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ABSTRACT 14 

Background: 15 

RNA sequencing (RNA-seq) is widely used for RNA quantification across environmental, 16 

biological and medical sciences; it enables the description of genome-wide patterns of 17 

expression and the deduction of regulatory interactions and networks. The aim of 18 

computational analyses is to achieve an accurate output, i.e. rigorous quantification of 19 

genes/transcripts to allow a reliable prediction of differential expression (DE), despite the 20 

variable levels of noise and biases present in sequencing data. The evaluation of sequencing 21 

quality and normalization are essential components of this process.  22 

Results: 23 

We investigate the discriminative power of existing approaches for the quality checking of 24 

mRNA-seq data and also propose additional, quantitative, quality checks. To accommodate 25 

the analysis of a nested, multi-level design using data on D. melanogaster, we incorporated 26 

the sample layout into the analysis. We describe a “subsampling without replacement”-based 27 

normalization and identification of DE that accounts for the experimental design i.e. the 28 

hierarchy and amplitude of effect sizes within samples. We also evaluate the differential 29 

expression call in comparison to existing approaches. To assess the broader applicability of 30 

these methods, we applied this series of steps to a published set of H. sapiens mRNA-seq 31 

samples.  32 

Conclusions: 33 

The dataset-tailored methods improved sample comparability and delivered a robust 34 

prediction of subtle gene expression changes. Overall, the proposed approach offers the 35 

potential to improve key steps in the analysis of RNA-seq data by incorporating the structure 36 

and characteristics of biological experiments into the data analysis.  37 

 38 

Keywords: RNA-seq; quality check; normalization; subsampling normalization; 39 

identification of differential expression; hierarchical differential expression.  40 
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Background 41 

RNA sequencing (RNA-seq) has revolutionized the field of trascriptomics (Wang et al. 2009; 42 

Ozsolak et al. 2011), giving powerful insight into the identity and abundance of RNAs in cells, 43 

tissues and whole organisms (Jia et al. 2017). In contrast to the fixed, predefined set of probes 44 

used for microarray experiments, RNA-seq generates a diverse set of reads and facilitates 45 

analyses of expression level variation for known and unknown RNA transcripts and variants. 46 

It also offers the possibility to study additional facets of the transcriptome (Conesa et al. 2016a), 47 

such as the (re)annotations of the reference genomes (Torres-Oliva et al. 2016), the 48 

identification of alternative splicing events (Trapnell et al. 2012) and variation in abundance 49 

across transcripts (Dillies et al. 2013b; Patro et al. 2017).  50 

 Several bioinformatics methods have been used to analyse the rapidly rising number 51 

of RNA-seq datasets (reviewed in (Dillies et al. 2013b; Conesa et al. 2016a; Evans et al. 52 

2017)). However, to accommodate the use of RNA-seq in complex experimental designs, 53 

there is scope for further developments in: (i) the robust detection of subtle signatures of gene 54 

expression (the concordance of which is often very low between different bioinformatics 55 

methods, (Rapaport et al. 2013; Roca et al. 2017), (ii) the incorporation of hierarchical 56 

experimental designs (Love et al. 2014b; Robinson et al. 2015; Schurch et al. 2016), e.g. from 57 

evolutionary experiments (Fang et al. 2011), and (iii) minimising the effect of normalisation on 58 

the pattern of DE, especially when differences are subtle (Dillies et al. 2013b). We discuss 59 

these themes in the major steps of RNA-seq analysis, below. 60 

Quality Checks (QC) 61 

A key step in the analysis of RNA-seq data consists of sample quality checks and the 62 

identification, characterization and potential exclusion of sample outliers, e.g. those samples 63 

that are compromised due to technical issues (Consortium 2014). Existing tools, such as 64 

FastQC (Andrews 2010), SeqMonk (Andrews 2010) or TagCleaner (Schmieder et al. 2010) 65 

focus on evaluating the sequencing and the per-base quality. Additional QC may include an 66 

analysis of the per-base nucleotide composition and an evaluation of the overall GC content 67 
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(Risso et al. 2011; DeLuca et al. 2012; Wang et al. 2012). QC procedures focused on the 68 

sequencing bias comprise the characterization of k-mer distributions (Hansen et al. 2010) as 69 

well as other adapter ligation effects, such as the secondary RNA structure of the insert with 70 

the attached adapters (Jayaprakash et al. 2011b; Jackson et al. 2014). 71 

Quantitative analysis of sequencing output currently considers measures such as yield, 72 

coverage, 3’/5’ bias, number of detectable transcripts, strand specificity and read distribution 73 

across the genome (Consortium 2014). Additional steps, at the transcript level, include the 74 

classification of reads into annotation classes, which can highlight the presence of potential 75 

contaminant ncRNAs such as tRNAs and rRNAs (DeLuca et al. 2012; Wang et al. 2012). Such 76 

analyses can reveal over-represented classes of sequences, which could be removed in order 77 

not to distort the subsequent normalization and lead to changes in the ranking of abundances.  78 

 In recognition of the multiple sources of variation present in a biological experiment, a 79 

QC criterion is based on the Pearson Correlation Coefficient (PCC) between the gene 80 

expressions in biological replicates for transcripts that are detected in both samples (McIntyre 81 

et al. 2011; Gierlinski et al. 2015). Values of r2 = 0.92-0.98 are generally accepted. If the PCC 82 

falls below 0.9 the suggestion is to identify and potentially exclude the problematic samples 83 

(Conesa et al. 2016b). However, this criterion may lack discriminatory power; due to the high 84 

number of data points (expressed genes, e.g. vector containing >15K genes for D. 85 

melanogaster) correlations will often be very high between all samples, regardless of their 86 

quality.  87 

Additional steps for the quantitative evaluation of samples are possible, but are, as yet, 88 

under-utilised. These techniques include analyses of per-sample or per-gene complexities 89 

defined as the ratio of non–redundant (NR, unique) to redundant (R, total) reads (Mohorianu 90 

et al. 2011a), and similarity comparisons (Jaccard 1901), (Beckers et al. 2017). 91 

Normalization  92 

The next key stage in the analysis of RNA-seq data is the normalization of gene expression 93 

levels (Mortazavi et al. 2008b; Conesa et al. 2016a; Roca et al. 2017). Initial reports describing 94 

RNA-seq suggested that no normalization method was required (Wang et al. 2009). However, 95 

WITHDRAWN

see manuscript DOI for details

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/131862doi: bioRxiv preprint 

https://doi.org/10.1101/131862


Mohorianu 2017 5 
 

subsequent studies correctly highlighted normalization as a critical step (Bullard et al. 2010; 96 

Dillies et al. 2013a). Normalization is designed to transform the distributions of abundances 97 

for each sample, without distortion, into distributions that can be compared. A good 98 

normalization increases the chances of an accurate call of DE. It accounts for differences in 99 

sequencing depths and in biases arising from the library preparation or its sequencing (Li et 100 

al. 2014; Li et al. 2015; Lin et al. 2016). 101 

However, despite extensive attention from the community (Aanes et al. 2014), there is 102 

as yet no clear consensus on whether there is any single optimal normalization method (Dillies 103 

et al. 2013b; Roca et al. 2017). Nor is there any general appreciation of the potential 104 

magnitude of the consequences of ineffectively normalizing data; their extent depends on the 105 

amplitude and distribution of DE, with small gene expression differences being more sensitive 106 

than larger ones to the method of normalization. Therefore, particularly for analyses of subtle 107 

gene expression differences, it can be important to assess how well the data are normalized 108 

by a specific method (Wagner et al. 2012). Such tests are not a routine part of bioinformatics 109 

analyses (Evans et al. 2017).  110 

Identification of Differential Expression 111 

The goal of transcriptomics analyses is the accurate and unbiased identification of expressed 112 

genes and genes showing DE between treatments. The majority of existing methods exhibit 113 

a good level of overlap in terms of highly differentially expressed genes (Soneson et al. 2013; 114 

