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Abstract 14 

Estimating population size and resource selection functions (RSFs) are common approaches in 15 

applied ecology for addressing wildlife conservation and management objectives. Traditionally 16 

such approaches have been undertaken separately with different sources of data.  Spatial capture-17 

recapture (SCR) provides a framework for jointly estimating density and multi-scale resource 18 

selection, and data integration techniques provide opportunities for improving inferences from 19 

SCR models.  Here we illustrate an application of integrated SCR-RSF modeling to a population 20 

of American marten (Martes americana) in alpine forests of northern New England.  Spatial 21 

encounter data from camera traps were combined with telemetry locations from radio-collared 22 

individuals to examine how density and space use varied with spatial environmental features.  23 

We compared multi-model inferences between the integrated SCR-RSF model with telemetry 24 

and a standard SCR model with no telemetry.  The integrated SCR-RSF model supported more 25 

complex relationships with spatial variation in third-order resource selection (i.e., individual 26 

space use), including selection for areas with shorter distances to mixed coniferous forest and 27 

rugged terrain.  Both models indicated increased second-order selection (i.e., density) for areas 28 

close to mixed coniferous forest, while the integrated SCR-RSF model had a lower effect size 29 

due to modulation from spatial variability in space use.  Our application of the integrated SCR-30 

RSF model illustrates the improved inferences from spatial encounter data that can be achieved 31 

from integrating auxiliary telemetry data.  Integrated modeling allows ecologists to join 32 

empirical data to ecological theory using a robust quantitative framework to better address 33 

conservation and management objectives. 34 

Key words: American marten; density estimation; integrated modeling; noninvasive sampling; 35 

Martes americana; radio-telemetry; spatial capture-recapture   36 
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Introduction 37 

Understanding the environmental features that influence variation in species abundance 38 

or density is a common objective in wildlife conservation and management.  Approaches to 39 

estimating population size and habitat selection have traditionally required distinct forms of data 40 

collection and separate modeling methods; spatial capture-recapture (SCR) allows for joint 41 

estimation of both ecological processes using a single data source or through integration of 42 

multiple data sources in a single analytical framework (Royle, Fuller & Sutherland 2017).  The 43 

development of SCR was initially motivated by the need to address the spatial dynamics of field 44 

sampling and animal movement to improve density estimation from capture-recapture methods 45 

(Efford 2004; Royle & Young 2008).  By using spatial information on the location of 46 

observations, SCR combines a point process model for the distribution of individuals in a 47 

population with a probability model for the encounters or captures of those individuals.  As with 48 

other recent statistical advances in ecology (Gimenez et al. 2014), the hierarchical model 49 

formulation of SCR has enabled custom data integration techniques and, therefore, expanded the 50 

scope of inferences possible from trapping and other spatial encounter data (Sollmann et al. 51 

2013a; Chandler & Clark 2014).  While these developments are promising, as the complexity of 52 

modeling methods increases so do the data demands for parameter estimation (Auger-Methe et 53 

al. 2016) and the need for practical implementation options (Bolker et al. 2013).  Producing valid 54 

and useful inferences for helping achieve objectives in applied ecology requires finding a 55 

balance between comprehensive models and logistically feasible data. 56 

Royle et al. (2013) developed a spatial capture-recapture model that integrates telemetry 57 

information and resource selection functions (RSFs) to provide improved accuracy and precision 58 

for density estimation.  The improved accuracy is particularly relevant when resource selection at 59 
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one or more spatial scales affects the distribution of individuals (i.e., second-order selection; 60 

