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Abstract14

Transcriptome-wide time series expression profiling is used to characterize the cellular response to15

environmental perturbations. The first step to analyzing transcriptional response data is often to16

cluster genes with similar responses. Here, we present a nonparametric model-based method,17

Dirichlet process Gaussian process mixture model (DPGP), which jointly models cluster number18

with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the19

accuracy of DPGP in comparison with state-of-the-art approaches using hundreds of simulated20

data sets. To further test our method, we apply DPGP to published microarray data from a21

microbial model organism exposed to stress and to novel RNA-seq data from a human cell line22

exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local23

transcription factor binding and histone modifications. Our results demonstrate that jointly24

modeling cluster number and temporal dependencies can reveal novel regulatory mechanisms.25

DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.26

27

Introduction28

The analysis of time series gene expression has enabled insights into development (Kim et al., 2001;29

Arbeitman et al., 2002; Frank et al., 2015), response to environmental stress (Gasch et al., 2000),30

cell cycle progression (Cho et al., 1998; Spellman et al., 1998), pathogenic infection (Nau et al., 2002),31

cancer (Whitfield et al., 2002), circadian rhythm (Panda et al., 2002; Storch et al., 2002), and other32

biomedically important processes. Gene expression is a tightly regulated spatiotemporal process.33

Genes with similar expression dynamics have been shown to share biological functions (Eisen et al.,34

1998). Clustering reduces the complexity of a transcriptional response by grouping genes into a35

small number of response types. Given a set of clusters, genes are often functionally annotated by36

assuming guilt by association (Walker et al., 1999), sharing sparse functional annotations among37

genes in the same cluster. Furthermore, regulatory mechanisms characterizing shared response38

types can be explored using these clusters by, for example, comparing sequence motifs or other39

features within and across clusters.40
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Gene clustering methods partition genes into disjoint clusters based on the similarity of ex-41

pression response. Many clustering methods, such as hierarchical clustering (Eisen et al., 1998),42

k-means clustering (Tavazoie et al., 1999), and self-organizing maps (Tavazoie et al., 1999), evaluate43

response similarity using correlation or Euclidean distance. These methods assume that expression44

levels at adjacent time points are independent and identically distributed, which is statistically45

invalid for transcriptomic time series data (Ramoni et al., 2002). Some of these methods require46

a prespecified number of clusters, which may require model selection or post-hoc analyses to47

determine the most appropriate number.48

In model-based clustering approaches, similarity is determined by how well the responses of49

any two genes fit the same generative model (Yeung et al., 2001a; Ramoni et al., 2002). Model-50

based methods thus have a clear definition of a cluster (Pan et al., 2002), which is a set of genes51

that is more likely to be generated from a particular cluster-specific model than other possible52

models. Mclust, for example, assumes a Gaussian mixture model (GMM) to capture the mean53

and covariance of expression within a cluster. Mclust selects the optimal number of clusters54

using the Bayesian information criterion (BIC) (Fraley and Raftery, 2002). However, cluster-specific55

parameter estimates in Mclust do not take into account uncertainty in cluster number (Medvedovic56

and Sivaganesan, 2002).57

To address the problem of cluster number uncertainty, finite mixture models can be extended58

to infinite mixture models with a Dirichlet process (DP) prior. This infinite mixture model approach59

is used in the Gaussian Infinite Mixture Model (GIMM) (Medvedovic et al., 2004; Qin, 2006). Using60

Markov chain Monte Carlo (MCMC) sampling, GIMM iteratively samples cluster-specific parameters61

and assigns genes to existing clusters or creates a new cluster based on both the likelihood62

of the gene expression values with respect to the cluster-specific model and the size of each63

cluster (Medvedovic et al., 2004). An advantage of nonparametric models is that they allow cluster64

number and parameter estimation to occur simultaneously when computing the posterior. The65

DP prior has a “rich get richer" property, meaning that clusters are prioritized for inclusion of a66

new gene in proportion to cluster size, so bigger clusters are proportionally more likely to grow67

relative to smaller clusters. This allows for varied cluster sizes as opposed to approaches that favor68

equivalently sized clusters, such as k-means clustering.69

Clustering approaches for time series data that encode dependencies across time have also70

been proposed. SplineCluster models the time-dependency of gene expression data by fitting71

non-linear spline basis functions to gene expression profiles, followed by agglomerative Bayesian72

hierarchical clustering (Heard et al., 2006). The Bayesian Hierarchical Clustering (BHC) algorithm73

also performs Bayesian agglomerative clustering as an approximation to a DP model, merging74

clusters until the posterior probability of the merged model no longer exceeds that of the unmerged75

model (Heller and Ghahramani, 2005; Savage et al., 2009; Cooke et al., 2011). Each cluster in BHC76

is parameterized by a Gaussian process (GP) with a squared exponential kernel. With this greedy77

approach, BHC does not capture uncertainty in the clustering.78

Recently, models combining DPs and GPs have been developed for time series data analysis.79

For example, a recent method combines the two to cluster low-dimensional projections of gene80

expression (Rasmussen et al., 2009). The semiparametric Bayesian latent trajectory model was81

developed to perform association testing for time series responses, integrating over cluster un-82

certainty (Dunson and Herring, 2006). Other methods using DPs or approximate DPs to cluster83

GPs for gene expression data make different modeling decisions (Hensman et al., 2015), different84

parameter inference methods (Savage et al., 2009), or do not include software that can be easily85

applied by biologists or bioinformaticians (Rasmussen et al., 2009; Hensman et al., 2015).86

Here we develop a statistical model for clustering time series data, the Dirichlet process Gaussian87

process mixture model (DPGP), and we package this model in user-friendly software. Specifically,88

we combine DPs for incorporating cluster number uncertainty and GPs for modeling time series89

dependencies. In DPGP, we explore the number of clusters and model the time dependency across90

gene expression data by assuming that genes within a cluster are generated from a GP with a91
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cluster-specific mean function and covariance kernel. A single clustering can be selected according92

to one of a number of optimality criteria; alternatively, a gene-by-gene matrix can be generated93

that reflects the estimated probability that each pair of genes is in the same cluster.94

To demonstrate the applicability of DPGP to gene expression response data, we applied our95

algorithm to simulated, published, and original transcriptomic time series data. We first applied96

DPGP to hundreds of diverse simulated data sets and show favorable comparisons to other state-97

of-the-art methods for clustering time series data. DPGP was then applied to a previously published98

microarray time series data set, recapitulating known gene regulatory relationships (Sharma et al.,99

2012). To enable biological discovery, RNA-seq data were generated from the human lung epithelial100

adenocarcinoma cell line A549 from six time points after treatment with dexamethasone (dex) for101

up to 11 hours. By integrating our DPGP clustering results on these data with a compendium of102

ChIP-seq data sets from the ENCODE project, we reveal novel mechanistic insights into the genomic103

response to dex.104

Results105

DPGP compares favorably to state-of-the-art methods on simulated data106

We tested whether DPGP recovers true cluster structure from simulated time series data. We107

applied DPGP to 620 data sets generated using a diverse range of cluster sizes and expression traits108

(Supplementary file 1). We compared our results against those from BHC (Savage et al., 2009),109