Roca et al. 2017) . However, their agreement is far less when DE is subtle. Comparative 115 

analyses of existing normalization procedures on real and simulated data sets show that only 116 

~50% of significantly differentially expressed genes are identified by all methods (Rapaport et 117 

al. 2013; Lin et al. 2016) .  118 

ANOVA-based methods are a powerful and extensively applied approach for the 119 

analysis of microarray data (Cui et al. 2003). However, such methods are based on a priori, 120 

to some extent arbitrary, significance thresholds and the type of experiment can greatly 121 

influence the expected number of genes showing DE. For example, if the DE frequency 122 

distribution is narrow, stringent p-value thresholds can indicate as statistically significant 123 
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genes that show very small fold change differences. Therefore, the set of DE genes identified 124 

by a fixed p-value threshold may not necessarily reflect biologically important facets of the 125 

data. Such differences are unlikely to be validated by low throughput methods (Evans et al. 126 

2017).  127 

Newer methods such as DESeq2 (Love et al. 2014a) and edgeR (Robinson et al. 2010) 128 

are based on the negative binomial distribution model for expression levels, using the variance 129 

and mean linked by local regression to detect DE genes (DESeq2) and empirical Bayes 130 

methods for moderating the degree of over dispersion across transcripts (edgeR). However, 131 

existing methods do not easily accommodate inherent, hierarchical experimental design with 132 

variable amplitude of DE between the hierarchy levels.  133 

To fully encompass this type of experiment (exemplified using the D. melanogaster 134 

dataset) we incorporated the structure and magnitude of gene expression differences into the 135 

analysis, prior to the DE call. We accounted for the specific type of variation in expression for 136 

behavioural experiments and structured the analysis framework for the mRNA-seq data (Fig. 137 

S1); from QC (including existing and new approaches) to a subsampling without replacement-138 

based normalization and finally a hierarchical approach for the identification of transcripts 139 

showing DE. The proposed analysis also features the use of an adjustable, empirically-140 

determined offset to filter out low abundance genes and a DE call using maximal confidence 141 

intervals. 142 

The adapted methods also performed well in direct comparisons with existing 143 

approaches for the analysis of a publicly available H. sapiens mRNA-seq dataset. Overall, the 144 

methods may offer advantages in the analysis of complex, challenging datasets and are 145 

complementary to existing approaches. 146 

 147 

RESULTS and DISCUSSION 148 

To develop and test the adapted methods we used a D. melanogaster dataset in which we 149 

tested for subtle effects on gene expression in males exposed to mating rivals (Mohorianu et 150 

al. 2017). We compared the output of our pipeline with that of existing methods on the same 151 
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input data. The description of the steps of this analysis, in line with the approaches described 152 

in (Conesa et al. 2016a), are presented in Fig S1.  We also assessed the applicability of the 153 

adapted normalization on a publicly available H. sapiens mRNA-seq dataset.  154 

Quality Checking 155 

Stage 1: QC of sequencing quality 156 

The D. melanogaster data comprised of 3 replicate mRNA-seq samples of 2 rival treatments 157 

(rivals versus no rivals), 2 body parts (Head+Thorax (HT) and Abdomen (A)) and 3 time 158 

exposure treatments (2h, 26h or 50h). The first stage of the QC on these data (Fig. S1) 159 

focussed on existing approaches (i) the analysis of FastQ quality scores (Andrews 2010), (ii) 160 

sequencing depth, (iii) nucleotide (nt) composition / GC content (DeLuca et al. 2012; Wang et 161 

al. 2012), (iv) strand bias and (v) proportions of genome and annotation classes - matching 162 

reads e.g. mRNAs, t/rRNAs, miRNAs, UTRs, introns, intergenic regions (Conesa et al. 2016a). 163 

The FastQ QC indicated good quality reads for all 50nt, though we observed high variability 164 

in sequencing depths. Variation in nucleotide content was observed across the first 12nt 165 

(Jayaprakash et al. 2011a), but was consistent after that with nucleotide composition of the D. 166 

melanogaster transcriptome. Strand bias was comparable across samples and the proportion 167 

of genome-mapping reads was high. Based on these stage 1 quality checks, all samples were 168 

retained for further analyses and entered stage 2 QC. The detailed results, supporting the 169 

conclusion that the samples were consistent based on these criteria, are presented in Tables 170 

S1 and S2 and in (Mohorianu et al. 2017). 171 

Stage 2: Quantitative QC of replicate and sample comparability 172 

Jaccard/intersection analysis 173 

We computed the Jaccard similarity (Mohorianu et al. 2011b; Beckers et al. 2017) at the gene 174 

level, to compare the similarity in expression of the top 1000 most abundant genes present in 175 

each sample (Table S3). This measure evaluated what proportion of the most abundantly 176 

expressed genes in one sample are also the most abundant in the next sample, and so on. 177 

Being calculated on the top most abundant genes it is not biased by different numbers of 178 

expressed genes in each sample. In addition, by selecting ~5% of the most abundant genes, 179 
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this measure is not biased by noise-derived variability in expression. Samples drawn from the 180 

same body parts shared > 90% similarity, and between body parts (HT versus A) the similarity 181 

dropped to ~50%. Similarity between the experimental (± rivals) treatments was sometimes 182 

higher than between replicates, which highlighted the need for alternative approaches for 183 

normalizing the gene expression levels.  184 

 185 

Complexity analysis 186 

A comparison of complexity (calculated as the ratio of non-redundant (NR), unique, reads to 187 

redundant (R), all, reads, on all mRNA matching reads) is an informative measure of the 188 

number of unique reads present in each sample, average abundance of reads and 189 

subsequently on the average coverage. It is also useful for identifying sample/replicate outliers. 190 

A complexity of ~0 would indicate a sample in which all reads were the same and 1 a sample 191 

where every single read was different. Sample complexity is influenced by sequencing depth. 192 

Samples with high sequencing depth have a lower overall complexity and vice versa. However, 193 

samples with comparable sequencing depths, but very different number of unique reads, may 194 

highlight incomparable replicates/ samples. To understand how this may influence the 195 

accuracy of DE, we calculated the variation in complexity, between replicates, at gene level 196 

(Fig. 1). This revealed sizeable differences in complexity for most genes (Fig. 1(A)), which 197 

correlate well with the presence of highly variable number of spurious incident reads, 198 

especially for low abundance genes; this conclusion was also confirmed by the point-to-point 199 

correlation, described in the next section. To reduce this technical variation and normalize the 200 

data we tested the effect of subsampling with- (Fig. 1(B)) and without- (Fig. 1(C)) replacement 201 

for each set of reads to a fixed total (see below). We observed a reduction in complexity as a 202 

result of the subsampling both with and without replacement and an increased similarity 203 

between replicates/ samples. However, the subsampling with replacement artificially indicated 204 

that the third replicate (R3) is acceptable (Fig. 1(B)), while the subsampling without 205 

replacement (Fig 1(C)) maintains the conclusion that the third replicate is an outlier. 206 

 207 
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Correlation analyses  208 

