonicated spore suspension. After the 4th sporulation 339 

cycle, the sonicated spores were resuspended in YPD + 0.5ug/mL AbA and incubated at 30C for 340 

16 hours. This culture was frozen as a glycerol stock, as well as used to inoculate the galactose-341 

induction sorting experiment. 342 

To sort segregant pools for bulk genotyping, we inoculated the intercrossed, MATa-selected 343 

segregants from a saturated YPD culture into S + 2% raffinose + AbA at dilutions of 1:200, 344 

1:400, 1:800, and 1:1600, and incubated at 30C for 16-24 hours. We chose the raffinose culture 345 

with OD closest to 0.1, washed once in S (0.17% Yeast Nitrogen Base + 0.5% Ammonium 346 

Sulfate), and diluted 1:200 into S + 0.25% glucose + 0.25% galactose + AbA. We incubated the 347 

glucose-galactose culture at 30C for 8 hours, and then used a Sony SH800 sorter to isolate pools 348 

of 30,000 cells with the 5% lowest (“OFF”) and highest (“HI”) YFP expression, among cells 349 

whose Back Scatter (BSC) signal was between 105 and 3x105. The “LOW” pool was similarly 350 

obtained, but from the 5% of cells with lowest non-basal expression (Figure S3). The sorted cells 351 

were resupended in YPD + AbA and incubated at 30C until saturation, about 16-24 hours. An 352 
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aliquot of this culture was saved for -80C glycerol stocks, and another was used to prepare 353 

sequencing libraries. 354 

To sequence the segregant pools, we extracted genomic DNA from 0.5mL of saturated YPD 355 

culture of each segregant pool using the PureLink Pro 96 kit (Thermo Fisher K182104A). From 356 

these genomic preps, we made sequencing libraries using Nextera reagents (Illumina FC-121-357 

1030) following a low-volume protocol [59]. We adjusted the input DNA concentration so that 358 

resulting libraries had mean fragment sizes of 200-300bp as measured on a BioAnalyzer. 359 

Libraries were multiplexed and sequenced in an Illumina NextSeq flow cell to a depth of 16-33x.  360 

Reads from the Illumina sequencing were aligned to the sacCer3 reference genome using bwa 361 

mem, and SNP counts were generated using samtools mpileup, on the Harvard Medical School 362 

Orchestra cluster . These outputs were processed in MATLAB using custom code as follows: 363 

SNPs with coverage less than 2 or more than 1000 were removed. The LOW and HI pools were 364 

computationally merged into an ON pool. To make sure the two pools contributed equally to the 365 

merged pool, at each SNP, allele counts in the pool with higher coverage were randomly 366 

subsampled to the coverage of the other pool. The final allele counts in each pool were output to 367 

text files by chromosome and given as inputs to the MULTIPOOL algorithm (mp_inference.py 368 

version 0.10.2) [60] to compute LOD scores. Loci with maximal LOD>5 were considered 369 

significant; previous work showed that this corresponded to an FDR of 5% [61,62]. This 370 

correspondence may differ under our experimental conditions; therefore, the 2 loci that we did 371 

not validate experimentally should be interpreted with caution. 372 
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CRISPR/Cas9 allele replacement 373 

Allele replacement strains were constructed using 3 rounds of gene knockout followed by 374 

CRISPR/Cas9-mediated markerless integration of heterologous allele. Initially, strains were 375 

prepared by introducing Cas9 on a CEN/ARS plasmid (SLVF11); this plasmid is derived from a 376 

previous one [63], but we replaced the auxotrophic URA3 marker with AUR1-C to allow 377 

Aureobasidin A selection on prototrophic natural isolates. In each round of allele replacement, a 378 

gene plus upstream and downstream flanking sequences (-784bp to +815bp for GAL3, -449bp to 379 

+372bp for MKT1, -191bp to +139bp for GAL4) was deleted by integration of a kanMX6 marker 380 

with 40bp flanking homology. Then, a donor DNA, a guide RNA insert, and a guide RNA 381 

backbone were simultaneously transformed into the strain [64]. The donor DNA  contains the 382 

new allele, its flanking sequences, and an additional 40bp of homology to target it to the correct 383 

genomic locus. The guide RNA insert was a linear DNA containing a SNR52 promoter driving a 384 

guide RNA gene containing a 20bp CRISPR/Cas recognition sequence linked to a crRNA 385 

scaffold sequence, plus 40bp of flanking homology on both ends to a guide RNA backbone. The 386 

guide RNA backbone was a 2u plasmid containing natMX4 (pRS420). This was linearized by 387 

NotI + XhoI digestion before transformation. Allele re-integration transformations were plated 388 

on cloNAT to select for in vivo assembly of the guide RNA into a maintainable plasmid, and 389 

Aureobasidin A to select for presence of Cas9. Successful re-integration was verified by colony 390 

PCR and Sanger sequencing was performed on a subset of strains and on all donor DNAs to 391 

verify the sequence of allelic variants. 392 
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Figure Captions 560 

Figure 1. Natural variation in GAL induction can be analyzed in terms of two uncorrelated 561 

features 562 

Each plot is a series of YFP fluorescence (normalized to side scatter “SSC”) histograms from 12 563 

sugar conditions for strains (A) I14, (B) S288C, (C) DBVPG1106, and (D) YJM978. Other 564 

phenotyped strains are shown in Figure S1. Darker regions represent more frequently observed 565 

YFP values. The middle 10 conditions in each plot are 0.25% galactose + the indicated 566 

concentrations of glucose. The first and last conditions contain only one sugar: “D”, 2% glucose; 567 

