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Abstract

The coalescent has been used to infer from gene genealogies the population dynamics of biological sys-

tems, such as the prevalence of an infectious disease. The offspring distribution affects the relationship

between population dynamics and the genealogy, and for infectious diseases, the offspring distribution

is often highly overdispersed. Here, we provide a general formula for the coalescent rate for popula-15

tions with time-varying sizes and any offspring distribution. The formula is valid in the same large

population limit as Kingman’s original derivation. By relating our derivation to existing formulations

of the coalescent, we show that differences in the coalescent rate derived for many population models

may be explained by differences in the offspring distribution. The coalescent derivations presented here

could be used to quantify the overdispersion in the offspring distribution of infectious diseases, which20

is useful for accurate modelling disease outbreaks.
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1 Introduction

Gene genealogies provide much useful information about the populations from which the genes are

sampled, in particular how the population size changed over time in the past. This has proven especially25

useful in cases where other indicators of population size are limited, such as the study of extinct species
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over geological time, or the study of infectious disease outbreaks, where surveillance may be poor,

or biased. The basic insight underlying this work is provided by the coalescent, which describes the

statistical relationship between population size and the genealogy [1]. This statistical model can be fit

to genealogical data to infer past population sizes. For a most simple example, the probability that two30

randomly chosen individuals are siblings is the inverse of the population size at the time when their

parents were breeding. With time going backwards from the present, a coalescent model describes the

changing probability over time that lineages from a sample coalesce, which occurs when two lineages

share a common parent and correspond to branching events in the genealogy.

Kingman’s original coalescent model was formulated for a population reproducing in discrete gener-35

ations with a constant population size, and for which only a small proportion of the population is

sampled [1]. Since then, variants of the coalescent have been developed. These include models with

overlapping generations evolving in continuous time [2], models with deterministically changing pop-

ulation size [3], fluctuating population sizes [4], heterogeneities in the offspring distribution [5], large

sample fraction [6], population structure [7], stochastic population dynamics, or even multiple genes40

evolving through recombination and mutation [8]. There are many different methods for parameteris-

ing the inferred population sizes, which are parameters of the coalescent models. The approach used in

[9] was to treat the population size as constant between each inter-coalescent time interval, resulting in

a skyline plot. Many approaches have been used to smooth these plots [10]. An alternative approach is

to use a parametric function, such an exponential function, as in [3], other smooth or piecewise curves,45

or where appropriate, epidemic models, which can be deterministic [11], or stochastic [12].

Despite the simple assumptions of Kingman’s coalescent, it is robust to changes in many of its assump-

tions. For example, it still holds true in the presence of fluctuations in population dynamics and fast

migration rates between subpopulations [4]. However, the relationship between coalescent rate and the

population size no longer hold when assumptions of the offspring distribution are violated. When the50

variance in the offspring distribution is greater than that of a Poisson distribution, the effective popula-

tion size inferred using the coalescent is smaller than the actual population size. Kingman [1] showed

that with a constant sized population, the ratio between the actual and effective population sizes is

equal to the variance in the offspring distribution. This relationship might not hold in biological sys-

tems where the population size varies over time, such as during infectious disease epidemics. Because55

gene genealogies of pathogens are increasingly being used to infer properties of the epidemic, accurate
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formulation of the coalescent for time-varying populations with heterogeneous offspring distributions

would make inference results from gene genealogies more accurate [13]. Previous derivations of the

coalescent with time-varying population size and variable offspring distribution have shown that the

above result is valid to describe the mean coalescent rate if the population size is replaced by its har-60

monic mean [14], however a derivation which allows time-varying coalescent rates is needed to infer

time-varying population sizes use the coalescent.

Here, we present a variant on Kingman’s coalescent for the case of a population that is changing sys-

tematically over time and where individuals are heterogeneous in terms of the number of offspring they

generate. We start with a very simple derivation for the case of discrete generations, analogous to King-65

man’s derivation, and present a partial generalisation to continuous time. We show that in special cases,

the simple formula is equal to other formulas derived under different assumptions, suggesting that our

formula has generality beyond its restrictive assumptions, and that variance in the offspring distribution

may be a key driver of differences between published models. We then derive the formula again for a

related model in continuous time. The validity of the derivations have been demonstrated in a recently70

published work with simulated disease outbreaks [15].