GIMM (Medvedovic et al., 2004), hierarchical clustering by average linkage (Eisen et al., 1998), k-110

means clustering (Tavazoie et al., 1999), Mclust (Fraley and Raftery, 2002), and SplineCluster (Heard111

et al., 2006). To compare observed partitions to true partitions, we used Adjusted Rand Index (ARI),112

which measures the similarity between a test clustering and ground truth in terms of cluster113

agreement for element pairs (Rand, 1971; Hubert and Arabie, 1985). ARI is scaled such that it is114

1 when two partitions agree exactly and 0 when two partitions agree no more than is expected115

by chance (Rand, 1971; Hubert and Arabie, 1985). ARI was recommended in a comparison of116

metrics (Milligan and Cooper, 1986) and has been used to compare clustering methods in similar117

contexts (Yeung et al., 2001b;Medvedovic et al., 2004; Dahl, 2006; Fritsch et al., 2009).118

Assuming GPs as generating functions, we simulated data sets with varied cluster sizes, length119

scales, signal variance, and noise variance (Supplementary file 1). In this collection of simulations,120

on the task of reproducing a specific clustering, DPGP generally outperformed GIMM, k-means,121

and Mclust, but was generally outperformed by BHC and SplineCluster, and performed about as122

well as hierarchical clustering (Figure 1 and Supplementary file 2). The performance of hierarchical123

clustering and k-means benefited from prespecification of the true number of clusters—with a124

median number of 24 clusters across simulations—while other methods were expected to discover125

the true number of clusters. The more poorly performing methods on these particular data—GIMM,126

k-means, and Mclust—do not model temporal dependency, suggesting that there is substantial127

value in explicitly modeling the time dependence of observations.128

DPGP successfully recovered true cluster structure across a variety of generating assumptions129

except in cases of a large number of clusters each with a small number of genes (data sets 4 and 5)130

and in cases of small signal variance (data set 16) and high noise variance (data set 31; Figure 1).131

DPGP was substantially faster than GIMM and BHC, but slower than hierarchical clustering, k-132

means, Mclust, and SplineCluster (Figure 1–Figure Supplement 1, Wilcoxon two-sided signed-rank,133

comparing clustering times on 20 data sets with 1, 008 simulated trajectories, DPGP versus each134

method, p ≤ 8.86 × 10−5).135

An important advantage of DPGP is that—being a probabilistic method—uncertainty in clustering136

and cluster trajectories is modeled explicitly. Some implications of the probabilistic approach137

are that cluster means and variances can be used to quantify the fit of unseen data, to impute138

missing data points at arbitrary times, and to integrate over uncertainty in hypothesis testing with139

the clusters (Dunson and Herring, 2006). Using the same data sets simulated for the algorithm140
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comparison, we clustered expression trajectories while holding out each of the four middle time141

points of eight total time points. We computed the proportion of held-out test points that fell142

within the 95% credible intervals (CIs) of the estimated cluster means. For comparison, we also143

permuted cluster membership across all genes 1, 000 times and recomputed the same proportions.144

We found that DPGP provided accurate CIs on the simulated gene expression levels (Figure 1–Figure145

Supplement 2). Across all simulations, at least 90% of test points fell within the estimated 95%146

CI, except for data set types with large length-scales or high signal variances (both parameters147

∈ {1.5, 2, 2.5, 3}). The proportion of test points that fell within the 95% CIs was consistently higher148

for true clusters than for permuted clusters [Mann-Whitney U-test (MWU), p ≤ 2.24 × 10−6], except149

for data with very small length-scales ({0.1, ..., 0.5}) in which the proportions were equivalent (MWU,150

p = 0.24). This implies that the simulated sampling rates in these cases were too low for DPGP to151

capture the temporal patterns in the data.152

For the simulations in which DPGP performed worse than BHC or SplineCluster in recovering153

the true cluster structure, the clusters inferred from the data provided useful and accurate CIs for154

unseen data. For example, DPGP performed decreasingly well as the noise variance was increased155

to 0.4, 0.5, and 0.6. However, the median proportions of test points within the 95% CIs were 93.4%,156

92.6%, 91.9%, respectively (Figure 1–Figure Supplement 2). This suggests that DPGP provides well157

calibrated CIs on expression levels over the time course.158

We can also use DPGP to evaluate the posterior probability of a specific clustering with respect159

to the fitted model. Critically, only in 1.6% of all simulated data sets was the posterior probability of160

the true clustering, given the DPGP model, greater than both the posterior probability of the DPGP161

MAP partition and than the mean posterior probability across all DPGP samples (Z-test, p < 0.05).162

These results imply that, even in cases where DPGP did not precisely recover the cluster structure,163

the posterior probability was not strongly peaked around the true partition, meaning that there164

was substantial uncertainty in the optimal partition.165

Clustering oxidative stress transcriptional responses in a microbial model organ-166

ism recapitulates known biology167

Given the performance of DPGP on simulated data with minimal user input for selection of cluster168

number, we next sought to assess the performance of DPGP on biological data. As a test case,169

we applied DPGP to published data from a single-celled model organism with a small genome170

(Halobacterium salinarum, 2.5Mbp and 2, 400 genes) exposed to oxidative stress induced by addition171

of H
2
O
2
(Sharma et al., 2012). This multifactorial experiment tested the effect of deletion of the172

gene encoding the transcription factor (TF) RosR, which is a global regulator that enables resilience173

of H. salinarum to oxidative stress (Tonner et al., 2015). Specifically, transcriptome profiles of a174

RosR deletion mutant strain (ΔrosR) and control strain were captured with microarrays at 10-20175

minute intervals following exposure to H
2
O
2
. In the original study, 616 genes were found to be176

differentially expressed (DEGs) in response to H
2
O
2
, 294 of which were also DEGs in response to177

RosR mutation. In previous work, the authors clustered those 294 DEGs using k-means clustering178

with k = 8 (minimum genes per cluster = 13, maximum = 86, mean = 49) (Sharma et al., 2012).179

We used DPGP on these H. salinarum time series data to cluster expression trajectories from180

the 616 DEGs in each strain independently, which resulted in six clusters per strain (Figure 2). The181

number of genes in clusters from DPGP varied widely across clusters and strains (minimum 2 genes,182

maximum 292, mean 102.7) with greater variance in cluster size in trajectories from the mutant183

strain. To assess how DPGP clustering results compared to previous results using k-means, we184

focused on how deletion of RosR affected gene expression dynamics. Out of the 616 DEGs, 372185

moved from a cluster in the control strain to a cluster with a different dynamic trajectory in ΔrosR186

(e.g., from an up-regulated cluster under H
2
O
2
in control, such as cluster 5, to a down-regulated187

cluster in ΔrosR, such as cluster 3; Figure 2 and Supplementary file 3). Of these 372 genes, 232 were188

also detected as differentially expressed in our previous study (Sharma et al., 2012) [significance189

of overlap, Fisher’s exact test (FET), p ≤ 2.2 × 10−16]. Comparing these DPGP results to previous190

4 of 23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/131151doi: bioRxiv preprint 

https://doi.org/10.1101/131151
http://creativecommons.org/licenses/by-nc-nd/4.0/


DPGP

BHC

GIMM

k-means

hierarchical clustering

Mclust

SplineCluster

A

C

F

B

D

ED

1 3 5 7 9 11 13 15 23211917 25 27 29 31

AR
I

1

0

0.8
0.6
0.4
0.2

AR
I

1

0

0.8
0.6
0.4
0.2

AR
I

1

0

0.8
0.6
0.4
0.2

AR
I

1

0

0.8
0.6
0.4
0.2

AR
I

1

0

0.8
0.6
0.4
0.2

AR
I

1

0

0.8
0.6
0.4
0.2

AR
I

1

0

0.8
0.6
0.4
0.2

2 4 6 8 10 12 14 16 24222018 26 28 30
Simulated data sets number

1 3 5 7 9 11 13 15 23211917 25 27 29 31
2 4 6 8 10 12 14 16 24222018 26 28 30

Simulated data sets number

Figure 1. Clustering performance of state-of-the-art algorithms on simulated time series data. Box plots show

empirical distribution of clustering performance for each method in terms of Adjusted Rand Index (ARI) across

twenty instances of the 31 data set types detailed in Supplementary file 1. Higher values represent better
recovery of the simulated clusters. Results shown for (A) DPGP, (B) k-means, (C) BHC, (D) Mclust, (E) GIMM, (F)

SplineCluster, and (G) hierarchical clustering.

