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Abstract 

Microbial community profiling by barcoded 16S rRNA gene amplicon sequencing 

currently has many applications in microbial ecology. The low costs of the parallel 15 

sequencing of multiplexed samples, combined with the relative ease of data processing 

and interpretation (compared to shotgun metagenomes) have made this an entry-level 

approach. Here we present the MetaAmp pipeline for processing of SSU rRNA gene and 

other non-coding or protein-coding amplicon sequencing data by investigators that are 

inexperienced with bioinformatics procedures. It accepts single-end or paired-end 20 

sequences in fasta or fastq format from various sequencing platforms. It includes read 

quality control, and merging of forward and reverse reads of paired-end reads. It makes 

use of UPARSE, Mothur, and the SILVA database for clustering, removal of chimeric 

reads, taxonomic classification and generation of diversity metrics. The pipeline has been 

validated with a mock community of known composition. MetaAmp provides a 25 

convenient web interface as well as command line interface. It is freely available at: 

http://ebg.ucalgary.ca/metaamp. Since its launch two years ago, MetaAmp has been 

used >2,800 times, by many users worldwide. 
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Introduction 

Microbial communities are made up of many populations and it has long been 

known that a meaningful assessment of microbial community structure is almost 35 

impossible with classical cloning and Sanger sequencing approaches (Curtis et al., 2002). 

Therefore, high throughput DNA sequencing of a ~400 base pair (bp) region of the 

prokaryotic 16S rRNA gene has become the method of choice for characterization of 

microbial communities (Sogin et al., 2006). This approach consists of (1) extraction of 

DNA from a set of samples, (2) amplification of the ~400 bp target region using the 40 

polymerase chain reaction (PCR) with a primer pair that targets conserved sequence 

elements on both sides of the amplified region, (3) barcoding of the amplicons of each 

sample with a short “barcode” sequence unique to each sample, and (4) high throughput, 

“multiplexed” sequencing of the combined amplicons from all samples in a single 

sequencing run. After these experimental procedures, data processing ultimately results in 45 

a list of abundances of taxa present in each sample and diversity metrics (e.g. alpha- and 

beta-diversity) and other statistical comparisons of samples (e.g. nonlinear 

multidimensional scaling).  

Originally, Roche 454 pyrosequencing was the sequencing method of choice, but 

currently the Illumina MiSeq platform is used most frequently. This platform typically 50 

yields 25 million 2 x 300 bp paired-end reads per run, which enables parallel sequencing 

of up to ~400 samples at ~50,000 paired end reads per sample. 

The consumable costs of this approach can be less than $50 per sample and an 

experienced scientist can process hundreds of samples per week, depending on the degree 

of automation available. This has enabled meaningful microbial ecology investigations 55 

of, for example, human microbiota (Yatsunenko et al., 2012), oceans (Fuhrman, 2009), 

soils (Auffret et al., 2016), and wastewater treatment systems (Vanwolterghem et al., 

2014). 
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The approach has more recently also been applied to metabolic genes (Herbold et 

al., 2015) and to eukaryotic microbes, targeting the 18S rRNA gene (Mahé et al., 2014). 60 

However, the specificity of the primer sets used for these targets remains largely 

untested. Most likely such surveys yield a much lower coverage of the taxonomic 

diversity, leading to incomplete community assessments. For prokaryotic 16S rRNA 

genes, the primers are also known to be imperfect, but at least this imperfection has been 

assessed based on the large amount of available 16S rRNA gene sequences in the 65 

databases (Klindworth et al., 2013). Imperfect primers appear to be the major source of 

bias of the amplicon sequencing approach (Schirmer et al., 2015). 

Typical computational steps needed for data analysis consist of filtering out those 

sequencing reads that have a poor quality, trimming off sequencing adapters and 

barcodes, merging of each set of paired-end reads into a single sequence (based on 70 

overlap), and assignment of sequences to samples, using the barcodes. Next, near-

identical sequences are clustered using an identity cut-off. Often 97% is used as the 

identity cut-off, which is the more-or-less-arbitrary, but generally accepted value of 

within-species sequence diversity of the 16S rRNA gene. Each cluster constitutes an 

“operational taxonomic unit” (OTU), which is assigned to a taxon using a database and a 75 

classification algorithm. Several databases, such as SILVA (Quast et al., 2013), RDP 

(Cole et al., 2014) and Greengenes (McDonald et al., 2012) for ribosomal genes, and 

classification algorithms, such as NCBI Blast (Camacho et al., 2009) and the Ribosomal 

Database Project classifier (Cole et al., 2014), have found wide use. Finally, indexes of 

alpha-diversity are computed for each sample, beta-diversity is calculated across samples, 80 

and many other approaches are available to compare samples, analyse the distribution of 

OTUs as a function of specific environmental parameters, analyse co-variation between 

OTUs and other hypothesis testing relevant to the study (Zhou, 2015). 