An alternative framework for relating population dynamics to gene genealogies is the birth-death model

(cite Stadler), which in our parlance corresponds to a geometric offspring distribution. Generalising

birth-death models to other offspring distributions, or relating the two conceptually separate frame-

works, is beyond the scope of this paper.75

2 Theory and Results

2.1 Definition of the effective population size

We define the effective population size Ne(t) by first defining the coalescent rate p2(t). p2(t)dt is the

probability that any two selected lineages coalesce in the time interval [t, t + dt], where, as usual in

coalescent models, time t goes backwards from the present. The coalescent rate is given by,80

p2(t) =
1

Ne(t)Tg
(1)
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where Tg is the generation time. The overall coalescent rate is given by
(
n
2

)
p2(t), where

(
n
2

)
is the number

of different pairs that could coalesce amongst a studied sample of size n. In the classical Fisher-Wright

model, the population size is constant, denoted N , reproduction occurs in discrete generations of dura-

tion Tg . Furthermore, all individuals have equal probability of producing offspring. More specifically,

the number of offspring of a set of individuals in one generation is given by the multinomial with N85

probabilities = 1/N . When N is large, this is well approximated by a Poisson distribution with mean 1.

Going back one generation, the probability that an individual shares a parent with any other individual

is 1/N , and thus the coalescent probability is 1/N per generation, or approximately 1/(NTg) per unit of

time. As expected, N = Ne(t) for this classical Fisher-Wright coalescent.

2.2 Discrete generation model with arbitrary offspring distribution and changing90

population size

Instead of a Poisson distribution with mean 1, we consider the case of an arbitrary offspring distribu-

tion (Figure 1). To calculate the coalescent rate, we only need to specify the mean, commonly known

as the reproduction number R(t), and the variance, which we denote σ2. The classical Fisher-Wright

coalescent is recovered when R(t) = σ2 = 1. We denote the probability mass function of the offspring95

distribution φ, such that φ(ν) is the probability of an individual having ν offspring. It is normalised such

that
∑∞
ν=0 φ(ν) = 1. The mean of φ is R =

∑∞
ν=0 νφ(ν) and its variance is σ2 =

(∑∞
ν=0 ν

2φ(ν)
)
−R2.

Now consider a population evolving one generation from its ancestor at time t − Tg to time t. Label

i = 1 . . . N(t − Tg) all the individuals in the parent generation. Let νi be the number of each of their100

offspring, distributed according to φ, i.e. νi ∼ φ; then the number of offspring is N(t) =
∑N(t−Tg)
i=1 νi.

The total number of pairs in the population at time t is N(t)(N(t) − 1)/2, and the number of pairs that

are siblings (i.e. share a parent) is
∑N(t−Tg)
i=1 νi(νi − 1)/2. The probability of an arbitrarily chosen pair of

isolates chosen at time t coalescing in the previous generation is the ratio of these quantities

p2(t)Tg =

N(t−Tg)∑
i=1

νi(νi − 1)

N(t)(N(t)− 1)
(2)

For a large population, the mean of the number of offspring is the mean of the offspring distribution, i.e.105
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R =
1

N(t− Tg)

N(t−Tg)∑
i=1

νi =
N(t)

N(t− Tg)
, (3)

and the variance is the variance of the offspring distribution, i.e.

σ2 =
1

N(t− Tg)

N(t−Tg)∑
i=1

(νi −R)2 =

N(t−Tg)∑
i=1

ν2i

N(t− Tg)
−R2. (4)

Inserting these equations back into Equation 2,

p2(t)Tg =
σ2N(t− Tg) +R2N(t− Tg)−N(t)

N(t)(N(t)− 1)

=
σ2N(t)/R+RN(t)−N(t)

N(t)(N(t)− 1)

=
σ2/R+R− 1

N(t)− 1

' σ2/R+R− 1

N(t)
. (5)

Substituting Equation 5 into Equation 1, we obtain this equation for the effective population size

Ne(t) =
N(t)

σ2/R+R− 1
. (6)

In Equations 5 and 6, the reproduction number and variance in offspring distribution stay constant over110

time. However, these can be replaced by time-varying values R(t) and σ(t) to allow temporal changes

in the offspring distribution.