Figure 1–Figure supplement 1. Time benchmark. Mean runtime of BHC, GIMM, and DPGP across varying

numbers of gene expression trajectories generated from GPs parameterized in the same manner as simulated

data sets 11, 21, and 27 in Supplementary file 1. Cluster sizes were 2, 4, 8, 16, 32, and 64 for 126 simulated
genes in 2–8 different clusters per cluster size. Error bars represent standard deviation in runtime across 20
simulated data sets. Hierarchical clustering, k-means, Mclust, and SplineCluster are not shown because their

mean runtimes were under one minute and could not be meaningfully displayed here.

Figure 1–Figure supplement 2. Proportion of held-out test points within credible intervals of estimated cluster

means for DPGP. For all data sets detailed in Supplementary file 1, expression trajectories were clustered while
separately holding out each of the four middle time points of eight total time points. Box plot shows proportion

of test points that fell within the 95% credible intervals (CIs) of the estimated cluster mean.
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analyses, similar fractions of genes were found to be directly bound by RosR according to ChIP-chip191

data from cells exposed to H
2
O
2
for 0, 10, 20, and 60minutes (Tonner et al., 2015). When all RosR192

binding at all four ChIP-chip time points were considered together, 8.9% of DPGP genes changing193

clusters were bound; 9.5% of DEGs were bound in the previous analysis (Sharma et al., 2012).194

Genes most dramatically affected by deletion of rosRwere those up-regulated after 40minutes of195

H
2
O
2
exposure in the control strain: All 141 genes in control cluster 5 changed cluster membership196

in the ΔrosR strain (Figure 2; FET, p ≤ 2.2 × 10−16). Of these 141 genes up-regulated in control strains197

in response to H
2
O
2
, 89 genes (63%) exhibited inverted dynamics, changing to down-regulated in198

the ΔrosR strain. These 89 genes grouped into two clusters in the ΔrosR strain (ΔrosR clusters 3199

and 5; Figure 2 and Supplementary file 3). The transcriptional effect of RosR deletion noted here200

accurately reflects previous observations: 84 of these 89 genes showed differential trajectories201

in the control versus ΔrosR strains previously (Sharma et al., 2012). RosR is required to activate202

these genes in response to H
2
O
2
(Sharma et al., 2012). These results suggest that DPGP analysis203

accurately recapitulates previous knowledge of RosR-mediated gene regulation in response to H
2
O
2

204

with substantially reduced user input.205

DPGP reveals mechanisms behind the glucocorticoid transcriptional response in a206

human cell line207

Given the performance of DPGP in recapitulating known results for biological data, we next used208

DPGP for analysis of novel time series data. Specifically, we used DPGP to identify co-regulated209

sets of genes and candidate regulatory mechanisms in the human glucocorticoid (GC) response.210

GCs, such as dex, are among the most commonly prescribed drugs for their anti-inflammatory211

and immunosuppressive effects (Hsiao et al., 2007). GCs function in the cell primarily by affecting212

gene expression levels. Briefly, GCs diffuse freely into cells where they bind to and activate the213

glucocorticoid receptor (GR). Once bound to its ligand, the GR translocates into the nucleus where it214

binds DNA and regulates expression of target genes. The induction of expression from GC exposure215

has been linked to GR binding (Reddy et al., 2009; Pan et al., 2011). However, while there are a216

plethora of hypotheses regarding repression and a handful of well-studied cases (De Bosscher217

and Haegeman, 2009; Santos et al., 2011), it has proved difficult to associate repression of gene218

expression levels with genomic binding on a genome-wide scale (Reddy et al., 2009; Pan et al.,219

2011). Further, GC-mediated expression responses are far more diverse than simple induction or220

repression, motivating a time course study of these complex responses (Balsalobre et al., 2000;221

Biddie and Hager, 2009; John et al., 2009; Stavreva et al., 2012; Vockley et al., 2016).222

To characterize the genome-wide diversity of the transcriptional response to GCs and to reveal223

candidate mechanisms underlying those responses, we performed RNA-seq in the human lung224

adenocarcinoma-derived A549 cell line after treatment with the synthetic glucocorticoid (GC) dex225

for 1, 3, 5, 7, 9, and 11 hours, resulting in six time points. This data set is among the most densely226

sampled time series of the dex-mediated transcriptional response in a human cell line.227

DPGP clustered differentially expressed transcripts into four predominant clusters.228

We used DPGP to cluster 1, 216 transcripts that were differentially expressed at two consecutive229

time points (FDR ≤ 0.1). DPGP found 13 clusters with a mean size of 119 transcripts and a standard230

deviation of 108 transcripts (Figure 3 and Figure 3–Figure Supplement 1). In order to analyze the231

shared mechanisms underlying expression dynamics for genes within a cluster and validate cluster232

membership, we chose to validate the four largest clusters using a series of complementary analyses233

and data. These four clusters included 74% of the dex-responsive transcripts. We designated these234

clusters up-reg-slow, down-reg-slow, up-reg-fast, and down-reg-fast (Figure 3) where fast clusters had235

a maximal first-order difference in expression between 1 and 3 hours and slow clusters had a236

maximal first-order difference between 3 and 5 hours. A variety of other clusters were identified237

with diverse dynamics, revealing the complexity of the GC transcriptional response (Figure 3).238
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Figure 2. DPGP clusters in H. salinarum H2O2-exposed gene expression trajectories. (A–L) For each cluster,

standardized log2 fold change in expression from pre-exposure levels is shown for each individual gene as well
as the posterior cluster mean ±2 standard deviations. Control strain clusters are on left and ΔrosR clusters on
right, organized to relate the ΔrosR cluster(s) that correspond(s) to each control cluster. (M) Heatmap displays
the proportion of DPGP samples in which each gene (row/column) clusters with every other gene in the control

strain. Rows and columns were clustered by Ward’s linkage. The predominant, clearly visible blocks of elevated

co-clustering are labeled with the control cluster numbers to which the genes that compose the majority of the

block belong. As indicated, cluster 6 is dispersed across multiple blocks, primarily the blocks for clusters 3 and 5.

(N) Same as (M), except that values are replaced by the proportions in the ΔrosR strain instead of the control
strain. Rows and columns ordered as in (M).
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Figure 3. Clustered trajectories of differentially expressed transcripts in A549 cells in response to dex. For each

cluster, standardized log2 fold change in expression from pre-dex exposure levels is shown for each transcript,
and the posterior cluster mean and ±2 standard deviations according to the cluster-specific GP.