Many software packages are available that perform these computations. Mothur 

(Schloss et al., 2009) and QIIME (Caporaso et al., 2010) are the most well-known 85 

examples. However, because these applications cater to a diverse group of users with 

many different specific needs, these applications present a large number of tools and 

options. Their proper use requires significant expertise and training. 
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For this reason, we developed MetaAmp, for simple, fast, command-line and 

web-based, push-of-a-button processing of amplicon sequencing data for casual users. 90 

MetaAmp performs all steps outlined above in an automated pipeline that uses 

established tools with sensible default parameters. It formats the basic results in graphs 

and tables for rapid interpretation. It also generates files compatible with Mothur for 

further analysis by advanced users. Using a series of artificial, “mock” microbial 

communities, we validated the approach and showed that it delivers an accurate 95 

assessment of microbial community structure. MetaAmp has been available for two years 

now and has found wide use worldwide. Therefore, we believe that it is a useful tool for 

the analysis of amplicon sequencing results. 

 

Materials and Methods 100 

MetaAmp pipeline implementation 

MetaAmp is an integrated and fully automated pipeline for amplicon data 

analysis. MetaAmp offers both a command line and a web interface. It is written using 

Perl and the web interface is implemented using a standard CGI framework, HTML, and 

Javascript. Amplicon data analysis in MetaAmp involves several key stages (Figure 1).  105 

The input to MetaAmp is a set of FASTA format sequence files (with matching 

quality files) or FASTQ format sequence files. If the input is paired-end sequence files, 

the paired-end raw reads from each sample will go through the assembly (merging) stage 

first. During assembly, a read pair is converted into a longer single read containing one 

sequence and one set of quality scores. A pair is merged by aligning the forward read 110 

sequence to the reverse-complement of the reverse read. In the overlap of the two reads, a 

single base and quality score is derived from the aligned pair of bases and quality scores 

for each position. MetaAmp assembles paired-end reads using “usearch -

fastq_mergepairs” (Edgar, 2013). The read pairs which cannot be aligned or whose 

overlap regions are shorter than the user-defined length are discarded. Additionally, read 115 

pairs that have a number of mismatches in the overlap region greater than the user-

defined threshold are discarded. 
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In a second stage, the single-end input reads or assembled reads are checked for 

the forward and reverse primers at the start and end of each read. The primers from both 

ends are trimmed with the Mothur software package (Schloss et al., 2009). Those reads 120 

which do not contain both forward and reverse primers or have a number of mismatches 

in the primer region greater than the user-defined threshold are discarded. The primer-

trimmed reads are subjected to quality filtering to remove low-quality reads and minimize 

the influence of sequencing errors. The quality filtering is done using “usearch -

fastq_filter”. The remaining reads are truncated to a user-defined length and reads which 125 

have a higher number of total expected errors for the truncated read length than the user-

defined number are discarded. The reads with lengths shorter than the truncation length 

are also excluded from further analysis. After the unique sample ids are inserted into the 

header of the remaining high-quality reads, the reads from different files are pooled 

together. 130 

In the third stage, the UPARSE software is used to dereplicate, discard singleton 

reads, identify chimeras and cluster the pooled high-quality reads into operational 

taxonomic units (OTUs). The OTU taxonomic assignments are generated using the 

“classify.seqs” command implemented in Mothur with the SILVA training dataset as the 

template (http://www.mothur.org/wiki/Taxonomy_outline). The UPARSE-generated 135 

OTU table is converted into the OTU list file format which can be used by Mothur. Since 

diversity and similarity measures can be highly sensitive to different sampling depths, 

MetaAmp rarefies each sample using the “sub.sample” command from Mothur so that 

rarefied samples all have the same number of reads to ensure an equal playing field for 

sample comparisons. 140 

Finally, the original OTU list file and the rarefied list file are both used as input to 