“G”, 2% galactose. (E) Identification of induced cell subpopulation (green shading) using a 568 

reference distribution from 2% glucose (black histogram) (Materials and Methods). (F) Induced 569 

level (blue line) and induced fraction (orange line), and the corresponding ��� and ��� metrics, 570 

for strain DBVPG1106. (G) Scatterplot of ��� versus ��� across 34 S. cerevisiae natural isolates 571 

(mean and S.D.; n=3-10). 572 

Figure 2. Bulk segregant analysis of ��� and ��� 573 

(A) ��� versus ��� across 90 haploid segregants of the DBVPG1106 x S288C cross. Parent 574 

phenotypes are shown as filled circles: DBVPG1106 (red), S288C (blue). (B) Schematic of bulk 575 

segregant analysis strategy. (C) GAL reporter histograms of parent strains DBVPG1106 (red) 576 

and S288C (blue) and a pool of haploid segregants (gray, bottom) in the sorting conditions, 577 

0.25% glucose + 0.25% galactose. Green boxes are a schematic of the gates used to sort 578 

segregant cells into 3 phenotyped pools for sequencing (Gates used in actual sorting experiment 579 

are shown in Figure S3). ON pool allele counts are a computational sum of the LOW and HI 580 

pool allele counts (Materials and methods). (D) Genome-wide plots of differential allele 581 

frequency and log-odds-ratio (LOD) as computed by the MULTIPOOL algorithm (see Main 582 

Text, Materials and Methods). Top two panels show the OFF/ON comparison; bottom two 583 

panels show the LOW/HIGH comparison. 584 

Figure 3. Combinatorial effects of strain background and GAL3, MKT1, and GAL4 alleles. 585 

(A) ��� versus ��� for all 16 combinations of S288C (“S”) or DBVPG1106 (“D”) strain 586 

background (gray letters), GAL3 allele (red), MKT1 allele (green), and GAL4 allele (blue). 587 

Effects of switching from DBVPG1106 to S288C variant while holding other genetic variables 588 
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constant are shown as arrows for switching (B) GAL3 allele, (C) MKT1 allele, (D) GAL4 allele, 589 

or (E) strain background. (F) The effects shown in (B)-(E) are plotted as differences in ��� 590 

versus differences in ���. 591 

Figure 4. Perturbations that affect ��� do not affect ��� 592 

(A) ��� and ��� for allele-replacement strains with S288C, BC187, or DBVPG1106 genetic 593 

backgrounds but containing alleles of GAL3 from various other natural isolates. (B) ��� and ��� 594 

for 8 natural isolate strains induced in glucose+galactose after being cultured in raffinose, 595 

glycerol, or acetate. Raffinose pre-culture is the standard condition used for the other 596 

experiments in this paper. 597 

Figure 5. Changing ��� changes the number of modes of the GAL response 598 

Plotted are GAL reporter histogram series on a glucose gradient + galactose, as in Figure 1F, 599 

with induced expression level (blue line), ��� (dotted vertical blue line), induced fraction (orange 600 

line), and ��� (dotted vertical orange line). These plots show one representative experiment for 601 

each strain/condition, out of the 3-12 replicates plotted in Figures 4.3 and 4.4. Strains: (A) 602 

DBVPG1106 with all endogenous alleles; (B) DBVPG1106 with replacements by GAL3 and 603 

MKT1 alleles from S288C. (C) BC187 with endogenous alleles; (D) BC187 with replacement by 604 

GAL3 allele from YJM978; (E) Y12-WashU cultured in raffinose prior to glucose + galactose 605 

(standard protocol); (F) Y12-WashU pre-cultured in acetate.  606 
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Supporting Information 607 

Text S1. All Supporting Figures 608 

Contains Figures S1-4 and their captions. 609 

Figure S1. GAL response phenotypes for 34 natural isolates 610 

Plotted are series of GAL1pr-YFP fluorescence (normalized to side scatter “SSC”) histograms 611 

from 12 sugar conditions for 34 strains. One replicate experiment (out of 3-10 replicates) is 612 

shown for each strain. Data from all replicates is used to calculate ��� and ��� for the scatterplot 613 

in Figure 1G. 614 

Figure S2. Bimodal phenotypes simulated using a subpopulation decomposition framework 615 

(A) Two simulated subpopulations, where the mean of the induced population is shown in blue. 616 

(B) 3 possible functions for the dependence of induced fraction on glucose. (C) Simulated 617 

population behaviors using the 3 induced fraction functions. 618 

Figure S3. Sorting strategy for bulk-segregant analysis 619 

(A) Backscatter versus forward scatter of unsorted segregant pool, obtained on Sony SH800 cell 620 

sorter. (B) Backscatter versus FITC (YFP), showing mixture of uninduced and induced cells. 621 

Backscatter was used as a proxy for cell size; therefore, it is correlated with fluorescence. Gating 622 

on backscatter (rectangle) isolates differences in GAL1pr-YFP reporter among the cells. (C) 623 

Gates for OFF, LOW, and HI cells were drawn after gating on backscatter and shaped to follow 624 

the backscatter-FITC correlation. (D) View of gated populations as histogram on FITC axis. 625 

Figure S4. Effect of allele replacement of GAL3, MKT1, or GAL4 in DBVPG1106 and 626 

S288C backgrounds. 627 

Scatterplots of ��� versus ��� for (A) DBVPG1106 strains where the indicated genes (and 628 

flanking regions) have been replaced by their S288C alleles; (B) S288C strains containing 629 

replacements by DBVPG1106 alleles. (C) Enlargement of region in (B) outlined by dotted 630 

rectangle. Small circles are individual replicates (12 replicates per genotype, comprising 6 631 

replicates each for 2 independently constructed isolates – see Materials and Methods); large 632 

circles indicate the mean. These plots show a subset of the same data as in Figure 3. 633 
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