Figure 3–Figure supplement 1. Rugplot of all cluster sizes for A549 glucocorticoid exposure data clustered

using DPGP. Each stick on the x-axis represents a singular data cluster of the 13 total clusters. Note that the two

clusters with sizes 22 and 23 are difficult to distinguish by eye.

DPGP dex-responsive expression clusters differ in biological processes.239

Genes involved in similar biological processes often respond similarly to stimuli (Eisen et al., 1998).240

To determine if the DPGP clusters were enriched for genes that contribute to distinct biological241

processes, we tested each cluster for enrichment of Gene Ontology slim (GO-slim) biological242

process terms (Ashburner et al., 2000). The down-reg-slow cluster was enriched for cell cycle-related243

terms such as cell cycle, cellular aromatic compound metabolic process, heterocycle metabolic process,244

chromosome segregation, and cell division, among other associated terms (see Supplementary file 4245

for p-values). This cluster included genes critical to cell cycle progression such as BRCA2, CDK1, CDK2,246

and others. The down-regulation of these genes is consistent with the antiproliferative effects of247

GCs (Goya et al., 1993; Rogatsky et al., 1997; King and Cidlowski, 1998). In contrast, the down-reg-248

fast cluster was enriched for terms related to developmental process such as anatomical structure249

formation involved in morphogenesis and other terms (Supplementary file 4). Genes in the down-250

reg-slow cluster that were annotated as anatomical structure formation involved in morphogenesis251

included homeobox genes like EREG, HNF1B, HOXA3, and LHX1 as well as growth factors like TGFA252

and TGFB2. Our results suggest that GC exposure in A549 cells leads to a rapid down-regulation of253

growth-related TFs and cytokines and a slower down-regulation of crucial cell cycle regulators.254

The up-reg-slow and up-reg-fast clusters did not differ substantially in functional enrichment, and255

both were enriched for signal transduction. Up-regulated genes annotated as signal transduction256

included multiple MAP kinases, JAK1, STAT3 and others. Whereas the down-reg-slow cluster was257

enriched for genes annotated as heterocycle metabolic process, the up-reg-slow cluster was depleted258

(Supplementary file 3). Overall, clustering enabled improved insight into GC-mediated transcrip-259

tional responses. Our results suggest that a novel functional distinction may exist between rapidly260

and slowly down-regulated genes.261

DPGP clusters differ in TF and histone modification occupancy prior to dex exposure.262

We validated the four major expression clusters by identifying distinct patterns of epigenomic263

features that may underlie differences in transcriptional response to GC exposure. In particular,264
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we looked to see whether the co-clustered genes had similar TF binding and chromatin marks265

before dex exposure. We hypothesized that similar transcriptional responses were driven by similar266

regimes of TF binding and chromatin marks. To test this, we used all ChIP-seq data generated by267

the ENCODE project (Consortium et al., 2012) that were assayed in the same cell line and treatment268

conditions (Supplementary file 5). For each data set and each transcript, we counted pre-aligned269

ChIP-seq reads in three bins of varied distances from the transcription start site (TSS; < 1 kb,270

1–5 kb, 5–20 kb), based on evidence that suggests that different TFs and histone modifications271

function at different distances from target genes (Garber et al., 2012). Both TF binding and histone272

modification occupancy are well correlated (Heintzman et al., 2009; Cheng and Gerstein, 2011). In273

order to predict cluster membership of each transcript based on a parsimonious set of TFs and274

histone modifications in control conditions, we used elastic net regression, which tends to include275

or exclude groups of strongly correlated predictors using a regularized model (Zou and Hastie,276

2005). We controlled for differences in basal expression prior to dex exposure by including the277

baseline transcription level as a covariate in the model.278

The features that were most predictive of cluster membership—indicating an association with279

expression dynamics—were distal H3K36me3, promoter-proximal E2F6, and distal H3K4me1 (Fig-280

ure 4A, Figure 4–Supplemental Figure 1). H3K36me3 marks the activity of transcription, and is281

deposited across gene bodies, particularly at exons (Krogan et al., 2003; Kolasinska-Zwierz et al.,282

2009). Its strength as a predictor of cluster membership may represent differences in the methyla-283

tion of H3K36 between clusters of genes or, alternatively, residual differences in basal expression.284

E2F6 functions during G1/S cell cycle transition (Bertoli et al., 2013) and its binding was greater in285

the down-reg-slow cluster, which is consistent with the enrichment of genes with cell cycle biological286

process terms in the same cluster. H3K4me1 correlates strongly with enhancer activity (Heintzman287

et al., 2009) and the negative coefficient in our model for the down-reg-slow cluster suggests that288

the contribution of enhancers to expression differs across clusters (Figure 4).289

The two large down-regulated clusters differed substantially in TF binding and histone modifi-290

cations before exposure to dex (Figure 4A). To confirm, we ran the same regression model after291

limiting prediction to transcripts in those two clusters. We found that distal H3K4me1 and promoter-292

proximal E2F6 were highly predictive features, and also four distal histone features that have all293

been associated with enhancer activity (Figure 4–Figure Supplement 2) (He et al., 2010; Rada-294

Iglesias et al., 2011). This analysis suggests predictive mechanistic distinctions between quickly295

and slowly down-regulated transcriptional responses to GC exposure. When we performed elastic296

net regression to identify differential epigenomic features across only the two large up-regulated297

transcript clusters, on the other hand, no TFs or histone marks were differentially enriched across298

clusters, meaning that no covariates improved log loss by more than one standard error. This is299

consistent with our functional enrichment results in which the two up-regulated clusters did not300

differ substantially in biological process terms.301

One drawback of our approach for discriminating between clusters by epigenomic features302

is that covariates are available for only a handful of such epigenomic features for a specific cell303

type, and these covariates are often highly correlated (Heintzman et al., 2009; Cheng and Gerstein,304

2011). In the context of the elastic net, results should be stable upon repeated inclusion of identical305

predictors in replicated models (Zou and Hastie, 2005). However, the variables identified as pre-306

dictive may in truth derive their predictiveness from their similarity to underlying causative TFs or307

histone modifications. To address the problem of correlated predictors, we used a complementary308

approach to reveal functional mechanisms distinguishing the four major expression clusters. We309

projected the correlated features of the standardized control TF and histone modification occu-310

pancy data onto a set of linearly uncorrelated covariates using principal components analysis (PCA).311

We then compared the clusters after transforming each gene’s epigenomic mappings by the two312

principal axes of variation, which were selected according to the scree plot method (Cattell, 1966)313

(Figure 4–Figure Supplement 3).314

The first principal component (PC1) explained 47.9% of the variance in the control ChIP-seq data315
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Figure 4. Differences in TF binding and histone modification occupancy in A549 cells in control conditions for

the four largest DPGP clusters. (A) Heatmap shows the elastic net logistic regression coefficients for the top

twenty predictors (sorted by sum of absolute value across clusters) of cluster membership for the four largest

clusters. Predictors were log10 library size-normalized binned counts of ChIP-seq TF binding and histone
modification occupancy in control conditions. Distance indicated in row names represents the bin of the

predictor (e.g., < 1 kb means within 1 kb of the TSS). An additional 23 predictors with smaller but non-zero
coefficients are shown in Figure 4–Supplemental Figure 1. (B) Kernel density histogram smoothed with a
Gaussian kernel and Scott’s bandwidth (Scott, 1979) of the TF binding and histone modification occupancy log10
library size-normalized binned count matrix in control conditions transformed by the first principal component

(PC1) for the two largest down-regulated DPGP clusters. (C) Same as (B), but with matrix transformed by PC2

and with the four largest DPGP clusters.