Correlations were first calculated between gene expression vectors in each sample to assess 209 

their comparability (using Pearson (PCC), Spearman (SCC) and Kendall (KCC) correlation 210 

coefficients), similarly as in (Gierlinski et al. 2015). Using the raw expression levels, 211 

correlations were computed between each sample and every other. Correlations between HT 212 

and A samples (in the range of 0.75-0.8) were lower than correlations between same body 213 

part samples. This was expected on the basis of HT- and A-specific genes whose expression 214 

is restricted to each body part. When only A or HT samples were considered, all correlation 215 

coefficients were above 0.95 (Fig. S2). These results showed a high correlation between 216 

samples and no sample would be excluded as clear outlier, even though, based on other 217 

quantitative QC measures, it would be prudent to do so (see below). Hence, standard 218 

correlation metrics may not be sufficiently sensitive to evaluate sample quality.  219 

 220 

Point-to-Point Correlation analyses 221 

To gain additional insight we introduced the ‘point-to-point’ Pearson correlation coefficient 222 

(p2pPCC) for each gene, which is a standard Pearson Correlation computed across the whole 223 

length of a gene on its expression profile. Although we expect to see alternative splicing events 224 

between the different replicates and samples, the number of genes affected by this is expected 225 

to be small. Next, we evaluated the distribution of PCC for pairwise sample or replicate 226 

comparisons against the corresponding gene abundances. This analysis revealed a higher 227 

variability at low in comparison to high abundances and a knock-on effect on the DE among 228 

replicates, i.e. more DE at low in comparison to high abundances (Fig. S3).  229 

The p2pPCC was also used to determine a variability threshold (noise threshold, denoted as 230 

“offset” in the DE call section). This value was calculated, for the whole dataset, once the 231 

abundances of the sequencing reads were normalized. Briefly, low abundance genes have a 232 

limited number of incident fragments that align to random locations on the gene. As the gene 233 

abundance increases, the alignment pattern of the incident fragments starts to resemble the 234 

gene model leading to an increase in the p2pPCC. We determined the offset as the gene 235 

WITHDRAWN

see manuscript DOI for details

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/131862doi: bioRxiv preprint 

https://doi.org/10.1101/131862


Mohorianu 2017 10 
 

abundance for which the median of the p2pPCC distribution was > 0.7 between replicates. A 236 

similar approach, based on the entropy of strand bias, was implemented for sRNA sequencing 237 

in (Beckers et al. 2017). 238 

 Overall the qualitative QC metrics were informative but lacked discriminatory power. 239 

The quantitative QC metrics focused on the comparability at gene level by analyses of 240 

complexity and similarity and represent a valuable addition to overall QC.  241 

Subsampling based Normalizations  242 

To attenuate the effect of variation in sequencing depth between replicates and samples 243 

described above, we implemented a subsampling (without replacement) normalization on read 244 

expression levels adapted from (Li et al. 2013b), enriched with several additional checks on 245 

the consistency of the subsample and the similarity to the original sample. The subsampling 246 

approaches already in use either focus on the subsampling with replacement option applied 247 

on the aligned reads (Gierlinski et al. 2015) or on gene abundances (Robinson et al. 2014), 248 

or the subsampling without replacement applied on all reads, without additional per-gene 249 

consistency checks (Stupnikov et al. 2015).  250 

Incremental subsampling (without replacement) and bootstrapping-based sample 251 

checking 252 

First we tested the homogeneity of each sample, as indicated in (Stupnikov et al. 2015). To 253 

evaluate the existence of high abundance reads which, due to their higher probability of being 254 

selected, could distort the normalized distributions, we conducted a subsampling exercise, 255 

from 95% down to 45% (in steps of 5%) of the original redundant reads. Part of the novelty of 256 

our approach is to assess the consistency of the sample by checking if the proportion of 257 

redundant genome matching reads was affected by the subsampling (Table S4 and Fig S4). 258 

Even when the data were subsampled to 45% of the original sequencing depth, the proportion 259 

of redundant genome matching reads did not change. However, the complexity of the sample 260 

increased and became comparable to other samples with similar number of reads.  261 

 262 

WITHDRAWN

see manuscript DOI for details

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/131862doi: bioRxiv preprint 

https://doi.org/10.1101/131862


Mohorianu 2017 11 
 

The next novel element was to evaluate the extent to which the data could be 263 

subsampled without affecting its structure we calculated the point-to-point PCC on expression 264 

levels of the original versus subsampled data from 95% to 40% of the original R set (Fig. S4). 265 

This showed that the correlations of abundantly expressed genes remained high over all 266 

subsamples, but that the correlation of low abundance transcripts decreased as the proportion 267 

of data subsampled dropped (note though that the variability between the original versus 268 

subsamples was lower than the variability between the biological replicates). We concluded 269 

that the subsampling was effective as it maintained high p2pPCC and strong concordance 270 

between the expression levels of the raw versus normalized data (Fig. S4). 271 

The number of genes ‘lost’ due to the exclusion of some low abundance reads was 272 

typically <2%. Once we had determined that all samples passed the consistency check, we 273 

subsampled every sample to a fixed total of 50M reads and used to check whether 274 

subsamples were representative of the original data bootstrapping (Supplemental Material 275 

Methods 1). Following this step, one subsample was selected at random for each sample and 276 

used in the downstream analysis. This subsampling was efficient at correcting wide variation 277 

in read number, complexity differences and minimising the impact of normalization on the 278 

original data structure (Fig. 1).  279 

The analysis of the distributions of complexity differences between replicates, coupled 280 

with the Jaccard similarity analyses applied on the normalized data, was used to identify outlier 281 

replicates, which were excluded from subsequent analyses. We classify as an outlier, samples 282 

for which the between-replicate similarity was higher than between-sample similarity, as 283 

shown by the Jaccard, complexity and p2pPCC analyses. In the 02RH example presented in 284 

Fig 1 we showed that the subsampling without replacement correctly highlighted replicate 3 285 

as an outlier, while the subsampling with replacement did not. Following this post-286 

normalization QC, we retained two biological replicates for each treatment for the D. 287 

melanogaster data. In general, we advocate the use of as many biological replicates as 288 

possible. However, as we show below, the analysis of subtle gene expression even with a 289 

limited number of replicates is possible and can be validated. 290 
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Subsampling with replacement vs subsampling without replacement 291 

A subsampling with replacement normalisation has previously been proposed  (Li, Tibshirani 292 

2013b; Robinson, Storey 2014; Gierlinski et al. 2015); a version of the subsampling without 293 

replacement was proposed in (Stupnikov et al. 2015). The clear differences, and advantages, 294 

of a subsampling based method i.e. the lack of consistency of a scaling factor for all 295 

abundances, and thus the advantage over scaling methods, are discussed in (Li, Tibshirani 296 

2013b; Stupnikov et al. 2015).  297 

The main difference between the two approaches (with- vs without- replacement) is that for 298 

the former, the selection probabilities for the reads remains unchanged during the process, 299 

whereas for the latter the probabilities of selection are not constant, facilitating the selection 300 

of both high and low abundance reads. The abundance range for the later selection is wider 301 

and simulates the selection which takes place during the sequencing. The advantage of the 302 

former approach is that a higher number of reads can be achieved for a given sample (Li, 303 

Tibshirani 2013b) e.g. if a sample with 20M reads needs to be compared with a sample with 304 

