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Abstract 9 

VCF2CNA is a web interface tool for copy-number alteration (CNA) analysis of VCF 10 

and other variant file formats. We applied it to 46 adult glioblastoma and 146 pediatric 11 

neuroblastoma samples sequenced by Illumina and Complete Genomics (CGI) platforms 12 

respectively.  VCF2CNA was highly consistent with a state-of-the-art algorithm using 13 

raw sequencing data (mean F1-score=0.994) in high-quality glioblastoma samples and 14 

was robust to uneven coverage introduced by library artifacts. In the neuroblastoma set, 15 

VCF2CNA identified MYCN high-level amplifications in 31 of 32 clinically validated 16 

samples compared to 15 found by CGI’s HMM-based CNA model. The findings suggest 17 

that VCF2CNA is an accurate, efficient and platform-independent tool for CNA analyses 18 

without accessing raw sequence data.  19 

 20 
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Background 22 

Copy-number alterations (CNAs) are gains or losses in chromosomal segments that 23 

frequently occur in tumor cells. Recent surveys suggest that certain cancers are driven by 24 

CNAs [1]. In addition to directly affecting cancer genes (e.g., MYCN and MDM2 25 

amplifications and RB1 and CDKN2A deletions), CNAs mediate oncogene 26 

overexpression through enhancer hijacking [2-5]. Several experimental methods are 27 

available to identify CNAs in tumor cells. Fluorescence in situ hybridization provides 28 

direct evidence of CNAs and is the gold standard for CNA detection in a targeted region 29 

[6]. Before the development of next-generation sequencing (NGS) technologies, array 30 

comparative genomic hybridization and high-resolution single nucleotide polymorphism 31 

(SNP) arrays permitted genome-wide evaluation of CNAs at 30-kb to 100-kb resolution.  32 

The development of NGS, especially whole-genome sequencing (WGS) platforms, 33 

has revolutionized the detection of somatic mutations, including CNAs, in cancer 34 

samples. For example, Copy Number Segmentation by Regression Tree in Next 35 

Generation Sequencing (CONSERTING) [7] incorporates read-depth and structural-36 

variation data from BAM files for accurate CNA detection in high-coverage WGS data. 37 

However, CONSERTING and other WGS-based CNA algorithms produce a fractured 38 

genome pattern (i.e., a hypersegmented CNA profile with an excessive number of 39 

intrachromosomal translocations) in samples with library construction artifacts [7], which 40 

poses a major challenge for precise CNA inference. Our extensive analysis indicated that 41 

although CNA and structural-variation detection was severely impaired by library 42 

artifacts, point-mutation detection was largely unaffected (data not shown), suggesting 43 

that a robust CNA tool can be developed from the variant information. Moreover, 44 
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CONSERTING and other WGS algorithms require direct access to aligned BAM files. 45 

Most algorithms further incur complicated installation steps, which create barriers for 46 

their widespread adoption. Advances in technology and declines in costs have made NGS 47 

a commodity for both basic research and clinical service. Therefore, a robust CNA 48 

analytical tool that is efficient, convenient, and robust to library artifacts is needed to 49 

manage the demands of NGS data analysis. 50 

VCF2CNA (http://vcf2cna.stjude.org) is a web-based tool for CNA analysis. The 51 

preferred input to VCF2CNA is a Variant Call Format (VCF) file.  VCF is a widely 52 

adopted format for genetic variation data exchange, and VCF files are quite small 53 

compared to WGS BAM files. Each variant in a typical VCF file contains its 54 

chromosome position, reference/alternative alleles, and corresponding allele counts, 55 

which are used by VCF2CNA to identify copy-number alterations.  This tool also accepts 56 

input in the Mutation Annotation Format (MAF) and the variant file format produced by 57 

the Bambino program [8]. 58 

 59 

Results 60 

VCF2CNA has a simple interface (Fig. 1a). The sole input is a VCF file (or a file in one 61 

of the other supported variant file formats) from a paired tumor–normal WGS analysis, 62 

which is uploaded via the interface to a web server where the application runs.  The 63 

results are returned to a user-provided email address. VCF2CNA consists of two main 64 

modules: 1) SNP information retrieval and processing from the input data and 2) 65 

recursive partitioning–based segmentation using SNP allele counts (Fig. 1b). Actual 66 
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running time for a typical sample is approximately 30 to 60 minutes, depending on the 67 

complexity of the genome. 68 

 To evaluate the utility of VCF2CNA, we ran it on 192 tumor–normal WGS data sets. 69 