Figure 4–Figure supplement 1. Heatmap shows all coefficients (sorted by sum of absolute value across

clusters) estimated by elastic net logistic regression of cluster membership for the four largest DPGP clusters

as predicted by log10 normalized binned counts of ChIP-seq TF binding and histone modifications in control

conditions. Distance indicated in row names reflects the bin of the predictor (e.g. < 1 kb = within 1 kb of TSS)

Figure 4–Figure supplement 2. All non-zero coefficients estimated by elastic net logistic regression of cluster

membership for two largest down-regulated DPGP clusters on TF binding and histone modifications in A549

cells in control conditions. Distance indicated in row names reflects the bin of the predictor (e.g., 1 kb = within 1
kb of TSS).

Figure 4–Figure supplement 3. Scree plot of percentage of variance explained by each principal component in

decomposition of epigenomic mapping matrix. The log10 normalized ChIP-seq binned counts around the TSS of

genes of TF binding and histone modification occupancy in control conditions was decomposed by PCA. The

percentage of variance explained by each of the top ten PCs is shown here.
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(Figure 4–Figure Supplement 3). The 42 ChIP-seq covariates with the highest magnitude loadings316

on PC1 were restricted to distal, non-promoter TF binding and active histone mark occupancy,317

implicating enhancer involvement (for the value of all loadings on PC1, see Supplementary file 6).318

Specifically, the features with the two highest magnitude loadings on PC1 were both binned counts319

of distal p300 binding, a histone acetyltransferase that acetylates H3K27 and is well established as320

an enhancer mark (Visel et al., 2009; Heintzman et al., 2009).321

We next compared the four largest clusters with respect to their projections onto PC1. We found322

that the down-reg-slow cluster differed substantially from the down-reg-fast cluster when transformed323

by PC1 (MWU, p ≤ 2.28 × 10−3; Figure 4B), while no other pairwise comparison was significant (MWU,324

p > 0.13). These results suggest that, in aggregate, slowly responding down-regulated transcripts325

have reduced enhancer activity in control conditions relative to quickly responding down-regulated326

transcripts.327

The second principal component (PC2) explained 11.1% of the variance in the control ChIP-seq328

data (Figure 4–Figure Supplement 3). The 21 ChIP-seq features with the greatest contributions to329

PC2 captured TF binding and active histone modifications within the promoter (Supplementary File330

5). By comparing the four largest clusters, we found that the down-reg-slow cluster differed from all331

other clusters with respect to PC2 (MWU, p ≤ 9.15 × 10−7; Figure 4C), and no other cluster differed332

from another (MWU, p > 0.28). These results illustrate that the slowly responding down-regulated333

transcripts collectively showed enhanced pre-dex promoter activity compared to the other three334

largest clusters.335

Transcriptional response clusters show differences in dynamic TF and histonemodification336

occupancy.337

We next validated our four largest dynamic expression clusters by examining the within-cluster338

similarity in changes in TF binding over time. To do this, we computed the log fold change in339

normalized ChIP-seq counts for all TFs (CREB1, CTCF, FOXA1, GR, and USF1) assayed through340

ENCODEwith and without 1 hr treatment with 100 nM dex (Consortium et al., 2012) (Supplementary341

file 5). We again fit an elastic net logistic regression model, this time to identify the changes in TF342

binding that were predictive of cluster. The most predictive features of cluster membership were343

changes in CREB1, FOXA1, and USF1 binding 5–20 kb from the TSS (Figure 5A). CREB1, FOXA1, and344

USF1 are all known transcriptional activators (Mayr and Montminy, 2001; Corre and Galibert, 2005;345

Lupien et al., 2008).346

We examined GR, CREB1, FOXA1, and USF1 binding individually to identify fine differences in347

dynamic TF binding between clusters and compared to stably expressed transcripts. Genes in348

both up-regulated clusters were closer to the nearest GR binding site. up-regulated clusters had349

higher median log fold change in binding of the three TFs compared to the two down-regulated350

clusters (MWU, p ≤ 1.5 × 10−9, Figure 5B–D). We also noted a number of differences between slowly351

and quickly responding transcripts. Down-regulated clusters had lower median log fold change352

in the binding of certain TFs than the group of non-DE transcripts (CREB1 down-reg-slow versus353

non-DE, MWU, p ≤ 2.07 × 10−15, Figure 5C; CREB1, FOXA1, and USF1 down-reg-fast versus non-DE,354

MWU, p = 3.18 × 10−5, Figure 5B–D). Additionally, the down-reg-fast cluster had lower median log355

fold change than the down-reg-slow cluster in FOXA1 and USF1 binding (MWU, p = 8.24 × 10−6,356

p = 1.29 × 10−4, respectively). Overall, increased binding of transcriptional activators was associated357

with increased expression and with more rapidly increased expression, while decreased binding358

was associated with decreased expression and more rapidly decreased expression. Our results359

suggest that differences in TF binding over time may underlie differences in dynamic transcriptional360

response both in terms of up-regulation versus down-regulation and also in the speed of the361

transcriptional response.362
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Figure 5. Differences in changes in transcription factor binding in A549 cells in response to glucocorticoid

exposure for the four largest DPGP clusters. (A) Heatmap shows all coefficients (sorted by sum of absolute

value across clusters) for predictors with non-zero coefficients as estimated by elastic net logistic regression of

cluster membership for the four largest DPGP clusters. Predictors on y-axis represent log fold-change in

normalized binned counts of TF binding from ethanol to dex conditions as assayed by ChIP-seq. Distance

indicated in row names reflects the bin of the predictor (e.g. 1 kb = within 1 kb of TSS). (B) Cumulative
distribution function shows the distances from the TSSs of clustered and non-differentially expressed (non-DE)

transcripts to the nearest discrete GR binding peak in dex conditions. (C) Boxplots show the logFC in normalized

binned counts across clusters and for the group of non-DE transcripts for CREB1, (D) FOXA1, and (E) USF1.