40M reads, then both samples could be subsampled, with replacement, at 30M reads. The 305 

down-side of the approach is that depending on the proportion of selected reads, over-306 

amplification of high abundance reads and exclusion of low abundance reads can occur. This 307 

has a knock-on effect in amplifying the expression of abundant fragments and, as a 308 

consequence, reducing the expression of genes with low abundance which have fewer, low 309 

abundance incident fragments. In addition, the omission of low abundance reads may change 310 

the expression profile across transcripts (Fig 2(B)). The disadvantage of the subsampling 311 

without replacement is that it has an upper bound, calculated as the minimum sequencing 312 

depth between the samples of an experiment. Its advantage is that it renders the samples 313 

comparable (as described in the previous section) and allows the identification of potential 314 

outliers. In Fig 2(A), we compared the distribution of abundances for the two approaches (with 315 

versus without), on the same samples, to the same total. In Fig 2(B), we show the presence 316 

plots of a gene with 0.4 difference in complexity between the two approaches. The change in 317 

profile is visible for the third replicate, changes in the profile itself are highlighted with arrows.  318 

WITHDRAWN

see manuscript DOI for details

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/131862doi: bioRxiv preprint 

https://doi.org/10.1101/131862


Mohorianu 2017 13 
 

 319 

Calling of DE using a hierarchical approach 320 

To incorporate the experimental design into the DE call (Anders et al. 2010)  we used a simple 321 

hierarchical approach for the prediction of DE transcripts (Supplemental Methods 2). The 322 

order of levels in the hierarchy was determined based on the amplitude of DE for each factor 323 

in the experiment (Fig. S5). For the D. melanogaster dataset the highest level in the hierarchy 324 

(i.e. that showed most DE) was body part (HT vs A), the second was ± rivals treatment. The 325 

distribution of DE between treatments and between replicates overlapped (Figure S5(A,B)), 326 

which indicated that the treatment DE was likely to be subtle.  327 

We observed direct evidence of the biasing effect of low abundance FC (Fig. 3(A)). 328 

For example, using standard FC numerous low abundance DE genes in the HT were in fact a 329 

signature from the A body part (e.g. sperm and semen genes are specific to the A body part, 330 

but detected as differentially expressed in the HT at low abundance; Fig. 3(A,B)). The RNA-331 

seq technique is highly sensitive and detects these transcripts due to leak through or 332 

movement of mRNAs. Unless a correction is applied, the list of DE genes is likely to contain 333 

numerous spurious and low-abundance entries. A practical solution was to use offset fold 334 

change (OFC), with the offset determined empirically from the data, as described in an earlier 335 

section, in preference to FC (Fig. 3A versus B) and to apply the hierarchical DE (Fig. 3C; 336 

Supplemental Methods 2). A comparison of the MA plots for all genes versus the A- and the 337 

HT-specific genes showed the effect of the hierarchical differential expression (Fig. 3C). 338 

 339 

Case study - comparisons with existing approaches 340 

We next evaluated the output gained from the analysis of the D. melanogaster data using our 341 

bioinformatics framework, with that obtained from the analysis of the same, original input data 342 

(consisting of all 3 replicates for each condition) using DESeq2 (Love et al. 2014a) and edgeR 343 

(Robinson, Oshlack 2010; Zhou et al. 2014). Although the DE was conducted on the HT 344 

samples, both the HT and AB samples were given as input the edgeR and DEseq2 analyses. 345 

 346 
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Effect of the normalization 347 

An a priori (and necessary, but not sufficient) condition for reliable DE call is good 348 

comparability between the distributions of expression levels. To assess whether the 349 

normalized expression levels became more similar after the normalization (in particular, 350 

whether the replicates became comparable), we compared the distributions of expression 351 

levels (log2 scale) for the raw data versus RPM, quantile, subsampling with and without 352 

replacement, DEseq2 and edgeR normalizations (Fig. 4). The boxplot of the raw abundances 353 

(Fig. 4A) illustrates the variation among the replicates and samples and clearly indicated that 354 

normalization was required. The RPM normalization (Fig. 4B) rendered the A and HT 355 

distributions comparable to some extent. However, it was difficult to separate the A- or HT-356 

specific genes. In addition, variability between samples was still present (especially for the HT 357 

samples). The quantile normalization (Fig. 4C) rendered the distributions comparable, as did 358 

the subsampling with and without replacement (Fig. 4D1 and Fig 4D2). DEseq2 performed 359 

well (Fig. 4E) – although residual differences in the distributions of the A vs HT samples 360 

remained. EdgeR (Fig. 4F) did not effectively equalize the distributions of abundances. We 361 

concluded that the subsampling, quantile and DESeq2 normalizations (Fig. 4C,D1, D2,E) were 362 

most effective at producing comparable distributions of normalized expression levels for this 363 

dataset.  364 

 365 

Differences in the DE call between methods 366 

To evaluate the effect of the normalization and hierarchical DE call we compared analyses of 367 

the D. melanogaster 2h HT and A samples ±rivals (using as input all three biological replicates 368 

of the original data) with the output of DEseq2 and edgeR (Fig. 5).  369 

The subsampling without replacement normalization and hierarchical DE call (Fig. 5A) 370 

showed a relatively low number of up/down-regulated genes with relevant biological functions. 371 

The equivalent analysis for DEseq2 (Fig. 5B) called many more genes as DE that fell in the 372 

region of +/- 0.5 log2 FC (i.e. below the validatable threshold (Morey et al. 2006) (Fig. S5). The 373 

analysis using edgeR (Fig. 5C) showed a high frequency of low abundance DE and of leaky 374 
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genes, which is likely to either represent noise or biological signal of an insufficient magnitude 375 

to be captured effectively in the low throughput validation (Fig. S5). The degree of overlap 376 

between the three methods (Fig. 5D) revealed a small number of core genes present in the 377 

intersection. edgeR and DEseq2 called many more genes as DE and the number of genes 378 

uniquely identified by edgeR and DEseq2 was also larger than the number identified in 379 

common between the two. These results show that the pipeline chosen will have a strong 380 

effect on the biological interpretation of the DE analysis. 381 

For the ±rivals comparison for the HT samples, out of the 575 genes that were specific 382 

to edgeR, 14 were HT genes (all with max abundance > 50) and 561 were A genes (327 with 383 

max abundance > 50 and 234 < 50; Fig. S5). Out of the 578 genes specific to DESeq2, 101 384 

were HT genes (100 with abundance > 50) and 477 were A genes (271 with max abundance > 385 

50 and 206 < 50; Fig. S5). The predominance of A genes in the DE call supported the use of 386 

the hierarchical DE approach. The presence of low abundance genes supported the use of an 387 

offset for the calculation of DE. 388 

Of some concern was that for genes with a reasonable abundance (> 50) the 389 

expression intervals for the ± rivals differences called by DEseq2 and edgeR were 390 

close/overlapping, making independent validation using low throughput methods challenging.  391 

These results showed evidence of a high number of DE genes called by both or either of 392 

DEseq2 and edgeR that would be difficult to validate independently.  393 

Reasons for the differences in DE call between methods are likely to result from a 394 

propagation of factors throughout the whole analysis. These potentially include low 395 

comparability of normalized distributions of expression or the imperfect assessment of 396 

hierarchical distribution of DE levels in the experiment. In the calculation of DE by DEseq2, 397 

replicate-to-replicate variability is averaged and DE over and above this variation is calculated. 398 

The accuracy of such averaging relies on replicates having a low coefficient of variation (CV 399 

= standard deviation/mean). However, in the D. melanogaster data, in many cases the CV 400 

was over 0.25 and in some was > 0.5 (across all abundances, Fig. S6). In the example shown 401 