These sequences comprised 46 adult glioblastomas (GBMs) from The Cancer Genome 70 

Atlas (TCGA-GBM) dataset [9], sequenced by Illumina technology, and 146 pediatric 71 

neuroblastomas (NBLs) from the Therapeutically Applicable Research to Generate 72 

Effective Treatments (TARGET-NBL) dataset (unpublished), sequenced by Complete 73 

Genomics, Inc. (CGI) technology. On average, VCF2CNA used approximately 2.8 74 

million high-quality SNPs per sample (median 2,811,245; range, 2,029,467–3,519,454 in 75 

TARGET-NBL data) to derive CNA profiles. 76 

 77 

CNA analysis of TCGA-GBM data 78 

The adult TCGA-GBM data downloaded from dbGaP (accession number: 79 

phs000178.v8.p7) included 46 samples. We first evaluated VCF2CNA’s resistance to 80 

library construction artifacts by using 24 samples from this set, which were previously 81 

identified as having a fractured genome pattern by CONSERTING and other CNA 82 

algorithms [7]. Indeed, VCF2CNA produced CNA profiles that are globally consistent 83 

with those of SNP array–derived CNA profiles (downloaded from TCGA, Additional file 84 

1.1 and 1.2) and more robust to noise than those produced by CONSERTING. 85 

Specifically, VCF2CNA yielded a mean 59.4-fold reduction in the number of predicted 86 

segments than did CONSERTING (median, 46.2; range, 16.2–285.7; p�=�3.0 × 10-6 by 87 

Wilcoxon signed-rank test, Fig. 2a and Additional file 1).  88 

We used an F1 scoring metric [10] to measure the consistency between the CNA 89 

profiles derived from VCF2CNA and CONSERTING in the remaining 22 high-quality 90 
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sample pairs (Fig. 2b and Additional file 2). These programs identified approximately 91 

700 Mb of the CNA regions in each sample (range, 92–2299 Mb) with high consistency 92 

(mean F1 score, 0.9941; range, 0.9699–0.9995) (Table 1). 93 

We evaluated the segmental overlap between the CONSERTING outputs and the 94 

VCF2CNA outputs for each sample. A CNA segment detected by CONSERTING was 95 

classified as corroborated if 90% of the bases in the segment received the same type of 96 

CNA call from VCF2CNA (Table 2). The comparison shows that VCF2CNA faithfully 97 

recapitulated medium to large CNA segments (≥�100 kb) (Fig. 3a), whereas 98 

CONSERTING had greater power for identifying focal (<�100 kb) low-amplitude 99 

(absolute log2 ratio change <�1.0) CNAs (p�=�1.306 × 10-5 by Wilcoxon signed-rank 100 

test, Fig. 3b). Furthermore, the segmental–based analysis revealed that the detection 101 

power was less affected in focal CNAs with large amplitudes (log2 ratio�≥�3.0) (Fig. 102 

3c). 103 

To further test whether VCF2CNA accurately captures the CNA patterns in samples 104 

with library artifacts, we applied the cghMCR algorithm [11]. This algorithm identifies 105 

genomic regions that exhibit common gains and losses across all 46 samples from either 106 

VCF2CNA profiles or SNP array–derived CNA profiles (downloaded from TCGA). 107 

Although the signal from VCF2CNA contained less noise than did the signal from the 108 

SNP array in most samples (Additional file 1), both profiles reveal common recurrently 109 

amplified and/or lost regions (Fig. 4). These changes included chromosome-level changes 110 

(i.e., chr7 amplifications and loss of chr10) and segmental CNAs (i.e., focal deletion of 111 

the CDKN2A/B locus on chr9p) [12]. Moreover, VCF2CNA identified recurrent losses in 112 

ERBB4 on chr2q and GRIK2 on chr6q that were absent in the SNP array profiles. ERBB4 113 
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encodes a transmembrane receptor kinase that is essential for neuronal development [13]. 114 

It is frequently mutated in patients with non-small cell lung cancer [14], and silencing of 115 