In the following sections (2.3-2.7), we show that Equation 6 reduces to some commonly used formula-

tions of the coalescent.

2.3 Constant population size115

In the case of constant population size (in which case R = 1), this reduces to the well-known equation

originally proposed by Kingman [1]

Ne =
N

σ2
. (7)
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2.4 Poisson offspring distribution

In the case of Poisson offspring distribution (in which case σ2 = R), this reduces to

Ne =
N

R
. (8)

When the population size is constant as well (R = 1), then Ne = N , which corresponds to Kingman’s120

coalescent.

2.5 Geometric offspring distribution

In the case of a geometric offspring distribution σ2 = R+R2, so Equation 6 reduces to

Ne(t) =
N(t)

2R
. (9)

Using conventional parameterization of the geometric distribution, the mean R = (1− p)/p refers to the

expected number of success (offspring) given a probability of failure (not producing any offspring) of p.125

For the special case of constant sized population size with geometric offspring distribution, so that mean

R = 1, Equation 9 reduces to the equation for the Moran model [1],

Ne(t) =
N(t)

2
. (10)

2.6 Negative binomial offspring distribution

A more flexible distribution is the negative binomial, which has an additional dispersion parameter k

that controls the shape of the distribution. In the case of negative binomial distribution,130

φ(ν) =

(
k

R+ k

)k
Γ(k + ν)

ν!Γ(k)

(
R

k +R

)ν
(11)

which has mean R and variance σ2 = R+R2/k, then

Ne(t) =
N(t)

R(1 + 1/k)
. (12)
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2.7 Exponential growth models

The exponential growth model is often used to capture the early stages of infectious disease spread

in the population, during which the population size can change rapidly within a short period of time.

Fitting the exponential model to pathogen genealogies can help to estimate the rate of epidemic growth135

[16].

Consider the special case when N(t0) = 1 at some initial time, then with discrete generation growth,

N(t) = exp(r(t − t0)) = R(t−t0)/Tg with r = log(R)/Tg , the exponential rate of growth. The effective

population size is

Ne(t) =
exp(r(t− t0 − Tg))

(1 + 1/k)
. (13)

2.8 Continuous time models140

Although the derivations in Section 2.2 were based on discrete generations, they have good agreement

with results for continuous-time models, such as those derived by Volz et al. [11] for epidemic models.

For example, the SIR model describes the changes over time of susceptible, infectious, and recovered

individuals in a population:

dS

dt
=− βSI/N (14)

dI

dt
= + βSI/N − αI (15)

dR

dt
= + αI. (16)

In the SIR model, the population size is I , the effective reproduction number is βS/α, and the generation145

time is Tg = 1/α. The offspring distribution is geometric because the number of transmissions per time

unit is Poisson distributed and the duration of infectiousness is exponentially distributed. The effective

population size is

Ne =
Iα

2βS
(17)

and the coalescent rate is

p2 =
2βSI

I2
(18)
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which is the formula derived by Volz et al. [11].150

3 Discussion

Here we presented a flexible framework to model the coalescent process with any arbitrary offspring

distribution. Kingman [1] showed that in a constant size population, the effective and actual popula-

tion sizes are related via the variance in the offspring distribution. The formulation of the coalescent

here demonstrates that the relationship depends both on the variance and the mean of the offspring155

distribution.

We also showed that many existing formulations of the coalescent were special cases of the general ex-

pression for coalescent rate presented here. This indicates that differences in the coalescent rate between

these models are due to differences in the offspring distribution.

Our derivations for the negative binomial agree with those derived by Koelle and Rasmussen [17] in160

a constant sized population. However, our framework is more general in that it can be used to infer

time-varying population sizes and any arbitrary offspring distribution.

Explicitly defining the coalescent rate in terms of both the population size and the offspring distribution

is especially important for studying infectious disease spread, because overdispersion in the offspring

distribution is a common phenomenon observed across many diseases [18]. Superspreading events are165

more likely when the offspring distribution is overdispersed, and this increases the uncertainty in pre-

dicting future epidemic trajectory and impacts the effectiveness of control strategies. Li et al. [15] used

the derivations presented here and demonstrated that the variance of the offspring distribution could

be estimated by fitting epidemic models to pathogen genealogy. In particular, Li et al. [15] demonstrate

how to incorporate the derivations here into a practical skyline-type likelihood for parameter inference,170

both conventionally backwards in time, and also forwards in time as needed to fit dynamic epidemic

models.