(Figs. S6A-D), there was clearly higher dispersion (CV) at low transcript abundance and 402 
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consistently high CV across higher abundances. This variation was corrected in our analyses 403 

by the subsampling normalization and the use of an OFC (Fig. S6 E,F,G,H, in which dispersion 404 

showed minimal variation across transcript abundance and the CV was consistently low 405 

(generally < 0.1)). The newer version of DESeq, DESeq2, (Love et al. 2014a) notes the effect 406 

of high replicate variation and proposes a shrinkage estimation for dispersions based on 407 

empirical Bayes and FC, to improve stability and interpretability of estimates. Our results 408 

showed that these changes helped to minimize, but did not fully solve, the overall issue of high 409 

variability in transcript abundance. 410 

 411 

Comparison of low throughput validated genes with DESeq2 and edgeR outputs 412 

We next investigated whether the set of DE genes identified using the hierarchical approach 413 

from our D. melanogaster dataset, and validated by qRT-PCR (Mohorianu et al. 2017), were 414 

present in the output of DEseq2 and edgeR. Reassuringly, based on DESeq2 our qRT-PCR 415 

reference genes were not called DE. Two other genes of interest from the A samples that 416 

were validated as DE, had a p-value < 0.05 by DESeq2 (although adjusted p-value > 0.05). 417 

One gene of interest validated from the HT had a p-value < 0.05 (but again not according to 418 

the adjusted p-value). For DESeq2 the log2(FC) values were small (0.15 and 0.16, 419 

respectively). Hence these genes were not likely to have been selected for further 420 

investigation. Based on the edgeR output, our reference genes were also determined as not 421 

significantly DE. For the validated A genes of interest (GOI), only one was called marginally 422 

DE by edgeR (p = 0.08, FBgn0259998, but with small log2(FC) = 0.24). For the HT, one GOI, 423 

with log2(FC) = 0.58, was called as significantly DE (the same gene as identified by DESeq2). 424 

Another GOI, FBgn0044812, was identified with log2(FC) = 0.82 yet with a p-value of 0.49 425 

from edgeR and therefore would not have been selected (Table S1). 426 

Comparing the validated gene set with the output of edgeR and DESeq2, we conclude 427 

that some GOIs failed to be identified and therefore the corresponding biological functions 428 

(immunity, odorant perception) might have been overlooked. 429 

Which normalization to choose? 430 
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An RNA-seq sample is a snapshot of RNA fragments present at a given time, randomly 431 

selected according to the RNA abundances, to fill the sequencing space. Due to the stochastic 432 

nature of the sequencing process, even technical replicates, at different sequencing depths, 433 

do not exhibit a constant scaling factor for all abundances. Also, RNA-seq outputs have 434 

varying fits to standard distributions, making it difficult to define “the best” choice. Although the 435 

subsampling without replacement normalization was efficient in minimizing the effects of the 436 

variable sequencing depth, while preserving a high similarity with the original samples (Fig. 3), 437 

we suggest that it is advisable to test different normalizations on mRNA-seq and choose the 438 

most appropriate method for the given dataset, on a case-by-case basis (Beckers et al. 2017) 439 

 440 

Analysis of human mRNA-seq datasets using subsampling (without replacement) 441 

normalization  442 

RNA-seq is expected to have good external validity and produce comparable results when the 443 

same RNA is used, across different laboratories. However, a recent study of mRNA-seq 444 

conducted on the same human samples (expression level variation in lymphblastoid cell lines) 445 

involved the use of the same samples sequenced in two different locations: Yale versus 446 

Argonne (Pickrell et al. 2010). Some variation between the results from the different 447 

laboratories was observed (Zhou et al. 2014). The authors analysed these data further to 448 

explore whether edgeR could reduce the variability between replicates. We tested whether 449 

our subsampling normalization could further reduce such variation. To do this, we randomly 450 

selected 5 sets of samples (144, 153, 201, 209 and 210) with two replicates each, one from 451 

the Yale laboratory source and one from the Argonne source. For these runs, the length of 452 

the reads was 36nt for Yale and 46nt for the Argonne-derived data. Since the length of the 453 

sequencing read influences the number of unique fragments and the mapping to the reference 454 

transcriptome (and, as a result, the gene expression) we trimmed all reads to comparable 455 

lengths (35nt) and mapped the reads to the reference human genome using full length, no 456 

mis-match or gap criteria and using PatMaN (Prufer et al. 2008). The subsampling was 457 
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conducted on 7M reads (the number of reads for the smallest sample was 7.1M, and for the 458 

largest sample was 8.7M) 459 

We created comparable plots to (Zhou et al. 2014) for the data subjected to 460 

subsampling normalization. MA plots for the two replicates of each sample showed high 461 

reproducibility between runs. The distribution of the coefficient of variation (CV) versus the 462 

abundance for the 5 selected sets of samples with two replicates each (one for Yale and one 463 

for Argonne) (Fig. S7) showed that the CV for all 5 pairs of samples was consistently (< 0.1) 464 

lower than for the analysis of (Zhou et al. 2014)) indicating a very high similarity between the 465 

runs. The MA plots on the same sets of two samples showed a high reproducibility between 466 

replicates (no genes showing |log2(OFC)| > 1). The genes showing DE were mainly localized 467 

in the 24 (16) – 26 (64) range, which is borderline for validation/noise. Together, these analyses 468 

showed that: (i) the CV obtained when the subsampling (without replacement) normalization 469 

was employed was lower than the CV reported in (Zhou et al. 2014), suggesting that the 470 

normalization was tighter, (ii) there was very little DE between replicates, indicating good 471 

reproducibility between the sequencing runs. 472 

Overall, we conclude that the subsampling, without replacement approach cleared the 473 

technical differences between the two runs in the different laboratories and this approach 474 

rendered the samples comparable, potentially improving the biological inference. 475 

 476 

Conclusion 477 

The main conclusion from this study was to emphasise the need to check multiple approaches 478 

for the analysis of a dataset and to show that both qualitative and quantitative QC are 479 

informative, and the applicability of subsampling (without replacement) -based normalization 480 

and hierarchical structuring of the DE call, is efficient in managing variation in read number 481 

and differences in sample complexities. In comparison to existing methods, the adapted 482 

methods performed well and identified valid candidates that were confirmed using low 483 

throughput approaches (Mohorianu et al. 2017). We also successfully applied the subsampling 484 
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(without replacement) normalization to existing mRNA-seq datasets, used to analyse inter-485 

laboratory variation (Pickrell et al. 2010); the adapted approach proved to be efficient in 486 

comparison with existing methods at minimizing potentially confounding sources of variation. 487 

Determination of accurate gene expression levels is essential for all mRNA profiles but is also 488 

key to successful correlation analysis between mRNAs and sRNAs (Mohorianu et al. 2012; 489 

Mohorianu et al. 2013).  490 

 491 

METHODS 492 

Quality check (QC) 493 

For the mRNA-seq samples, the QC consisted of two stages. Stage 1 comprised of previously 494 

described methods (Conesa et al. 2016a) including: (i) the analysis of FastQ quality scores  495 