ERBB4 through DNA hypermethylation is associated with poor prognosis in primary 116 

breast tumors [15]. Similarly, GRIK2 is a candidate tumor suppressor gene that is 117 

frequently deleted in acute lymphocytic leukemia [16] and silenced by DNA 118 

hypermethylation in gastric cancer [17]. 119 

Amplifications such as double minute chromosomes and homogeneously staining 120 

regions represent a common mechanism of oncogene overexpression in tumors [18]. 121 

Among the 46 TCGA-GBM samples analyzed, VCF2CNA identified double minute 122 

chromosomes in 34 samples affecting the EGFR [19], MDM2 [20], MDM4 [21], 123 

PDGFRA [22], HGF [23], GLI1 [24], CDK4 [25], and CDK6 [26] genes (Fig. 5 and 124 

Additional file 3). These events consisted of high-level amplifications in 21 samples with 125 

potential fractured genome patterns (Additional file 3a) and 13 previously reported 126 

samples (Additional file 3b) [7, 27].  127 

 128 

CNA analysis of TARGET-NBL data 129 

We applied VCF2CNA to the TARGET-NBL dataset downloaded from dbGap (assession 130 

number: phs000467). This dataset consists of 146 tumors with matched normal WGS 131 

samples, sequenced with CGI technology. Because the ligation-based CGI technology 132 

has notable differences in the detection of single nucleotide variants (SNVs) and 133 

insertions/deletions (indels) compared to Illumina systems [28], this dataset provided an 134 

opportunity to evaluate VCF2CNA’s robustness using different sequencing platforms.  135 

We used VCF2CNA to perform cghMCR analysis with CNA profiles and observed a 136 

genome pattern similar to that reported for SNP array platforms (Fig. 6a) [29]. In addition 137 
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to loss of large regions on chr1p, 3p, and 11q and a broad gain of chr17q, VCF2CNA 138 

found frequent focal amplifications of MYCN in NBL tumors and several potential 139 

cancer-related CNAs, including high-level amplifications of CDK4 (1 tumor), and ALK 140 

(2 tumors) (Fig. 6b). 141 

High-level amplification of MYCN is a known oncogenic driver found in ~25% of 142 

pediatric patients with NBL, and is associated with aggressive tumors and poor prognosis 143 

[30]. A subset of 32 tumors in the TARGET-NBL cohort contains clinically validated 144 

amplifications of MYCN. Although the CGI’s hidden Markov CNA model (unpublished) 145 

reported MYCN amplifications in 15 of these 32 tumors, VCF2CNA successfully 146 

identified high-level amplifications in 31 tumors. In the clinically validated MYCN-147 

amplified sample that went undetected by VCF2CNA, a follow-up review revealed that 148 

tumor heterogeneity and sampling bias most likely contributed to the discrepancy. 149 

Moreover, VCF2CNA predicted two additional MYCN amplification events among the 150 

remaining tumor samples, indicating that VCF2CNA can identify clinically relevant 151 

CNAs that were undetected by traditional methods of CNA detection. The high-level 152 

concordance with clinically validated data provides a strong indication that VCF2CNA is 153 

applicable to multiple tumor types collected from different sequencing platforms.  154 

 155 

Discussion and conclusions 156 

We developed VCF2CNA for the systematic and robust detection of CNAs from VCF 157 

and other genotyping variant call formats. Analysis of 192 paired tumor–normal WGS 158 

samples sequenced on multiple platforms demonstrates that VCF2CNA is robust to 159 

library construction artifacts and captures medium to large CNA segments with high 160 
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accuracy. Because VCF2CNA is robust to library artifacts and is highly accurate, it 161 

identified recurrent losses in potential tumor suppressors that were undetectable by 162 

alternative approaches.  163 

VCF2CNA was designed with SNPs that were (on average) thousands of base pairs 164 

apart, which limits support for identifying focal copy-number changes. Therefore, state-165 

of-the-art CNA algorithms have superior detection power for focal low-amplitude CNAs 166 

in high-quality, high-coverage WGS data. 167 

In conclusion, VCF2CNA is a web-based tool that is capable of accurate and efficient 168 

detection of CNAs from variants called from high-coverage WGS data sequenced on 169 

various platforms.  170 

 171 

Methods 172 

Server availability 173 

VCF2CNA is available at https://vcf2cna.stjude.org.  174 

 175 

Parameter definitions 176 

The Specify Diploid Chromosome parameter normalizes results by the specified 177 

chromosome. The Median Normal Coverage parameter permits input of the median 178 

coverage value of SNPs from normal samples. The Minimum Scale Factor (autosomes) 179 

parameter is multiplied by the median to compute the minimum coverage value. The 180 