12 of 23

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2017. ; https://doi.org/10.1101/131151doi: bioRxiv preprint 

https://doi.org/10.1101/131151
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion363

We developed a Dirichlet process Gaussian process mixture model (DPGP) to cluster measurements364

of genomic features such as gene expression levels over time. We showed that our method ef-365

fectively identified disjoint clusters of time series gene expression observations using extensive366

simulations. DPGP compared favorably to existing methods for clustering time series data and,367

importantly, includes measures of uncertainty and an accessible, publicly-available software pack-368

age. We applied DPGP to existing data from a microbial model organism exposed to stress. We369

found that DPGP accurately recapitulated previous knowledge of TF-mediated gene regulation in370

response to H
2
O
2
with minimal user input. We applied DPGP to a novel RNA-seq time series data set371

detailing the transcriptional response to dex in a human cell line. Our clusters identified four major372

response types: quickly up-regulated, slowly up-regulated, quickly down-regulated, and slowly373

down-regulated genes. These response types differed in TF binding and histone modifications374

before dex treatment and in changes in TF binding following dex treatment.375

As with all statistical models, DPGP makes a number of assumptions about observations. In par-376

ticular, DPGP assumes i) cluster trajectories are stationary; ii) cluster trajectories are exchangeable;377

iii) each gene belongs to only one cluster; iv) expression levels are sampled at the same time points378

across all genes; and v) the time point-specific residuals have a Gaussian distribution. Despite these379

assumptions, our results show that DPGP is robust to certain violations. In the human cell line data,380

exposure to dex resulted in a non-stationary response (at time point lag 1, all dex-responsive genes381

had either Augmented Dickey-Fuller p < 0.05 or Kwiatkowski–Phillips–Schmidt–Shin, p > 0.05), and382

it has been shown that the residuals may not follow a Gaussian distribution (Schapiro-Wilk test,383

p ≤ 2.2 × 10−16), violating assumptions (i) and (v). However, despite these assumption violations,384

we found that DPGP clustered expression trajectories in a robust and biologically interpretable385

way. Furthermore, because DPGP does not assume that the gene expression levels are observed386

at identical intervals within trajectories, DPGP allows study designs with highly irregular sampling387

across time.388

Our DPGP model can be readily extended or interpreted in additional ways. For example,389

our DPGP returns not only the cluster-specific mean trajectories but also the covariance of that390

mean, which is useful for downstream analysis by explicitly specifying confidence intervals around391

interpolated time points. Given the Bayesian framework, DPGP naturally allows for quantification392

of uncertainty in cluster membership by analysis of the posterior similarity matrix. For example,393

we could test for association of latent structure with specific genomic regulatory elements after394

integrating over uncertainty in the cluster assignments (Dunson and Herring, 2006). DPGP can395

also be applied to time series data from other types of sequencing-based genomics assays such396

as DNase-seq and ChIP-seq. If we find that the Gaussian assumption is inappropriate for these397

data types, we may consider using different nonparametric trajectory distributions to model the398

response trajectories, such as a Student-t process (Shah et al., 2014).399

When DPGP was applied to RNA-seq data from A549 cells exposed to GCs, the clustering results400

enabled several important biological observations. Two down-regulated response types were401

distinguished from one another based on histone marks and TF binding prior to GC exposure.402

The rapidly down-regulated cluster included homeobox TFs and growth factor genes and was403

enriched for enhancer regulatory activity, while slowly down-regulated cluster included critical cell404

cycle genes and was enriched for promoter regulatory activity. More study is need to resolve how405

GCs differentially regulate these functionally distinct classes of genes. GR tends to bind distally406

from promoters (Reddy et al., 2009) so that rapid down-regulation may be a direct effect of GR407

binding, while slower down-regulation may be secondary effect. We also found that down-regulated408

genes lost binding of transcriptional activators in distal regions while up-regulated genes gained409

binding. This result links genomic binding to GC-mediated repression on a genome-wide scale. With410

increasing availability of high-throughput sequencing time series data, we anticipate that DPGP be411

a powerful tool for defining cellular response types.412
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Materials and methods413

Dirichlet Process Gaussian Process (DPGP) mixture model414

We developed a Bayesian nonparametric model for time series trajectories Y ∈ ℜP×T , where P is415

the number of genes and T the number of time points per sample, assuming observations at the416

same time points across samples and no missing data. In particular, let yj be the vector of gene417

expression values for gene j ∈ {1,… , P } for all assayed time points t ∈ {1,… , T }.418

Then, we define the generative DP mixture model as follows:419

G ∼ DP (�,G0); (1)

�ℎ ∼ G; (2)

yj ∼ p(⋅|�ℎ). (3)

Here, DP represents a draw G from a DP with base distribution G0. G, then, is the distribution from420

which the latent variables �ℎ are generated for cluster ℎ, with � > 0 representing the concentration421

parameter, with larger values of � encouraging more and smaller clusters. We specify the observa-422

tion distribution yj ∼ p(⋅|�ℎ) with a Gaussian process. With the DP mixture model, we are able to423

cluster the trajectory of each gene over time without specifying the number of clusters a priori.424

We can integrate out G in the DP to find the conditional distribution of one cluster-specific
random variable �ℎ conditioned on all other variables �¬ℎ, which represent the cluster-specific
parameter values of the observation distribution (here, a GP); using exchangeability, for all clusters

ℎ ∈ {1,… ,H} we have

p(�ℎ|�¬ℎ) ∝ �p(�ℎ|G0) +
H
∑

i=1
�(�ℎ, �i). (4)

A prior could be placed on �, and the posterior for � could be estimated conditioned on the425

observations. Here we favor simplicity and speed, and we set � to one. This choice has been used in426

gene expression clustering (Medvedovic and Sivaganesan, 2002) and other applications (Kim et al.,427

2006; Vlachos et al., 2008) and favors a relatively small number of clusters, where the expected428

number of clusters scales as � logP .429

Gaussian process prior distribution430

Our base distribution for the DP mixture model captures the distribution of each parameter of the431

cluster-specific GP. A GP is a distribution on arbitrary functions mapping points in the input space432

xt—here, time—to a response yj—here, gene expression levels of gene j across time t ∈ {1,… , T }.433

The within-cluster parameters for the distribution of trajectories for cluster ℎ, or �ℎ = {�ℎ,lℎ, �ℎ, �2ℎ},434

can be written as follows:435

�ℎ ∼ GP (�0, K) (5)

lℎ ∼ ln (0, 1) (6)

�ℎ ∼ ln (0, 1) (7)

�2ℎ ∼ InverseGamma(�IG, �IG) (8)

where �IG captures shape and �IG represents rate (inverse of scale). The above hyperparameters436

may be changed by the user of the DPGP software. By default, �IG is set to 12 and �IG is set to437

2, as these were determined to work well in practice for our applications. For data with greater438

variability, such as microarray data, the shape parameter can be decreased to allow for greater439

noise variance within a cluster. The base distributions of the cluster-specific parameters, which we440

estimate directly from the data, were chosen to be the natural prior distributions.441

The positive definite Gram matrix Kℎ quantifies similarity between every pair of time points x, x′442

in the absence of local noise using Mercer kernel function Kℎ,t,t′ = �ℎ(xt, xt′ ). We used the squared443
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exponential covariance function (dropping the gene index j):444

�ℎ(xt, xt′ ) = �2ℎ exp

{

−
||xt − xt′ ||2

2l2ℎ

}

. (9)