(Andrews 2010), (ii) the total number of reads (sequencing depth) and the read duplication 496 

rate, defined as complexity (Mohorianu et al. 2011a), (iii) nucleotide composition relative to 497 

the genome and transcriptome of D. melanogaster, used to highlight biases such as PCR and 498 

ligation bias (Sorefan et al. 2012), (iv) strand bias quantified on CDS incident reads as 499 

|𝑃 − 0.5| + |𝑁 − 0.5|, where P and N were the proportion of positive and negative strand read 500 

matches, respectively (Mohorianu et al. 2011a) and (v) proportions of reads matching the 501 

different genome annotation classes (e.g. mRNAs, t/rRNAs, miRNAs, UTRs, introns, 502 

intergenic regions (Conesa et al. 2016a); matching was done on full length reads with no mis-503 

matches or gaps allowed, using PatMaN, (Prufer et al. 2008)). Stage 2 comprised of 504 

quantitative approaches, some applied/designed on mRNA-seq data for the first time, which 505 

provided an increased insight into sample comparability and enabled us to evaluate the 506 

effectiveness of the normalization. The expression level of a gene/ transcript was calculated 507 

as the algebraic sum of the raw/normalized abundances of the incident reads (Mortazavi et al. 508 

2008a). We examined (i) sample similarity calculated using the Jaccard similarity index 509 

(Jaccard 1901) on the top 1000 most abundant genes, and intersection analyses); theseq 510 
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measures were calculated as the ratio between number of genes found in common to the 511 

number of unique genes present in in either samples, (ii) complexities (calculated at gene level 512 

and presented as Bland-Altman plots) and (iii) point-to-point PCC between gene expression 513 

profiles in different replicates/ samples. The latter were computed on the vector of expression 514 

defined for each gene. For all positions i on a gene we computed y[i] which is the sum of 515 

abundances of fragments incident with position i. The point-to-point PCC was computed as 516 

the standard PCC on the corresponding vectors from the two samples which were compared. 517 

Normalization 518 

We adapted a normalization procedure based on subsampling (without replacement) (Li et al. 519 

2013a); the consistency of the subsample was validated using bootstrapping. The 520 

subsampling, without replacement, was done on the redundant set of reads (before genome 521 

matching, with the ncRNAs incident reads removed). The proportion of genome matching 522 

reads and the variation in gene complexities (coupled with the p2pPCC between the 523 

subsamples and the original sample) were used as criteria for consistency of the subsamples. 524 

Each sample was first subjected to incremental subsampling in order to investigate the effect 525 

on the data structure (complexities, both for non-matching and genome-matching reads) of 526 

sampling 95% through to 45% of the data, with successive decreasing steps of 5%. A sample 527 

was deemed satisfactory if the proportion of redundant genome matching reads remained 528 

constant and the average point-to-point PCC were above 95% as the number of redundant 529 

reads was decreased from 95% to 45%. This step represented an empirical determination of 530 

the level of subsampling that could be done whilst preserving the original data structure. The 531 

second step of the normalization was the subsampling to a fixed total (the minimum 532 

sequencing depth of the accepted samples). Samples with low sequencing depths, which 533 

would lead to a heavy subsampling for the samples with high read numbers (less than 55%, 534 

empirically determined), were treated on a case-by-case basis. A quantile normalization 535 

(Bolstad et al. 2003) may be employed after this step to render the distributions fully 536 

comparable. The pseudocode is presented in Supplemental Methods 1. 537 
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Existing procedures which were used for the comparison of the new normalization 538 

methods were: scaling normalization (Mortazavi et al. 2008a), for which the scaling total was 539 

the mean of the sequencing depths of the compared samples, quantile normalization (Bolstad 540 

et al. 2003)  and the normalization approaches from edgeR (Zhou et al. 2014)  and DESeq2 541 

(Love et al. 2014a). All were employed using the recommended standard parameters.  542 

Differential Expression call 543 

Existing methods for the DE call are often based on comparing the variability between 544 

replicates with the difference between the treatments. However, calculation of variance (or cv) 545 

based on a small number of points may often not reflect the true variance of the given 546 

gene/transcript (Krzywinski et al. 2013; Blainey et al. 2014; Altman et al. 2015). Moreover, 547 

when small numbers of measurements are available, a more conservative approach, which 548 

we use here, is to approximate that replicate measurements will fall within the two limits of the 549 

maximal interval (Claridge-Chang et al. 2016). 550 

The maximal confidence intervals are defined on the minimum and maximum normalized 551 

expression levels for the replicated measurements. The amplitude of the DE is calculated on 552 

a worst-case scenario, on the proximal ends of the maximal intervals i.e. this method ensures 553 

that all points in the treatment are on one side (for up-regulation, above and for down-554 

regulation, below) of the control measurements (Beckers et al. 2017; Collins et al. 2017). As 555 

a result of the stringency of this approach all genes called DE using these rules will also be 556 

called DE under all statistical tests. In addition, the threshold on the amplitude of the DE (for 557 

(Mohorianu et al. 2017) set at 1.5 fold change, in line with the empirical threshold described 558 

in Morey et al) prevents the selection of genes with separate but close expression ranges and 559 

ensures a higher chance for validation confirmations. 560 

DE was calculated using a hierarchical approach and by applying an offset fold change 561 

(OFC) method (with offset=20, empirically determined, using the point-to-point PCC, for all 562 

replicates within all samples). There were 3 steps to the hierarchical analysis used for the 563 
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analysis of the D. melanogaster transcriptome data. (i) identification of levels for the 564 

hierarchical differential expression and the constituent internal classes. For the D. 565 

melanogaster data one ‘level’ was body part (with HT and A as internal classes) and the other 566 

was treatment (with presence or absence of rivals as classes). (ii) the ordering of the 567 

hierarchical levels based on the amplitude of differential expression. This was quantified by 568 

the width/ spread of the distribution of DE in terms of mean/ median, IQR and min/max values. 569 

The amplitude of DE in descending order provided the correct ordering of the levels for the 570 

hierarchical DE. (iii) the DE analysis on the proximal ends of the CIs, using OFC (Mohorianu 571 

et al. 2011a). The pseudocode is presented in Supplemental Methods 2. 572 

The two-step DE procedure (using OFC) consisted of (i) calculation of the list of genes 573 

showing DE between body parts, followed by (ii) calculation of the DE between genes in the 574 

± rivals treatment comparisons. Step (i) was conducted on the summed expression levels in 575 

the ± rivals pairs (i.e. the ± HT samples combined, and the ± A samples combined, for all time 576 

points). The genes were then separated into genes expressed only in HT, only in A, and in 577 

both the HT and A. Step (ii) of the DE was then applied on the resulting 3 categories (HT; A; 578 

HT+A) using the ± rival condition. We called DE the genes which showed after the second 579 

step of the DE described above, of more than 1.5 fold between the treatments (+/- rivals). The 580 

DE call as determined by edgeR and DESeq2 were calculated using the default functions and 581 

parameters.  582 

DATA ACCESS 583 

mRNA samples: (a) D melanogaster: males of D melanogaster exposed to conspecific rivals 584 

(or not) for 3 time periods (GSE55930). (b) H sapiens: For the mRNA Human samples, we 585 

chose 5 samples from the Pickrell et al. 2010 (Pickrell et al. 2010) study (GSE19480) in order 586 

to compare gene expression variation in RNA sequencing between the Argonne and the Yale 587 

laboratory sequencing runs. The selected samples were: GSM485369 (NA19144_yale), 588 

GSM485380 (NA19144_argonne); GSM485368 (NA19153_yale), GSM485383 589 

(NA19153_argonne); GSM485367 (NA19201_yale), GSM485381 (NA19201_argonne); 590 
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GSM485365 (NA19209_yale), GSM485388 (NA19209_argonne); GSM485364 591 