Maximum Scale Factor (autosomes) parameter is multiplied by the median to compute 181 

the maximum coverage value. The Minimum X Scale Factor is the minimum scale factor 182 

for chromosome X. The Maximum X Scale Factor is the maximum scale factor for 183 

chromosome X. The Sample Order (VCF format only) parameter defines the ordering of 184 
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tumor and normal samples. VCF inputs must include tumor and normal data after the 185 

FORMAT field. Selecting the Tumor/Normal button assigns the tumor data to the first 186 

field after FORMAT and normal data to the second field. The Normal/Tumor radio 187 

button specifies the reverse order. 188 

 189 

Input data for VCF2CNA 190 

The input for VCF2CNA analysis includes VCF, MAF, and the variant file format 191 

produced by the Bambino program. A fixed window size of 100 bp is used to obtain the 192 

mean coverage for each window. Windows with no variants are ignored. The mean read 193 

depth per window can be normalized to a set of reference diploid chromosomal regions 194 

by using the same criteria as CONSERTING or specified via the Specify Diploid 195 

Chromosome parameter. 196 

 197 

Run-time analysis 198 

Single VCF files must be converted to a paired tumor/normal file before uploading. 199 

Alternatively, VCF2CNA accepts MAF and Bambino variant file formats. After 200 

uploading files to the server, the median running time was 23 minutes on an intel Xeon 201 

E5-2680 processor at 2.70 Ghz with 64 GB RAM. Server processing occurs in two 202 

principal steps: 1) preprocessing and SNP information extraction from input files and 2) 203 

running the recursive partitioning segmentation. 204 

 205 

F1 scoring metric and segmental corroboration  206 

A genomic position was assigned a corroborated CNA call if its computed CNA type 207 

(gain or loss) by VCF2CNA matched the call computed by CONSERTING. A CNA 208 
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segment in the CONSERTING profile was corroborated in the VCF2CNA profile if 209 

≥�90% of the segment positions were corroborated. The F1 score is given by �� �210 

�������	�
������
���

�����	�
�����
��
. It was used to summarize the accuracy of VCF2CNA, compared with 211 

that of CONSERTING.  212 

 213 

VCF2CNA web server pipeline 214 

Step1 (snvcounts) 215 

Single nucleotide variant frequencies are computed from the input file. For each 216 

chromosome and position, the values computed are TumorMutant, TumorTotal, 217 

NormalMutant, and NormalTotal. Additionally, the mean normal coverage is computed.  218 

 219 

Step2 (consprep) 220 

The consprep program reads the SNV count data and incorporates a list of good / bad 221 

SNVs. It also reads a file specifying the number of 100-bp windows in each chromosome. 222 

If the total number of reads from the normal sample falls outside of the ranges specified 223 

by the options (median, minfactor, maxfactor, xminfactor, or xmaxfactor), the input 224 

position is ignored by the consprep step in the pipeline. The –xminfactor and –225 

xmaxfactor settings apply to positions in chrX; the –minfactor and –maxfactor settings 226 

apply to all other chromosomes. The minimum coverage is the median multiplied by the 227 

–minfactor, and the maximum coverage is the median multiplied by the –maxfactor. 228 

Application 229 

To run VCF2CNA, users should navigate to the application home page and click “run 230 

application.” The application runs on Google Chrome, Safari, Mozilla Firefox, and 231 
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Microsoft Internet Explorer 11. Users must provide a valid email in the email address text 232 

field. Users will select whether results will be sent to the provided email address as either 233 

an email attachment or a link to the result files stored on the server. Results will be stored 234 

on the server for 14 days. Default run parameters may be modified depending on job 235 

specifications. Users should select the input file and click the “upload/run” button. The 236 

brower window should not be killed during the file upload. Once the file has been  237 

successfully uploaded,  a notification will be displayed in the browser window and the 238 

user may discard the window.  239 

 240 

Rationale for not using the reciprocal-overlap rule 241 

To compare CNA calls from different algorithms, the reciprocal 50% overlap criterion 242 