Mothur to generate rarefaction data, rank abundance data, alpha-diversity indexes (sobs, 

chao, ace, jackknife, Shannon, npshannon, simpson), and beta-diversity. The community 

dissimilarities among different samples in terms of membership and structure are 

calculated using the following measures: Jclass, Jest, ThetaYC, and Bray-Curtis index. 145 

For each dissimilarity measure, the UPGMA (Unweighted Pair Group Method with 

Arithmetic Mean) algorithm is used to generate a Newick-format tree, which describes 
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the hierarchical relationship among samples. In addition, two ordination methods, non-

metric multidimensional scaling (NMDS) and principal coordinate analysis (PCoA), are 

also employed to simplify and visualize the differences between microbial communities 150 

in samples. Moreover, hypothesis testing tools offered via Mothur such as parsimony, 

weighted unifrac and unweighted UniFrac, AMOVA, HOMOVA are used to determine 

the statistical significance of the spatial separation or clustering observed. 

Co-occurrence relationships are ecologically important patterns that reflect niche 

processes that drive coexistence and diversity maintenance within biological 155 

communities (Tilman, 1982; HilleRisLambers et al., 2012, Berry et al., 2014). Network 

analyses-based approaches have recently been used to investigate co-occurrence patterns 

between microorganisms in complex environments ranging from the human gut to oceans 

and soils (Bin et al., 2016). MetaAmp also constructs meta-community co-occurrence 

networks based on Spearman or Pearson correlation coefficients and P-values. After 160 

filtering out infrequent OTUs (minimum abundance < 0.1% in the samples and only 

showing up in one sample), MetaAmp uses absolute abundance of the remaining OTUs to 

calculate Spearman and Pearson correlation coefficients between OTUs and only keeps 

the strong (correlation coefficient >= 0.6 and statistically significant (P-value <= 0.01 or 

P-value <= 0.05)) correlation pairs (Barberán et al., 2012). These correlation pairs are 165 

then used to construct a co-occurrence network in gexf file format, which can be explored 

and visualized in Gephi (Bastian et al., 2009). 

When the MetaAmp analysis finishes, it sends the user an email notification with 

a web link to the main result page. The result page contains links to data files, extensive 

text summaries, interactive tables, and downloadable figures. The user can also download 170 

the identical packaged result set to their local computer to review the results later. For the 

most up to date instructions of how to use MetaAmp, please read its online help page at: 

http://ebg.ucalgary.ca/metaamp/html/help.html  

 

Testing of MetaAmp pipeline 175 

 

Construction of mock communities 
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Three types of mock communities were constructed as described previously 

(Kleiner et al. 2017). Briefly, four biological replicates of each mock community type 

were made by mixing between 28 and 32 species and strains of Archaea, Bacteria, 180 

Eukaryotes and Bacteriophages. Each mock community contained between 17 to 21 

bacterial species that differed in their 16S rRNA gene sequence (Table 1, Figure 2). For 

some bacterial species, multiple strains were added that are indistinguishable on the 16S 

rRNA gene sequence level. These included two strains of Rhizobium leguminosarum, two 

strains of Staphylococcus aureus, and three strains of Salmonella enterica serotype 185 

typhimurium. The uneven mock community (UEC) was designed to cover a large range 

of species abundances on the level of cell numbers to test for the dynamic range and 

detection limit of the amplicon sequencing method. The equal-protein community (EPC) 

contained the same amount of protein for all community members. The equal-cell 

community (ECC) contained the same number of cells for all members.  190 

DNA extraction 

DNA was extracted from each of the four biological replicates of each mock 

community type as described previously (Kleiner et al. 2017). Briefly, the FastDNA Spin 

Kit (MP Biomedicals, Santa Ana, CA, USA) was used according to the manufacturer’s 

protocol with small modifications. Samples were homogenized after addition of CLS-TC 195 

in lysing matrix tubes (MP Biomedicals FastDNA Spin Kit, tube A) for 45 seconds at 6 

m/s using an OMNI Bead Ruptor 24 (Omni International, Kennesaw, GA, USA). The 

DNA elution step was repeated twice. DNA concentrations were measured using a 

NanoDrop 2000 spectrophotometer (Thermo Scientific). 