(NA19210_yale), GSM485382 (NA19210_argonne). These samples were derived from 592 

lymphoblastoid cell lines (LCLs) derived from unrelated individuals from Nigeria (extensively 593 

genotyped by the International HapMap Project). The sequencing was done on Illumina GAII, 594 

with sequencing reads of 36nt, for the Yale sequencing samples and 46nt for the Argonne 595 

sequencing.  596 
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SUPPLEMENTAL MATERIAL 607 

 608 

SUPPLEMENTAL METHODS 609 

SUPPLEMENTAL METHODS 1 - Subsampling normalization – pseudocode. A description 610 

with details for (1) Incremental subsampling and bootstrapping check for consistency of a 611 

sample, and (2) Subsampling to a fixed total. 612 

SUPPLEMENTAL METHODS 2 - Two step (Hierarchical) differential expression (HDE) - 613 

pseudocode. A description with technical details for the two step (hierarchical) DE, including 614 

the identification of levels in the hierarchy. 615 

SUPPLEMENTAL TABLES 616 

TABLE S1. Annotation overview for the 02 samples in the D. melanogaster dataset.  For 617 

each 02 samples (described in Mohorianu et al 2017) we present the number and proportions 618 

of reads, matching to the D. melanogaster genome (v 6.11) and to the corresponding 619 

annotations (exons, introns, 5' and 3' UTRs, ncRNAs and intergenic regions) 620 

TABLE S2. Example of intersection analysis for the 02-A, 02+A, 02-H and 02+H samples 621 

in the D. melanogaster dataset. Replicates 1 samples 02-A, 02+A, 02-H and 02+H were 622 

used to illustrate the proportion of reads mapping simultaneously to pairwise groups of CDSs, 623 

exons, 5’ and 3’ UTRs, introns and intergenic regions. We observed a high proportion of exon 624 

matching reads present on 3’ and 5’ UTR. In the main study we computed expression levels 625 

using gene mapping reads. 626 

TABLE S3. Jaccard similarity index on the 02 samples in the D. melanogaster dataset 627 

The Jaccard similarity at gene level was computed on the top 1000 most abundant genes in 628 

each sample (out of a total of 15 513 genes expressed in at least one sample). As a result, it 629 

is not biased by the different number of genes present in each sample. Shown is a 12 by 12 630 

matrix of all the original samples compared with each other. Samples are labelled by time 631 

point (2h), by ± rivals treatment, by body part (A or HT) and then by replicate number. Each 632 

WITHDRAWN

see manuscript DOI for details

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 28, 2017. ; https://doi.org/10.1101/131862doi: bioRxiv preprint 

https://doi.org/10.1101/131862


Mohorianu 2017 25 
 

sample tested against itself along the diagonal is therefore 100% similar and shares the top 633 

1000 most abundant genes in common. A to A comparisons are shaded in purple, HT to HT 634 

comparisons in peach. Samples drawn from the same body parts shared > 90% similarity, and 635 

between body parts the similarity dropped to ~50%. Similarity between the ± rivals treatments 636 

tended to be higher than between replicates. Two illustrative examples are highlighted, in 637 

which ± rivals indices (in red bold) were generally higher than replicate to replicate similarity 638 

(blue bold). This highlighted the need for the adapted normalization methods. 639 

TABLE S4. Example of incremental check for subsampling without replacement for 640 

sample 02EH2 in the D. melanogaster dataset. 641 

For sample 02EH2, we present the incremental subsampling, without replacement. To judge 642 

whether a sample is consistent, and to determine the consistency threshold, we use the 643 

proportion of redundant reads matching to the referenece genome. As a consequence of the 644 

incremental subsampling, the complexity increases. A replicate is accepted if it exhibits a 645 

similar complexity (and distribution of per-gene complexities) with the other replicates of the 646 

same type of sample. 647 

TABLE S5. Results from (A) DEseq2 and (B) edgeR analyses of the Drosophila 648 

melanogaster qRT-PCR 'validated' gene set. For the validations we used 3 reference genes 649 

and validated 15 A genes and 6 HT genes based on the DE selection using subsampling 650 

normalization and hierarchical DE. We investigated whether these genes were called DE by 651 

either (A) DESeq2 or (B) edgeR. In Table 1A we present the results for DESeq2, in Table 1B 652 

the results for edgeR. For each of the three categories of genes (reference genes, AB genes 653 

and HT genes) we show the average of normalized abundances (baseMean for DESeq2 and 654 

logCPM for edgeR), the fold change between treatments (log2 FoldChange for DESeq2 and 655 

log2FC for edgeR) and the DE p-value and adjusted p-value (used for the DE call). 656 

 657 

SUPPLEMENTAL FIGURES 658 

FIGURE S1 Analysis framework for mRNA-seq data.  659 
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Inputs are shown (sequencing data in FASTQ format, and the corresponding reference 660 

genome and transcriptome in FASTA/GFF) and the six main steps: Quality check (QC), 661 

alignment, normalization of gene abundances, identification of DE, functional enrichment and 662 

finally low-throughput validation. 663 

FIGURE S2. Correlation analyses (Pearson, Spearman and Kendall correlation 664 

coefficients) between the gene expression levels for the D. melanogaster data for (A) all 665 

samples, (B) HT samples, (C) A samples. A1, B1, C1 show the PCC; A2, B2, C2 show the 666 

SCC; A3, B3 and C3 show the KCC. Each panel shows the distributions of correlation 667 

coefficients for all pairwise comparisons. For example, in panel A.1, sample 1 on the x-axis 668 

shows the distribution of the n=35 correlation coefficients calculated between the gene 669 

expressions in sample 1 compared with gene expressions in all other 35 samples using PCC. 670 

The results are presented as a standard boxplots. 671 

FIGURE S3. Distribution of point-to-point PCC between gene expression profiles 672 

against gene expression levels (log2 scale) for pairwise comparisons for the D. 673 

melanogaster data for the 3 replicates of the 02HT- sample as an example (2h, HT body part, 674 

no rivals). Panel a shows replicate 1 vs 2, b replicate 1 vs 3 and C replicate 2 vs 3. Shown are 675 

the raw data, prior to normalization. For all replicate comparisons, more variability is 676 

consistently observed at lower abundances. 677 

FIGURE S4. Point-to-point PCC between the raw and subsampled data of the D. 678 

melanogaster data. To show the consistency during the subsampling, shown are the point-to-679 

point PCC between the original data and the data incrementally subsampled from 40% to 95% 680 

(Panels A to L). On the x-axis is the gene abundance (log2) and on the y-axis the distribution 681 

of point-to-point PCCs calculated for each expressed gene. 682 

FIGURE S5. Identification of the hierarchy levels for the hierarchical differential 683 

expression (HDE) analysis based on the distribution of DE for the different classes of 684 

samples, i.e. replicates, body parts and ± rivals treatments (for the D. melanogaster data). 685 
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Frequency plots were used to show the distribution of DE between samples. Panel A shows 686 

the replicate-replicate DE (blue) and the with/without rivals DE (red) for the abdomen (A) 687 

samples. Panel B shows the corresponding data for the HT body part. Panel C shows the 688 

distribution of DE for the with/without rivals treatments (blue for HT and green for A samples) 689 

and the DE between HT and A (orange).  690 

FIGURE S6. Distribution of abundances for the D. melanogaster data (for the ± rivals 691 

treatment DE) for genes identified as DE exclusively by each method. EdgeR only genes 692 

are presented in 5A, DEseq2 only genes in 5B and subsampling normalization only genes in 693 