The hyperparameter lℎ, known as the characteristic length scale, corresponds to the distance in445

input space between two data points smaller than which the points have correlated outputs. The446

hyperparameter �2ℎ , or signal variance, corresponds to the variance in gene expression trajectories447

over time. The model could be easily adapted to different choices of kernel functions depending on448

the smoothness of the trajectories used in the analysis, such as the Matérn kernel (Abramowitz449

et al., 1966), a periodic kernel (Schölkopf and Smola, 2002), or a non-stationary kernel (Rasmussen450

and Williams, 2006).451

Including local (i.e., time point-specific) noise, �2ℎ (Equation 8), the covariance between time452

points for trajectory yj becomes Kℎ + �2ℎI . Thus,453

yj ∼ (�ℎ, Kℎ + �2ℎI), (10)

where the noise variance, �2ℎ, is unique to each cluster ℎ. This specifies the probability distribution454

of each observation yj in Equation (3) according to a cluster-specific GP.455

Markov chain Monte Carlo (MCMC) to estimate posterior distribution of DPGP456

Given this DPGPmodel formulation, we now develop methods to estimate the posterior distribution457

of the model parameters. We use MCMC methods, which have been used previously in time458

series gene expression analysis (Medvedovic and Sivaganesan, 2002; Qin, 2006). MCMC allows the459

inference of cluster number and parameter estimation to proceed simultaneously. MCMC produces460

an estimate of the full posterior distribution of the parameters, allowing us to quantify uncertainty461

in their estimates. For MCMC, we calculate the probability of the trajectory for gene j belonging to462

cluster ℎ according to the DP prior with the likelihood that gene j belongs to class ℎ according to the463

cluster-specific GP distribution. We implemented Neal’s Gibbs Sampling “Algorithm 8" to estimate464

the posterior distribution of the trajectory class assignments (Neal, 2000). More precisely, let cj be465

a categorical latent variable specifying what cluster gene j is assigned to, and let c¬j represent the466

class assignment vector for all trajectories except for gene j. Let  = { 1,… ,  H} represent model467

parameters where each  ℎ = {lℎ, �ℎ, �ℎ} includes parameters specific to cluster ℎ.468

Using Bayes rule, we compute the distribution of each cj conditioned on the data and all other469

cluster assignments:470

Pr(cj = ℎ|yi, c¬j ,  ℎ, �) ∝ Pr(cj = ℎ|c¬j , �)Pr(yj|cj = ℎ,  ℎ) (11)

where the first term on the right-hand side represents the probability of assigning the trajectory to471

cluster ℎ and the second term represents the likelihood that the trajectory yj was generated from472

the GP distribution for the ℎth cluster.473

According to our model specification, the probability Pr(cj = ℎ|c−j , �) in Equation (11) is equiva-474

lent to the Chinese restaurant process in which:475

Pr(cj = ℎ|c−j , �) ∝

⎧

⎪

⎨

⎪

⎩

�∕m
�+n−1

if h is empty or gene j assigned to singleton cluster.
∑n
j=1 1(cj=ℎ)

�+n−1
otherwise.

(12)

In the above, m is the number of empty clusters available in each iteration. Similarly, the476

likelihood Pr(yj|cj = ℎ,  ℎ) in Equation (11) is calculated using our cluster-specific GPs:477

Pr(yj|cj = ℎ,  ℎ) (13)

=

⎧

⎪

⎨

⎪

⎩

 (yj|�0(x), K0 + �20I) if h is empty or gene j assigned to singleton cluster.

 (yj|�ℎ(x), Kℎ + �2ℎI) otherwise.
(14)
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We draw �0(x) as a sample from the prior covariance matrix, and we put prior distributions on478

parameters �2ℎ , lℎ, and �
2
ℎ (Equation 6) and estimate their posterior distributions explicitly.479

In practice, the first 48% of the prespecified maximum number of MCMC iterations is split into480

two equally sized burn-in phases. At initialization, each gene is assigned to its own cluster, which is481

parameterized by its mean trajectory and an SE kernel with unit signal variance and unit length-scale482

(after the mean time interval between sampling points has been scaled to one unit so that the483

above length scale hyperprior remains reasonable [Equation 6]). The local variance is initialized as484

the mode of the prior local variance distribution. During the first burn-in phase, a cluster is chosen485

for each gene at each iteration where the likelihood depends on the fit to a multivariate normal486

parameterized by the cluster’s mean function and the covariance kernel with initial parameters487

defined above.488

Before each iteration, m empty clusters (by default, 4) are re-generated, each of which has a489

mean function drawn from the prior mean function of 0 with variance equivalent to the noise490

variance described above. These empty clusters are also assigned the initial covariance kernel491

parameters described above.492

After the second burn-in phase, we update the model parameters for each cluster (at every stℎ493

iteration to increase speed). Specifically, we compute the posterior probabilities of the kernel hyper-494

parameters. To simplify calculations, wemaximize themarginal likelihood, which summarizesmodel495

fit while integrating over the parameter priors, known as type II maximum likelihood (Rasmussen496

and Williams, 2006). Specifically:497

�ℎ = K(x, x)ℎ[K(x, x)ℎ + �2n,ℎI]
−1ȳℎ where ȳℎ =

yl +⋯ + yk
∑n

j=1 1(cj = ℎ)
. (15)

We do this using the fast quasi-Newton limited-memory Broyden-Fletcher-Goldfarb-Shanno498

(L-BFGS) method implemented in SciPy (Jones et al., 2015). After the second burn-in phase, the499

cluster assignment vector c is sampled at every stℎ iteration to thin the Markov chain, where s = 3500

by default.501

Selecting the clusters502

Our MCMC approach produces a sequence of states drawn from a Gibbs sampler, where each503

state captures a partition of genes into disjoint clusters. In DPGP, we allow several choices for504

summarizing results from the Markov chain. Here, we take the maximum a posteriori (MAP)505

clustering, or the partition that produces the maximum value of the posterior probability. We also506

summarized the information contained in the Gibbs samples into a posterior similarity matrix (PSM)507

of dimension P × P , for all genes P , where S[j, j′] = the proportion of Gibbs samples for which a508

pair of genes j, j′ are in the same partition, i.e., 1
Q

∑Q
q=1 1[c

q
j = c

q
j′ ], for Q iterations of a Gibbs sampler509

and cqj representing the cluster assignment of gene j in iteration q. This PSM avoids the problem of510

label switching by being agnostic to the cluster labels when checking for equality.511

Generating the simulated data512

In order to test our algorithm across a wide variety of possible data sets, we formulated over513

twenty generative models with different numbers of clusters (10-100) and with different generative514

covariance parameters (signal variance 0.5-3, noise variance 0.01-1, and length-scale 0.5-3). We515

varied cluster number and covariance parameters both across models and within models. For516

each model, we generated 20 data sets to ensure that results were robust to sampling. In total,517

we simulated 620 data sets for testing. To generate each data set, we specified the total number518

of clusters and the number of genes in each cluster. For each cluster, we drew the cluster’s519

mean expression from a multivariate normal with mean zero and covariance equivalent to a noisy520

squared-exponential kernel with prespecified hyperparameter settings, then drew a number of521

samples (gene trajectories) from a multivariate normal with this expression trajectory as mean and522

the posterior covariance kernel as covariance.523
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We compared results of DPGP applied to these simulated data sets against results from five524

state-of-the-art methods, including two popular correlation-based methods, and three model-based525

methods that use a finite GMM, an infinite GMM, and spline functions, respectively.526

• BHC (v.1.22.0) (Savage et al., 2009);527

• GIMM (v.3.8) (Medvedovic et al., 2004);528

• hierarchical clustering by average linkage (Eisen et al., 1998) (AgglomerativeClustering imple-529

mented in SciKitLearn (Pedregosa et al., 2011));530

• k-means clustering (Tavazoie et al., 1999) (KMeans, implemented in SciKitLearn (Pedregosa531

et al., 2011));532

• Mclust (v.4.4) (Fraley and Raftery, 2002);533

• SplineCluster (v. Oct. 2010) (Heard et al., 2006).534

Hierarchical clustering and k-means clustering were parameterized to return the true number of535

clusters. All of the above algorithms, including our own, were run with default arguments. The536

only exception was GIMM, which was run by specifying “complete linkage", so that the number of537

clusters could be chosen automatically by cutting the returned hierarchical tree at distance 1.0, as538

in “Auto" IMM clustering (Medvedovic et al., 2004).539

We evaluated the accuracy of each approach using ARI. To compute ARI, let a equal the number540

of pairs of co-clustered elements that are in the same true class, b the number of pairs of elements541

in different clusters that are in different true classes, andN the total number of elements clustered:542