Johnson 1980) and/or individual space use (i.e., third-order selection).  While the approach 61 

seems promising and uses commonly collected wildlife data, it has been rarely applied in the 62 

literature.  Proffitt et al. (2015) included a resource selection function in an SCR model of a large 63 

carnivore but estimated the function with telemetry data first before using the predictions as a 64 

covariate in their SCR model fitting.  They implied that the Royle et al. (2013) model 65 

represented a “methodologically intensive joint estimation framework” which might preclude 66 

interested users from easily applying it.  The multi-step approach to RSF integration in SCR is a 67 

potentially interesting and practical compromise, whereby a complex function is reduced to a 68 

univariate prediction to serve as a single spatial covariate in the model (Efford 2015).  Proffitt et 69 

al. (2015) used this method to address spatial variation in density – they did not incorporate it in 70 

their encounter probability model, despite having data that may have allowed for modeling 71 

variation in individual space use.  In general, SCR models are more sensitive to the structure of 72 

the encounter model than the density model, as the latter has been found to be highly flexible to 73 

misspecification (Efford & Fewster 2013; Royle et al. 2014) while the former has long been a 74 

focus of refinements to capture-recapture methods (Dorazio & Royle 2003).  As referenced 75 

earlier, individual heterogeneity to capture was a primary motivation for SCR (Efford 2004).  76 

Thus, in SCR applications where individual space use is hypothesized to be highly variable, 77 

accounting for third-order selection in the encounter model may be important regardless of 78 

whether ancillary telemetry data are available. 79 

The task of estimating variation in space use with a spatial capture-recapture design alone 80 

is made difficult by the required sample sizes in the various data dimensions.  Importantly, the 81 

number and configuration of trapping devices needs to be such that adequate coverage across 82 
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some gradient of habitat resources is achieved.  This requires some traps to be placed within or 83 

adjacent to relatively poor habitat, even though doing so may result in little information (i.e., 84 

zero encounters) being collected for the logistical effort expended.  Since the placement of traps 85 

will interact with both the distribution of individuals on the landscape and individual space use, 86 

the number of encounters at a trap will be a function of the realized dynamics of both processes 87 

(Royle et al. 2014).  Thus, an optimal trap layout for estimating multi-scale resource selection 88 

will purposefully expend trapping effort in locations where few individuals exist and where 89 

individuals, even when present nearby, may be unlikely to visit.  Such a design creates tension 90 

with the general goal of obtaining as many encounters of as many individuals as possible to 91 

enable model fitting and accurate parameter estimation (Royle et al. 2014). 92 

Here, we illustrate an application of the integrated SCR-RSF model developed by Royle 93 

et al. (2013) using a multi-year study on American marten (Martes americana) in New 94 

Hampshire, USA (Sirén et al. 2016a; Sirén et al. 2016b).  Marten are a forest-sensitive meso-95 

carnivore often used as an indicator species for forest conservation and management given their 96 

vulnerability to anthropogenic disturbance and climate change (Carroll 2007).  We used remote 97 

camera stations to photograph and identify individual marten according to their unique pelage 98 

patterns (Sirén et al. 2016a) and combined these data with telemetry locations collected on a 99 

subset of radio-collared individuals (Sirén et al. 2016b).  The sampling occurred across a 100 

heterogeneous alpine forest landscape that was recently modified by a wind farm installment and 101 

within which marten were shown to be differentially selecting resources at multiple scales.  102 

Using the integrated SCR-RSF likelihood (Royle et al. 2013), we estimated marten density and 103 

parameters associated with multi-scale resource selection and compared the resulting multi-104 

model inferences both with and without the telemetry data integration.  Notably, we modified the 105 
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likelihood to accommodate a lack of independence between the data sources, given that all radio-106 

collared individuals were also photo-captured by camera traps.  This integrated SCR-RSF model 107 

was added to the R package oSCR (Sutherland, Royle & Linden 2016) to facilitate use by 108 

interested researchers.  Our example here provides further evidence that improved inferences on 109 

variation in population density are possible when additional information on movement and 110 

resource selection from telemetry data are integrated with spatial capture-recapture models. 111 

 112 

Materials and methods 113 

STUDY AREA AND SAMPLING 114 

We sampled marten in a ~62 km2 area of New England-Acadian forest in northern New 115 

Hampshire, USA during 2010–2012 (Figure S1).  Extensive descriptions of the study area and 116 

sampling details have been previously outlined (Sirén et al. 2016a; Sirén et al. 2016b).  The area 117 

was centered on some mountains containing a new 33-turbine wind farm with elevation ranging 118 