PCR amplification, barcoding and DNA sequencing 200 

Samples were prepared for dual-index paired-end sequencing analysis as 

described previously (Sharp et al., 2017) using the primers S-D-Bact-0341-a-S-17 (also 

known as b341, 5’-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGAGGCAGCAG-

3’) and S-D-Bact-0785-a-A-21 (also known as Bakt_805R, 5’-205 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAA
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TCC-3’) with added Illumina overhang adapters on their 5’ end for the amplification of 

the HV regions 3-4 in the first step PCR reaction. These primers yield amplicons with a 

length of 427 bp and cover a large proportion of the domain Bacteria (Klindworth et al., 

2013).  All amplicon PCR reactions were performed in triplicate. PCR reactions were 210 

performed as described in Sharp et al. (2017). The second step PCR was used to attach 

dual indices and Illumina sequencing adapters to region of interest PCR products, the 

amplicons from the first step PCR reaction. PCR reactions and sequencing libraries were 

prepared as per Sharp et al., (2017) except that the magnetic DNA purification beads 

were sourced from Macherey-Nagel (product number 744970.500). Libraries were 215 

normalized and pooled for sequencing on the MiSeq Personal Sequencer (Illumina, San 

Diego, CA) using the 2 x 300 bp MiSeq Reagent Kit v3. The sequence data was 

deposited in EMBL-EBL under accession number ERR1938377 to ERR1938400. 

Mock sample analysis 

The 12 mock samples were sequenced twice in two separate MiSeq runs. The 220 

mock sample sequence data generated from different runs were analyzed in the MetaAmp 

pipeline separately to create OTU taxonomic profiles, alpha-diversity and beta-diversity 

indexes, and hypothesis testing results with the parameters according to Table 2.  

To infer the source of the non-mock community sequences in the mock samples, 

mock samples and all the other samples from the same and previous MiSeq runs were 225 

also analyzed in MetaAmp. 

 

Results 

The independent analysis of mock communities from two separate MiSeq runs in 

MetaAmp produced two sets of analysis results referred to as Mock_run1 and 230 

Mock_run2. In both runs, MetaAmp detected 16 out of 17 bacterial species for the ECC 

and EPC community. MetaAmp detected 18 out of 21 bacterial species for the UEC 

community in Mock_run1 and 17 in Mock_run2. 

MetaAmp also identified two and eight additional OTUs in Mock_run1 and 

Mock_run2, respectively. One of these OTUs, classified as Aeromicrobium, present in 235 

both runs, was a known co-cultured bacterium of the eukaryotic green algae 
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Chlamydomonas reinhardtii present in the mock communities. The combined MetaAmp 

analysis of the mock community samples and the other samples sequenced in the same 

run as well as in the previous run of the MiSeq sequencer, showed that six of the 

unexpected OTUs from Mock_run2 and one from Mock_run1 were highly abundant in 240 

other samples sequenced in the same or the previous MiSeq run. This suggests that the 

detection of these OTUs resulted from carry-over or cross-talk. Sample cross-talk is a 

known phenomenon for multiplexed Illumina sequencing runs. At the same time, most of 

the abundant OTUs in the mock communities were often found in low abundance in the 

other samples sequenced in those runs. This presented additional evidence for cross-talk. 245 

The OTU classified as “Sphingomonas” is a known contaminant of commercial DNA 

extraction kits. The source of the remaining unexpected OTU, which yielded 11 reads in 

Mock_run2, could not be identified and the contamination might have occurred during 

library preparation or sequencing. 

 The representative sequences from each OTU were taxonomically classified in 250 

MetaAmp to assess how well the predicted taxonomy matched the known taxonomy of 

the input community. Seventeen OTUs of the mock community were correctly classified 

down to the genus level and NCBI blast against the mock community reference 16S 

rRNA gene sequences confirmed the assignment. One OTU was classified to Rhizobium 

instead of Agrobacterium at the genus level because Agrobacterium was missing from the 255 

classification reference template we downloaded from the Mothur website. However, the 

assignment was correct at the family level. 