[28] is commonly used. This rule is not suitable when two CNA calls are derived from 243 

platforms with different powers in detecting focal CNAs. A considerably larger average 244 

distance occurred between adjacent probes. VCF2CNA-derived CNA calls have an 245 

inherently lower resolution than does CONSERTING. When a focal CNA identified 246 

through CONSERTING occurs on top of a large CNA fragment, CONSERTING breaks 247 

the region into multiple segments. Although the CNA fragments in the region are largely 248 

corroborated between the two CNA callers, potentially none of these fragments satisfied 249 

the rule of reciprocal 50% overlap (Additional file 4).  250 
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Availability of data and material 256 

Both datasets were downloaded from dbGaP (https://dbgap.ncbi.nlm.nih.gov). The 257 

TCGA-GBM data were downloaded from dbGaP (accession number: phs000178.v8.p7) 258 

and included 46 samples. The TARGET-NBL data were downloaded from dbGap 259 

(accession number: phs000467) and included 146 samples. VCF2CNA is available at 260 

https://vcf2cna.stjude.org. 261 
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Table 1 F1 score between CONSERTING and VCF2CNA and autosomal CNAs per 367 

sample in 22 TCGA samples 368 
Sample F1 score Autosomal CNAs per sample (Mb)  
SJHGG011906_D1_G1_N13 0.9699 567.70 
SJHGG010485_D1_G1 0.9840 789.90 
SJHGG011903_D1_G1 0.9862 459.20 
SJHGG010643_D1_G1_N5 0.9870 1471.67 
SJHGG010641_D1_G1 0.9884 285.89 
SJHGG010600_R1_G1 0.9892 485.85 
SJHGG010484_R1_G1_N2 0.9949 2299.48 
SJHGG010560_R1_G1 0.9955 756.08 
SJHGG010624_R1_G1 0.9956 1259.68 
SJHGG010600_D1_G1 0.9968 389.60 
SJHGG010485_R1_G1 0.9970 92.16 
SJHGG011904_D1_G1 0.9979 696.48 
SJHGG010540_D2_G1 0.9981 660.74 
SJHGG010484_D1_G1 0.9983 841.72 
SJHGG010509_D1_G1 0.9983 586.18 
SJHGG010560_D1_G1 0.9984 551.73 
SJHGG010577_D1_G1 0.9984 831.67 
SJHGG010509_R1_G1 0.9988 562.44 
SJHGG010572_R1_G1 0.9992 427.91 
SJHGG010572_D1_G1 0.9994 456.27 
SJHGG010624_D1_G1 0.9995 454.09 
SJHGG010540_R1_G1 0.9995 463.89 
  369 
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Table 2 Counts of corroborated and uncorroborated segments by segment length 370 

  371 

 Matched segment length (log10) Unmatched segment length (log10)  Match percentage 
Sample <3 [3,4) [4,5) [5,6) >6 <3 [3,4) [4,5) [5,6) >6 <100 kb ≥100 kb 
SJHGG010484_D1_G1 0 4 45 24 54 2 9 31 3 0 0.5385 0.9630 
SJHGG010484_R1_G1_N2 4 8 23 21 90 8 7 3 1 0 0.6604 0.9911 
SJHGG010485_D1_G1 8 5 20 20 40 20 25 16 4 1 0.3511 0.9231 
SJHGG010485_R1_G1 0 0 0 0 2 9 1 3 1 0 0.0000 0.6667 
SJHGG010509_D1_G1 3 0 9 15 24 3 0 5 0 0 0.6000 1.0000 
SJHGG010509_R1_G1 5 0 11 11 24 8 1 4 1 0 0.5517 0.9722 
SJHGG010540_D2_G1 5 11 46 25 28 4 10 5 0 0 0.7654 1.0000 
SJHGG010540_R1_G1 4 9 31 32 22 3 11 9 0 0 0.6567 1.0000 
SJHGG010560_D1_G1 9 30 59 32 20 24 39 20 0 0 0.5414 1.0000 
SJHGG010560_R1_G1 2 0 5 17 26 24 25 15 3 1 0.0986 0.9149 
SJHGG010572_D1_G1 2 5 23 27 26 38 12 7 0 0 0.3448 1.0000 
SJHGG010572_R1_G1 2 2 4 24 18 30 18 8 1 0 0.1250 0.9767 
SJHGG010577_D1_G1 7 4 24 36 37 15 12 9 2 0 0.4930 0.9733 
SJHGG010600_D1_G1 29 26 45 79 32 40 26 17 1 0 0.5464 0.9911 
SJHGG010600_R1_G1 18 26 50 65 27 51 28 11 2 0 0.5109 0.9787 
SJHGG010624_D1_G1 13 13 114 53 82 32 7 2 0 0 0.7735 1.0000 
SJHGG010624_R1_G1 9 8 143 110 202 22 4 17 1 0 0.7882 0.9968 
SJHGG010641_D1_G1 27 50 99 62 39 19 325 175 3 0 0.2532 0.9712 
SJHGG010643_D1_G1_N5 5 13 22 33 30 24 24 11 15 2 0.4040 0.7875 
SJHGG011903_D1_G1 1 0 4 39 13 2 5 0 0 1 0.4167 0.9811 
SJHGG011904_D1_G1 1 2 4 14 23 1 1 5 1 0 0.5000 0.9737 
SJHGG011906_D1_G1_N13 3 14 42 26 44 10 19 27 3 0 0.5130 0.9589 
SJHGG010484_D1_G1 0 4 45 24 54 2 9 31 3 0 0.5385 0.9630 
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Figure legends 372 