624–1045 m.  Forests were primarily mature conifers at high elevations (>823 m) and a mix of 119 

mature and commercially harvested hardwoods at lower elevations.  Topography was variable 120 

with rugged terrain dispersed throughout and winters in the region (1948–2013) were cold with 121 

high annual snowfall (average = 288 cm; range = 79–881 cm; National Climate Data Center: 122 

http://www.ncdc.noaa.gov). 123 

 Marten were photo-captured by remote cameras during 2 winters (Sirén et al. 2016a) and 124 

live-captured year-round to maintain 6–10 individuals with active VHF radio collars during the 125 

study (Sirén et al. 2016b).  Telemetry fixes from collared individuals were obtained weekly 126 

using standard methods of triangulation; here, we restricted the data to fixes collected during the 127 

2 leaf-off (i.e., winter) time periods (14 Nov 2010 to 15 May 2011 and 16 Oct 2011 to 15 May 128 
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2012) which overlapped with the winter sampling by remote cameras (14 Feb 2011 to 2 Apr 129 

2011 and 3 Jan 2012 to 19 Jan 2012).  Location error was estimated to be 2 ha (Sirén et al. 130 

2016b).  We used 30 total camera trapping stations during each sampling period that were baited 131 

with sardines and a commercial skunk (Mephitis mephitis) lure.  Stations were operational for 12 132 

d in 2011 and 8 d in 2012, with bait replaced halfway through, and were located in a nonrandom 133 

pattern to achieve a spacing of 500–950 m (Figure 1).  Marten photo-captures were identifiable 134 

to individual when ventral patches were clearly visible and multiple observers could agree on 135 

assignment; sex was assigned to un-collared individuals based on morphological comparisons 136 

with collared individuals (Sirén et al. 2016a). 137 

  138 

INTEGRATED SCR-RSF MODEL 139 

We estimated multi-scale habitat selection of marten using the spatial encounters of individuals 140 

at camera traps and the telemetry locations of collared individuals with the integrated SCR-RSF 141 

model (Royle et al. 2013).  A discrete-space representation of the study area was required to 142 

allow spatial environmental covariates to influence the space use of individuals (third-order 143 

selection) and the distribution of individuals (second-order selection) on the landscape.  The 144 

discretization of the landscape accommodates a straightforward formulation of the space usage 145 

model that links the camera trap and telemetry data under the integrated SCR-RSF model (Royle 146 

et al. 2013).  Using the notation of Royle et al. (2013), we can define the set of coordinates x1, 147 

…, xnG for each pixel g on the landscape of nG pixels and estimate the likelihood of observing 148 

the data for individuals in pixels conditional on s, the latent centroids of activity (i.e., home range 149 

centers) for individuals, and z(x), the covariate value(s) for all pixels.  Importantly, individual 150 

use of a pixel is considered a Poisson random variable with an average rate λ(x|s) for both data 151 
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likelihoods.  While the total probability of observing an individual in a given pixel differs 152 

between the camera trap and telemetry data (as a function of the sampling rate and other features 153 

of each device), the mechanisms underlying spatial variation are assumed to be the same, 154 

allowing parameters to be shared in the joint likelihood (Royle et al. 2013). 155 

Our discrete landscape for marten was defined by a 3.75 km buffer of the trapping array 156 

composed of 200 m × 200 m pixels for a total of nG = 2,709 non-water pixels.  The buffer 157 

accommodated individual movement in the sampled population and the pixel resolution was 158 

small enough to distinguish differences in space usage within home ranges.  We summarized the 159 

telemetry data as pixel-specific counts, mig, for each of i = 1,2,…,Ntel collared individuals at each 160 

pixel g.  Spatial encounters at camera traps, yijk, were defined for each of i = 1,2,…,n  photo-161 

captured individuals at camera trap j on survey k as binary variables, condensing any clusters of 162 

encounters that occurred in a given day to a single “detection” (Siren et al. 2016a).  We extracted 163 

the spatial covariate values for trap j from the pixel within which the trap was located, such that 164 

zj ≡ z(xj).  The spatial covariates we considered for influencing habitat selection included the 165 

average distance to mixed-coniferous forest and the vector ruggedness measure (VRM; 166 