Although our derivations were based on population models with discrete generations, the agreement

with the overlapping-generations Moran model and the SIR model [11] suggest that our derivations

could approximate some continuous time models. However, the approximations would likely not work175

for infectious diseases with longer generation times, during which the coalescent rate could significantly

change.
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In particular, we did not attempt derivations for more complex epidemiological models such as the SEIR

model, which present the additional challenge that the number infected and infectious individuals are

no longer equal [17] and the ratio between the two may change over time during an epidemic. We180

show in separate work that the correspondence becomes more complicated and less accurate than that

explored here [15].

Just as in Kingman’s coalescent, we assumed that no more than one coalescent event occurs at the same

time. However, when the variance in the offspring distribution is high, multiple mergers could occur in

the gene genealogy of the sample. The Λ-coalescent has been developed as an alternative to Kingman’s185

coalescent to allow for multiple lineages to coalesce simultaneously [19]. This could prove useful for

densely sampled infectious disease outbreaks in which multiple mergers are more likely to be observed,

though remains to be generalised to arbitrary offspring distributions.
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Figure 1. An illustrative example of a population undergoing one generation of reproduction, from
g � 1 to g. Ng�1 = 5 individuals in generation g � 1 are labelled 1, ..., 5, and they have
⌫1 = 2, ⌫2 = 0, ⌫3 = 1, ⌫4 = 4 and ⌫5 = 0 offspring, respectively. At generation g, the population size is
Ng = ⌫1 + ... + ⌫5 = 7. The reproduction number Rg�1 is the mean of ⌫i, i.e. 7/5, which is also the
relative change in population size Ng/Ng�1. The variance of the offspring distribution is
Vg�1 = ((⌫1 � Rg�1)

2 + ...(⌫5 � Rg�1)
2)/(5 � 1) = 14/5. This is much greater than the value 7/5

expected under a homogeneous offspring model, indicating that the offspring distribution is skew. Two
randomly selected members of generation g share the same parent if they are one of seven possible
pairs, the offspring of 1 or any two of the four offspring of individual 4. There are 21 possible pairs, and
so the coalescent probability is 7/21 = 1/3. The formula (Vg�1/Rg�1 + Rg�1 � 1)/Ng gives 24/70 = 0.34
which is very close to the exact result; the approximation rapidly converges to the exact result for large
population sizes. This formula compares with the conventional approximation, 1/H(N) = 0.17, where
H is the harmonic mean. The reason for the improvement is better representation of the heterogeneity
in number of offspring and of the effects of changing population size.
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Figure 1. An illustrative example of a population undergoing one generation of reproduction, from
g − 1 to g. Ng−1 = 5 individuals in generation g − 1 are labelled 1, ..., 5, and they have
ν1 = 2, ν2 = 0, ν3 = 1, ν4 = 4 and ν5 = 0 offspring, respectively. At generation g, the population size is
Ng = ν1 + ...+ ν5 = 7. The reproduction number Rg−1 is the mean of νi, i.e. 7/5, which is also the
relative change in population size Ng/Ng−1. The variance of the offspring distribution is
Vg−1 = ((ν1 −Rg−1)2 + ...(ν5 −Rg−1)2)/(5− 1) = 14/5. This is much greater than the value 7/5
expected under a homogeneous offspring model, indicating that the offspring distribution is skew. Two
randomly selected members of generation g share the same parent if they are one of seven possible
pairs, the offspring of 1 or any two of the four offspring of individual 4. There are 21 possible pairs, and
so the coalescent probability is 7/21 = 1/3. The formula (Vg−1/Rg−1 +Rg−1 − 1)/Ng gives 24/70 = 0.34
which is very close to the exact result; the approximation rapidly converges to the exact result for large
population sizes. This formula compares with the conventional approximation, 1/H(N) = 0.17, where
H is the harmonic mean. The reason for the improvement is better representation of the heterogeneity
in number of offspring and of the effects of changing population size.
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