5C.  For each gene (FBgn identifier) identified as DE exclusively by each method, the 694 

normalized abundance is given for each of the 2h HT and A ± rivals samples. The 695 

predominance of leaky genes in the DE calls of edgeR and DESeq2 highlighted the need for 696 

the hierarchical DE. The presence of low abundance genes indicated the requirement for an 697 

offset for the calculation of the extent of DE. 698 

FIGURE S7. Comparison of the coefficient of variation applied on the D. melanogaster 699 

data. On the x-axis is the abundance in log2 scale, on the y-axis we represent the coefficient 700 

of variation (cv), defined as the ratio between the standard deviation and the mean. For clarity, 701 

the distributions are represented as standard boxplots. The upper panels (A,B,C,D) show the 702 

cv for the original data for A samples, without rivals, A samples with rivals, HT samples without 703 

rivals and HT samples with rivals, respectively. The lower panels (E,F,G,H) give the CV for 704 

the same samples, after the subsampling normalization. The horizontal lines indicate 0.5 and 705 

0,25 cv, to ease visualization. It is clear that the subsampling normalization reduced the 706 

variance between the replicates to < 0.25 cv across most abundances (Panels E-H), whereas 707 

the cv was much higher across all abundances for the raw data (Panels A-D). 708 

FIGURE S8. Analysis of the effect of the subsampling normalization on technical 709 

(laboratory-laboratory) variation in mRNA-seq for the human mRNA-seq data in 710 

(Pickrell et al. 2010). In the upper plots we show the coefficient of variation (CV) obtained 711 
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after the subsampling normalization for 5 sequencing pairs (each pair consisted of a Yale 712 

laboratory run compared to an Argonne run: A1,A2 = Sample 144; B1,B2 = Sample 153; 713 

C1,C2 = Sample 201; D1,D2 = Sample 209; E1,E2 = Sample 210). Shown is the CV against 714 

abundance (log2 scale). For all comparisons we achieved lower CVs in comparison to the 715 

Zhou et al (2014) analysis of these sample data. In red we represent the CV of these data 716 

obtained using edgeR, in blue the CV using DESeq2. It is evident that our subsampling 717 

normalization achieved lower CV across all abundances in comparison to both edgeR and 718 

DRseq2. Based on these distributions we conclude that the samples from the different 719 

laboratories can be rendered comparable using the subsampling approach, i.e. the 720 

subsampling normalization removed the technical differences between the two different 721 

laboratory runs. In the lower panels, we present the MA plots, after the subsampling 722 

normalization, for the same pairs of samples. The tightness of these plots (all falling within 723 

±0.5 OFC) supports the conclusion that the subsampling has rendered these samples derived 724 

from sequencing in different laboratories highly comparable. 725 

 726 

 727 

  728 
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FIGURES 881 

 882 

FIGURE 1 Distributions of complexities, calculated at the gene level, on the D. 883 

melanogaster mRNA-seq data.  884 

Transcript abundances (x-axis, log2 scale) are plotted against the absolute difference in 885 

complexities, i.e. the non-redundant/redundant (NR/R) ratio (y-axis) for all genes and all 886 

biological replicate comparisons (a = replicate 1 vs 2; b = replicate 1 vs 3; c = replicate 2 vs 3. 887 

Example data shown are for the three original replicates of the 02+H (2 hours, rivals present, 888 

head thorax) samples. The differences in complexities were calculated on the raw data (top 889 

row), and on the data after subsampling normalization with replacement (middle row) and 890 

without replacement (bottom row). Red horizontal lines indicate 0.05 and 0.1 differences in 891 

complexity. Before subsampling the complexity differences were frequently > 0.1. The 892 

subsampling approaches (with or without replacement) rendered the biological replicates 893 

more comparable and reduced the complexity differences to < 0.1 across all transcript 894 

abundances. In addition, the subsampling without replacement maintained the conclusion that 895 

the third replicate (R3) was problematic, whereas the subsampling with replacement masked 896 

this conclusion. 897 

FIGURE 2 Comparison of results obtained using the subsampling with or without 898 

replacement. On the top row we present the MA plots on the gene expression levels, 899 

normalized using either the with- or without- replacement approaches, for the three replicates 900 

of the 02+H sample. Although the variability between the two approaches is contained within 901 

the +/- 0.5 log2(OFC), we observe a higher variability in expression for the low abundance 902 

genes. In subplot (B) we present the presence plots for the gene FBgn0033865 for each of 903 

the three replicates (the individual panels) obtained using either the subsampling without 904 

replacement (black solid line) or subsampling with replacement (red solid line). The arrows 905 

indicate the regions where the two approaches provide different answers. The arrow indicating 906 

the first exon of the gene highlights the difference observed for the third replicate (02+H, rep3). 907 
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FIGURE 3 Distribution of DE as calculated by using fold change (FC) versus offset fold 908 

change (OFC) and the effect of incorporating hierarchical DE (HDE). Shown are MA plots 909 

(x-axis showing gene abundance (log2), y-axis indicating FC/OFC for replicate-to-replicate 910 

comparisons for the 2h samples. Panels A1, B1, C1 show 02A- comparisons, panels A2, B2, 911 

C2 for 02A+ samples, A3, B3, C3 for 02HT- and A4, B4, C4 for 02HT+ samples (Sample 912 

codes: 02 = 2h of exposure, A = abdomen, HT = head-thorax, + = with rivals, - = without rivals).  913 

Panel a shows the distribution of DE calculated using FC, showing how the low abundance 914 

genes distort the distribution of DE. Panel b shows the DE distribution using OFC (offset=20). 915 

Here most of the low abundance genes were excluded. Panel c shows the DE distribution 916 

following hierarchical DE analysis using OFC for A- and HT-specific genes highlighting the 917 

elimination of low abundance, potentially spurious, DE. The red horizontal lines denote 0 log2 918 

FC/OFC and the blue lines ± 0.5 log2 FC/OFC. 919 

FIGURE 4 Comparison of expression distributions resulting from different 920 

normalization methods. Shown are standard boxplots of normalized gene expressions. On 921 

the x-axis are the different samples (e.g. 02A-1 = 2h time point abdomen body part, no rivals, 922 

replicate 1) and the on the y-axis the log2 gene expression. Panel A shows the raw expression 923 

levels, B the RPM normalization to a fixed total of 50M reads, C the quantile normalization, 924 

D1 the subsampling (with replacement) normalization to a total of 50M reads D2, the 925 

subsampling without replacement, E the DESeq2 normalization and F the edgeR 926 

normalization. Effective normalization (e.g. C and D) is observed when the distributions 927 

become most comparable. 928 

FIGURE 5 Comparison of distribution of DE obtained using the subsampling 929 

normalization and HDE, DESeq2 and edgeR. MA plots, with x-axis showing log2 average 930 

abundances against OFC with an offset of 20 (Panel A) and FC (Panels B and C). The 931 

example shown ism for the 02HT ± rivals DE comparison. The red line indicates 0 log2 FC/OFC 932 

and the blue lines ±0.5 log2 FC/OFC. Red data points represent the genes ‘called’ differentially 933 

expressed by each of the methods. Panel A shows the results for subsampling normalization 934 
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with DE calculated using the hierarchical approach, Panel B for DEseq2 and Panel C for 935 

edgeR. Panel d shows a Venn diagram identifying the number of differentially expressed 936 

genes identified by two or more methods versus uniquely by each. 937 
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FIGURE 1 939 
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FIGURE 2 941 
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