Sappington, Longshore & Thompson 2007) for each pixel; see Sirén et al. (2016b) for more 167 

information on the remote sensing data and additional justification for the habitat covariates. 168 

 Following Royle et al. (2013), we modeled the spatial encounters, yijk, as Bernoulli 169 

random variables such that Pr(yijk > 0 | xj, si) = pijk, and under a Gaussian hazard model, pijk = 1 – 170 

exp(–λijk).  In this way, λijk represents the average encounter rate for the trap in pixel xj, assuming 171 

the latent “use frequency” (i.e., 3rd order selection) is a Poisson random variable.  This use 172 

frequency is unobservable for the camera trap data due to difficulty in distinguishing 173 

independent encounters within a survey but links directly to the use frequency indicated by the 174 
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telemetry data (Royle et al. 2013).  Here, we modeled the encounter rate of marten as a function 175 

of several components: 1) availability for an individual, given the location of its latent activity 176 

center; 2) resource selection of spatial covariate values for the camera trap; 3) year during which 177 

the individual was photo-captured; 4) sex of the individual; and 5) a trap-specific behavioral 178 

response.  The first two components address the crux of the methodological development 179 

presented by Royle et al. (2013), while the remaining components are specific to the marten 180 

study.  Our log-linear model was therefore: 181 

log(λijk) = α0 – α1i d(xj, si)2 + α2,mixed mixedj + α2,vrm vrmj + α2,vrm2 vrmj
2  182 

+ α2012 yri + αmale sexi + α2012,male yri×sexi + αbehav Cijk 183 

where d(xj, si) is the Euclidean distance between trap j and the latent activity center for individual 184 

i, and α1i = 1/(2σi
2), where σi represents the scale parameter of the half-normal distance function.  185 

In this way, α1id(xj, si)2 quantifies the “availability” of a trap pixel conditional on si for the 186 

individual.  The spatial covariates were standardized with mean 0 and unit variances, after 187 

distance to mixed conifers (mixedj) was square-root transformed and terrain ruggedness (vrmj) 188 

was log-transformed.  Year and sex were both binary variables indicating whether an individual 189 

was encountered in 2012 (yri = 1) and its sex was male (sexi = 1), including a potential 190 

interaction.  Finally, the behavioral response used Cijk = 1 for all k after the initial encounter of 191 

individual i at trap j, and 0 otherwise.  We allowed σi to vary according to year and sex: 192 

log(σi) = δ0 + δ2012 yri + δmale sexi + δ2012,male yri×sexi 193 

This accounted for potential differences in the scale of movement between sexes and years. We 194 

also treated sex as a random variable and estimated φmale = Pr(sexi = 1) using the model extension 195 

described in (Royle et al. 2015). 196 
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We used the pixel-specific frequencies from the telemetry data to estimate use 197 

probabilities under a multinomial distribution such that mig ~ Multinomial(Ri,πig), where Ri is the 198 

number of telemetry fixes for individual i and πig is the relative probability of use as defined by 199 

2 2
1 2,mixed 2,vrm 2,vrm2

2 2
1 2,mixed 2,vrm 2,vrm2

exp( α ( , ) α α α )
π =

exp( α ( , ) α α α )
i g i g g g

ig
i g i g g g

g

d mixed vrm vrm
d mixed vrm vrm

− + + +

− + + +∑
x s

x s
 200 

Here, the individual- and pixel-specific usage rate (i.e., the numerator) is formulated with a 201 

similar log-linear model as the encounter rate for the spatial encounters at camera traps, with the 202 

exception that the rate is not survey specific and is only a function of attributes that vary by 203 

location.  Another difference is that the usage rate is defined at all pixels (g) in the state space, 204 

not only the pixels with camera traps.  Since the usage rate is a function of availability, the 205 

individual rates and relative probabilities are conditional on si and variation in the movement 206 

scale (σi) is defined by the same log-linear model. 207 

 We modeled variation in the distribution of activity centers, representing 2nd order 208 

resource selection by marten, by specifying an inhomogeneous point process (Borchers & Efford 209 