The MetaAmp-inferred community structures mostly agreed with the known 

community structures. However, several differences were observed (Figure 3). B. 

xenovorans was not detected in any of the mock communities sequenced in either MiSeq 260 

run. The inferred abundance of S. aureus was consistently lower than the anticipated 

abundance in all samples. The cause of this could be cell lysis efficiency, DNA 

extraction-, primer-, or PCR-bias. Three organisms (N.multiformis, N.ureae, and 

N.europaea), which were absent in Mock_run1 and/or Mock_run2 (Table 2), all had very 

low expected abundances (~0.01%). Because of the compositional nature of these data, 265 

the absence or underestimation of these OTUs led to slight differences between the actual 
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and observed abundance for all the other taxa. At the same time, all biological and 

technical replicates of each type of the mock community were consistent. 

 Based on Bray-Curtis and ThetaYC dissimilarity matrixes, MetaAmp generated 

dendrograms to describe the similarity of the samples to each other. The trees showed 270 

that each type of the mock community clustered into a distinct branch (Figure 2A). 

Weighted UniFrac testing (P<0.01) confirmed that the three types of mock communities 

were significantly different. Principal coordinates and non-metric multidimensional 

scaling visualizations of the rarefied samples demonstrated a clear separation among the 

different types of mock communities (Figure 2B). The AMOVA testing results (P<0.01) 275 

further confirmed that the observed separation among the different types of communities 

was statistically-significant. 

 

Discussion 

MetaAmp was shown to integrate available tools and reference databases for the 280 

comprehensive analysis of amplicon data. The easy-to-use yet versatile web interface 

allows users to access the pipeline from anywhere. At the same time, it also gives users 

the flexibility to configure the pipeline at different stages of the analysis. One limitation 

that MetaAmp shares with all other currently available tools is that the accuracy of the 

OTU taxonomic classification heavily depends on the underlying reference 285 

sequences/database. In the case of MetaAmp, taxonomic classification is based on the 

“Classify.seqs” command in Mothur, which can, as we have shown in this study, produce 

inaccurate taxonomic assignments when the targeted taxonomy is missing from the 

reference templates. 

One challenge for all amplicon sequencing studies, which can be at least partially 290 

addressed with MetaAmp, is the problem of cross-talk within and between sequencing 

runs. This problem, resulting from sequencing and/or image analysis errors during the 

index sequencing phase of the MiSeq run (a separate step in the sequencing process), 

causes a small fraction of amplicons from one library to be incorrectly assigned to an 

index of another library (Nelson et. Al. 2014). In the mock community analysis we 295 

clearly showed the relevance of this problem by identification of 2-7 OTUs that were 
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contaminants from DNA extraction kits and cross-talk. By analyzing all samples from a 

MiSeq run with MetaAmp, potential cross-talk can be identified. We strongly 

recommend the use of this procedure because our analysis showed that the contamination 

rate can be more than 2% in a MiSeq run. Within-run cross-talk can artificially inflate 300 

OTU numbers and diversity measurements if not properly addressed, leading to incorrect 

interpretation of results when investigating low abundance OTUs (Nelson et.al. 2014). 

In conclusion, we presented and validated MetaAmp, a push-of-a-button pipeline 

for entry level users of amplicon sequencing. MetaAmp enables these users to rapidly 

generate solid results, addressing the basic questions of their studies. For advanced users, 305 

it offers convenient automation of the first steps of the analysis, preparing files that could 

be used as the starting point for more sophisticated tools. Since the launch of the website 

two years ago, it has already been used >2,800 times by scientists worldwide, which 

clearly indicates a strong demand for a simple tool of this type. 

 310 

Data Deposition 

The mock community 16S rRNA gene amplicon sequencing data is available from the 

European Nucleotide Archive with run accession numbers ERR1938377 to ERR1938400 

within study PRJEB19901 (http://www.ebi.ac.uk/ena/data/view/PRJEB19901). It also 

available to download from MetaAmp website. 315 
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Figures 455 

 

 
Figure 1. Overview of MetaAmp workflow 
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Figure 2. Comparison of the inferred and expected community composition. The line 460 

plots show the expected species abundance and the scatter plots show the observed 

abundance based on MetaAmp analysis of the MiSeq runs. Each point in the plot 

represents a biological or technical replicates. A) ECC is the equal cell number 

community. In the ECC community, the same number of cells was added to the 

community for each strain. B) EPC is the equal protein amount community. In the EPC 465 

community, the same amount of each strain was added to the community based on 

protein mass. C) UEC is the uneven community. In the UEC community, the cell count or 

protein amount of the different strains cover a large abundance range. The species names 

starting with # indicate that multiple strains were added to the mock samples and the 

species names starting with * indicate that those species were only added to the UEC 470 

community and their DNA input abundance was very low. The expected relative 

abundance of each organism was corrected by the 16s rRNA gene copy number in each 

organism.  
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Figure 3. A screenshot montage of MetaAmp output in different view. A) Mock 475 

sample relation dendrogram describes the similarity of the mock samples to each other 

measured by Bray-Curtis dissimilarity distance. B) Mock sample NMDS analysis based 

on the Bray-Curtis dissimilarity distance. 
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Table 1. Microbial mock community input bacterial name abbreviation list and obtained 
community composition from the MetaAmp pipeline  