Fig. 1 Overview of the VCF2CNA process. a User interface with parameters. b Server 373 

side pipeline. A parallelogram depicts input or output files, a rectangle depicts an 374 

analytical process, and a diamond depicts the condition for a follow-up process. 375 

 376 

Fig. 2 A Circos plot that displays CNAs found by CONSERTING (outer ring), VCF2CNA 377 

(middle ring), and SNP array (inner ring) for a TCGA-GBM fractured sample 41-5651-378 

01A and b TCGA-GBM unfractured sample 06-0125-01A. Alternating gray and black 379 

chromosomes are used for contrast. Yellow regions depict sequencing gaps, whereas 380 

red regions depict centromere location. Blue segments depict copy-number loss, and red 381 

segments indicate copy-number gain. 382 

 383 

Fig. 3 Heatmap of segment length by CNA intensity. Color scale depicts density of 384 

segment found at a given segment and CNA size. a Corroborated samples, b 385 

uncorroborated samples, and c three-dimensional plots of segment length, CNA 386 

intensity, and percent agreement with CONSERTING segments are shown. 387 

 388 

Fig. 4 A chgMCR plot of 46 TCGA-GBM samples. a SNP array data and b VCF2CNA 389 

data are shown. 390 

 391 

Fig. 5 A Circos plot of VCF2CNA (outer ring) and CONSERTING (inner ring), depicting 392 

high-amplitude focal CNA segments in TCGA-GBM sample 06-0152-01A. Included in 393 

these segments are the known cancer genes EGFR, CDK4, and MDM2. 394 

 395 

Fig. 6 Analysis of the TARGET-NBL dataset, consisting of 146 tumors. a A chgMCR plot 396 

in which green depicts regions of copy-number gain and red depicts regions of copy-397 
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number loss. b A Circos plot showing a focal gain on chromosome 2 for MYCN and 398 

ALK5 for sample PARETE-01A-01D. 399 

 400 

Additional files 401 

Additional file 1: Circos plot of CONSERTING (outer ring), VCF2CNA (middle ring), 402 

and SNP array (inner ring) for 24 TCGA-GBM samples with a fractured gene signature. 403 

Additional file 2: Circos plot of CONSERTING (outer ring) and VCF2CNA (inner ring) 404 

for all 22 TCGA-GBM samples without a fractured gene signature.  405 

Additional file 3: A Circos plot of VCF2CNA (outer ring) and CONSERTING (inner ring), 406 

depicting high-amplitude focal CNA segments in 34 TCGA-GBM samples. a 21 fractured 407 

genome TCGA-GBM samples. b 13 previously reported samples. 408 

Additional file 4: Segmental Overlap. a A hypothetical large segment identified by 409 

CONSERTING (red). b Subsequent focal segments identified by CONSERTING (blue). 410 

The original segment was split into five subsegments. None of the subsegments in b met 411 

the reciprocal 50% segment overlap criteria with the original segment. 412 
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