RI = a + b
(N
2

)
(16)

ARI = RI − E[RI]
max (RI) − E[RI]

(17)

For a derivation of the expectation of RI above, see (Hubert and Arabie, 1985).543

Transcriptional response in H. salinarum control strain versus ΔrosR transcription544

factor knockout in response to H2O2545

Gene expression microarray data from our previous study (Sharma et al., 2012) (GEO accession546

GSE33980) was clustered using DPGP. In the experiment, H. salinarum control and ΔrosR TF deletion547

strains were grown under standard conditions (rich medium, 37C, 225 r.p.m. shaking) until mid-548

logarithmic phase. Expression levels of all 2,400 genes in the H. salinarum genome (Ng et al., 2000)549

were measured in biological duplicate, each with 12 technical replicate measurements, immediately550

prior to addition of 25 mM H
2
O
2
and at 10, 20, 40, 60, and 80 min after addition. The mean of551

expression across replicates was standardized to mean 0 and variance 1 across all time points and552

strains. Standardized expression trajectories of 616 non-redundant genes previously identified as553

differentially expressed in response to H
2
O
2
(Sharma et al., 2012) were then clustered using DPGP554

with default arguments, except that the �2n hyperprior parameters were set to �
IG = 6 and �IG = 2 to555

allow modeling of increased noise in microarray data relative to RNA-seq. Gene trajectories for each556

of the control and ΔrosR strains were clustered in independent DPGP modeling runs. Resultant557

clusters were analyzed to determine how each gene changed cluster membership in response to558

the ΔrosRmutation. We computed the Pearson correlation coefficient in mean trajectory between559

all control clusters and all ΔrosR clusters. Clusters with the highest coefficients across conditions560

were considered equivalent across strains (e.g., control cluster 1 versus ΔrosR cluster 1, � = 0.886561

in Figure 2). Significance of overrepresentation in cluster switching (e.g., from control cluster 1 to562

ΔrosR cluster 2) was tested using FET. To determine the degree of correspondence between DPGP563

results and previous clustering results with the same data, we took the intersection of the list of564

372 genes that changed cluster membership according to DPGP with genes in each of eight clusters565

previously detected using k-means (Sharma et al., 2012). Significance of overlap between gene lists566

was calculated using FET.567
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GC transcriptional response in a human cell line568

A549 cells were cultured and exposed to the GC dex or a paired vehicle ethanol (EtOH) control as569

in previous work (Reddy et al., 2009) with triplicates for each treatment and time point. Total RNA570

was harvested using the Qiagen RNeasy miniprep kit, including on column DNase steps, according571

to the manufacturer’s protocol. RNA quality was evaluated using the Agilent Tape station and all572

samples had a RNA integrity number > 9. Stranded Poly-A+ RNA-seq libraries were generated on573

an Apollo 324 liquid handling platform using the Wafergen poly-A RNA purification and RNA-seq574

kits according to manufacturer instructions. The resulting libraries were then pooled in equimolar575

ratios and sequenced on two lanes 50 bp paired end lanes on an Illumina HiSeq 2000.576

RNA-seq reads were mapped to GENCODE (v.19) transcripts using Bowtie (v.0.12.9) (Langmead577

et al., 2009) and quantified using samtools idxstats utility (v.1.3.1) (Li et al., 2009). Differentially578

expressed (DE) transcripts were identified in each time point separately using DESeq2 (v.1.6.3) (Love579

et al., 2014) with default arguments and FDR ≤ 10%. We clustered only one transcript per gene, in580

particular, the transcript with the greatest differential expression over the time course among all581

transcripts for a given gene model, using Fisher’s method of combined p-values across time points.582

Further, we only clustered transcripts that were differentially expressed for at least two consecutive583

time points, similar to the approach of previous studies (Nau et al., 2002; Shapira et al., 2009). We584

standardized all gene expression trajectories to have zero mean and unit standard deviation across585

time points. We clustered transcripts with DPGP with default arguments.586

To query the function of our gene expression clusters, we annotated all transcripts tested for587

differential expression with their associated biological process Gene Ontology slim (GO-slim) (Ash-588

burner et al., 2000) terms and performed functional enrichment analysis using FET with FDR589

correction (Benjamini and Hochberg, 1995) as implemented in goatools (Tang et al., 2016). We590

considered results significant with FDR ≤ 5%.591

We performed principal components analysis (as implemented in SciKitLearn (Pedregosa et al.,592

2011)) on the standardized log10 library size-normalized binned counts of TF binding and histone593

modifications in control conditions only for the observations that corresponded to transcripts in594

the four largest DPGP clusters.595
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Figure 1–Figure supplement 1. Time benchmark. Mean runtime of BHC, GIMM, and DPGP across

varying numbers of gene expression trajectories generated from GPs parameterized in the same

manner as simulated data sets 11, 21, and 27 in Supplementary file 1. Cluster sizes were 2, 4, 8, 16,
32, and 64 for 126 simulated genes in 2–8 different clusters per cluster size. Error bars represent
standard deviation in runtime across 20 simulated data sets. Hierarchical clustering, k-means,
Mclust, and SplineCluster are not shown because their mean runtimes were under one minute and

could not be meaningfully displayed here.
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Figure 1–Figure supplement 2. Proportion of held-out test points within credible intervals of

estimated cluster means for DPGP. For all data sets detailed in Supplementary file 1, expression
trajectories were clustered while separately holding out each of the four middle time points of eight

total time points. Box plot shows proportion of test points that fell within the 95% credible intervals
(CIs) of the estimated cluster mean.
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Figure 3–Figure supplement 1. Rugplot of all cluster sizes for A549 glucocorticoid exposure data

clustered using DPGP. Each stick on the x-axis represents a singular data cluster of the 13 total
clusters. Note that the two clusters with sizes 22 and 23 are difficult to distinguish by eye.
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Figure 4–Figure supplement 1. Heatmap shows all coefficients (sorted by sum of absolute value

across clusters) estimated by elastic net logistic regression of cluster membership for the four

largest DPGP clusters as predicted by log10 normalized binned counts of ChIP-seq TF binding and
histone modifications in control conditions. Distance indicated in row names reflects the bin of the

predictor (e.g. < 1 kb = within 1 kb of TSS)
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Figure 4–Figure supplement 2. All non-zero coefficients estimated by elastic net logistic regression

of cluster membership for two largest down-regulated DPGP clusters on TF binding and histone

modifications in A549 cells in control conditions. Distance indicated in row names reflects the bin

of the predictor (e.g., 1 kb = within 1 kb of TSS).
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Figure 4–Figure supplement 3. Scree plot of percentage of variance explained by each principal

component in decomposition of epigenomic mapping matrix. The log10 normalized ChIP-seq binned
counts around the TSS of genes of TF binding and histone modification occupancy in control

conditions was decomposed by PCA. The percentage of variance explained by each of the top ten

PCs is shown here.
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