2008).  Here, the expected density in a given pixel g was a linear function (on the log scale) of 210 

the distance to mixed conifer forest: 211 

log(E(Dg)) = β0 + βmixed mixedg 212 

This density model determined the prior probability of an activity center being located in any 213 

given pixel according to: 214 

E( )
Pr( | ) =

E( )
g

i
g

g

D
s g

D
=

∑
β  215 

where si now represents a pixel ID instead of two-dimensional coordinates.  Since the likelihoods 216 

of the data for both the spatial encounters and the telemetry fixes are conditional on si, the 217 
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marginal likelihood is calculated by integrating over all possible pixel values (i.e., the Poisson-218 

integrated likelihood approach; Borchers & Efford 2008).  Note, when considering the photo-219 

captured individuals that were also radio-collared, the conditional likelihoods must be combined 220 

before calculating a single marginal likelihood for each individual (Appendix S1).  Royle et al. 221 

(2013) used data from different sets of individuals and assumed the data likelihoods were 222 

independent.  The consequences of accommodating non-independent data include more precise 223 

estimation of activity centers for the captured individuals with collars and reduction of the 224 

effective sample size of individuals used to estimate the resource selection functions.  Assuming 225 

independence between the data when the overlap of individuals is high would result in 226 

psuedoreplication problems (e.g., artificially reduced standard errors). 227 

 228 

MODEL COMPARISONS WITH AND WITHOUT TELEMETRY 229 

We compared inferences on multi-scale selection between the integrated SCR-RSF model and a 230 

standard SCR model (without telemetry data) using an information theoretic approach followed 231 

by parameter estimate comparisons for the relevant coefficients.  We used model selection to 232 

identify the covariate structures with the best predictive performance for the data at each level of 233 

the hierarchical models, starting with movement scale (σ), then encounter rate (λ), and finally 234 

density (D).  A multi-staged approach was used to reduce the total set of candidate models: 1) 235 

select among covariates for σ with full covariate structures for λ and D; 2) select among 236 

covariates for λ using the top covariates for σ and full structure for D; and, 3) select among 237 

covariates for D using the top covariates for σ and λ.  Candidate models for the encounter rate 238 

always included the behavioral effect (αbehav) given previous findings (Sirén et al. 2016a).  This 239 

resulted in 5 candidate models for movement scale, 30 candidate models for encounter rate, and 240 
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2 candidate models for density.  Our main focus was on parameter comparisons for α2 (third-241 

order selection) and β (second-order selection), both in terms of best supported model structures 242 

and differences in effect size and precision of the estimates, where applicable. 243 

All models were fit using maximum likelihood methods with the oSCR package 244 

(Sutherland, Royle & Linden 2016) in R (R Core Team 2016).  The oSCR package is an open-245 

source alternative to secr (Efford 2016) for fitting certain spatial capture-recapture models 246 

using maximum likelihood.  We integrated the R code from Royle et al. (2013) into oSCR and 247 

included an option for adjusting the marginal likelihood calculations to accommodate non-248 

independent data.  The candidate models were ranked using AIC and, to improve clarity for 249 

encounter rate comparisons, we removed from our model selection tables those variables with 250 

85% confidence intervals that included zero (Arnold 2010).  Note, AIC cannot be directly 251 

compared between the standard SCR and integrated SCR-RSF model types given differences in 252 

the data likelihoods; we focus on the relative rankings of model structure.  We used the top-253 

ranked models to map the predicted encounter probability and expected density across the study 254 

area, illustrating variation in resource selection at each scale. 255 

  256 

Results 257 

The winter camera trapping resulted in 13 individuals (6 F; 7 M) captured 121 times in 2011 and 258 