Label Organism name                                         Mock_run1 Mock_run2 

A. tumefaciens Agrobacterium tumefaciens NTL4 3459 7032 

A .macleodii Alteromonas macleodii ATCC 27126 968 2171 

B. subtilis Bacillus subtilis 168 3303 7858 

B. xenovorans Burkholderia xenovorans LB400 N/A N/A 

C. violaceum Chromobacterium violaceum CV026 1753 3748 

C. metallidurans Cupriavidus metallidurans CH34 3609 9463 

E. coli Escherichia coli K12 1703 4010 

Pa .dentrificans Paracoccus denitrificans ATCC 17741 989 2105 

Pse .denitrificans Pseudomonas denitrificans ATCC 13867 2262 5351 

Pse. fluorescens Pseudomonas fluorescens ATCC 13525 1539 3921 

Pse. pseudoalcaligenes Pseudomonas pseudoalcaligenes KF707 1933 4503 

#R. leguminosarum Rhizobium leguminosarum bv. viciae 4589 9359 

R. sp. Roseobacter sp. AK199 1092 2206 

#S. enterica Salmonella enterica typhimurium LT2 6741 15621 

#S. aureus Staphylococcus aureus subsp. aureus 1373 3143 

S. maltophilia Stenotrophomonas maltophilia SeITE02 2761 6411 

T. thermophilus Thermus Thermophilus HB27 341 913 

*N. multiformis Nitrosospira multiformis ATCC 25196 2 N/A 

*D. vulgaris Desulfovibrio vulgaris Hildenborough 25 89 

*N. europaea Nitrosomonas europaea ATCC 19718 N/A N/A 

*N. ureae  Nitrosomonas ureae Nm10 N/A N/A 

+ Aeromicrobium 18 38 

+ Atribacteria 7 16 

+ Clostridiales N/A 5 

+ Chloroplast N/A 2 

+ ML635J-21 N/A 2 

+ Illumatobacter N/A 2 

+ Sphingomonas N/A 3 

+ Proteobacteria N/A 11 

* indicates the organism’s DNA input is very low and only in UEC samples. + indicates the unexpected OTUs detected in the 
analysis of the mock samples. # indicates multiple strains were added 

Blue color indicates the co-culture contaminants or other contaminants and orange color indicates carry-over or cross-talk 
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Table 2. MetaAmp parameter configuration for mock community analysis 

Command options Corresponding web interface options Values 

-an Analysis Name benchmark 

-email Email address your@ucalgary.ca 
-seqformat Sequence format Default 

-seqtype Sequencing type Default 

-map *Upload mapping file mapping.txt 

-oligos *Forward amplicon primers && Reverse amplicon primers oligos.txt 

-g Marker gene type Default 

-s Similarity cutoff Default 

-minoverlen Minimum length of overlap 100 

-maxdiffs Maximum number of mismatches in the overlap region 8 

-pdiffs Maximum number of differences to the primer sequence Default 

-maxee Maximum number of expected errors Default 

-trunclen Trim amplicon to a fixed length Default 

 

*MetaAmp parameter configuration details are available at (http://ebg.ucalgary.ca/metaamp/help.html) 

*mapping.txt file (Table S1) has five space separated columns (Sample name, treatment, strand, read1, and read2) 
and the header line started with “#”. It feeds MetaAmp the information on which sample a sequence file belongs to, 
what is the orientation of the sequences, and which group (treatment) a sample belongs to. 

*oligos.txt file contains amplicon sequence primers. It can have multiple primers and each unique primer must be in 
separate lines. It can also accept IUPAC code. Oligos.txt file of the mock community analysis only contains two 
lines as flowing:  

forward CCTACGGGAGGCAGCAG 

reverse  GACTACHVGGGTATCTAATCC  
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