15 individuals (6 F; 9 M) captured 86 times in 2012.  Across years, the number of spatial 259 

encounters at unique trap pixels per individual ranged 1–10, with 50% having ≤ 2 and 25% 260 

having ≥ 5 spatial encounters.  The number of radio-collared individuals was 6 (2 F; 4 M) in 261 

2011 and 8 (2 F; 6 M) in 2012, with a total of 147 and 218 telemetry locations, respectively, 262 

collected during each winter.  Across years, the number of telemetry locations at unique pixels 263 
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per collared individual ranged 11–27 (median = 17.5).  The proportion of encounters at camera 264 

traps attributed to radio-collared individuals was 0.73 in 2011 and 0.71 in 2012. 265 

 Model selection results indicated that an increased complexity in model structure was 266 

supported by the integrated SCR-RSF model with telemetry data compared to the standard SCR 267 

model without telemetry data (Tables 1–3).  The top model structure for movement scale (σ) 268 

included no covariates (i.e., null; AICwt = 0.42) in the absence of telemetry and a sex × year 269 

interaction (AICwt = 0.99) with telemetry (Table 1).  Sex was also included as a covariate in the 270 

top model for encounter rate (λ) without telemetry (Table 2), though model selection uncertainty 271 

suggested it was a marginal predictor at best (AICwt = 0.52); none of the spatial covariates were 272 

important predictors for encounter rate in the standard SCR model.  The integrated SCR-RSF 273 

model supported variables corresponding to third-order resource selection (distance to mixed 274 

conifer forest and terrain ruggedness) in the top model structures for encounter rate (Table 2).  275 

Regardless of telemetry integration, variation in second-order resource selection was supported 276 

as distance to mixed conifers was considered an important predictor for density in both the 277 

standard SCR and integrated SCR-RSF models (Table 3). 278 

Differences in parameter estimates for the top-ranked models further indicated how 279 

telemetry integration modified inferences on multiscale resource selection (Table 4).  Population 280 

density decreased with increasing distance to mixed conifers for both top-ranked models and the 281 

effect size was larger without telemetry (βmixed = –2.09 [SE: 0.792]) than with telemetry (βmixed = 282 

–0.79 [0.397]).  This reduction in effect size for density variation was due to the integrated SCR-283 

RSF model attributing additional variation in the observed encounters to differences in encounter 284 

rate, including a decrease with increased distance to mixed conifers (α2,mixed = –0.11 [SE: 285 

0.057]).  Encounter rate also appeared to vary by terrain ruggedness, with a positive quadratic 286 
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relationship suggesting increased space use of terrain that was flat or extremely rugged, and 287 

lower use at moderate ruggedness (α2,vrm = –0.11 [SE: 0.055]; α2,vrm2 = 0.06 [SE: 0.034]).  While 288 

maps of expected density illustrated similar spatial patterns of 2nd order resource selection 289 

between the top-ranked models (Figure 2a,b), the standard SCR model with no telemetry data 290 

exhibited greater variation consistent with the larger estimate for βmixed.  We also mapped the 291 

predicted probability of encounter when d(xj, si)2 = 0 to illustrate the spatial variation in 3rd order 292 

selection as indicated by the top-ranked integrated SCR-RSF model (Figure 2c).  The overall 293 

predicted marten density (#/km2) for 2010–2011 was slightly lower for the standard SCR model 294 

(0.39/km2 [95% CI: 0.29–0.56/ km2) than the integrated SCR-RSF model (0.43/km2 [95% CI: 295 

0.32–0.61/ km2). 296 

 The top-ranked models also differed with regards to movement scale (σ) variation and the 297 

predicted probabilities of activity center locations for collared individuals.  The standard SCR 298 

model did not support any variation in movement scale, with an average σ = exp(δ0) = 0.79 km 299 

(95% CI: 0.70–0.90 km), while the integrated SCR-RSF model suggested an interaction between 300 

sex and year such that female marten in 2012 had a lower movement scale than all other 301 

individuals (Table 4).  The precision of the activity center predictions was significantly increased 302 

for collared individuals when telemetry data were integrated (Figure 3), underscoring the value 303 

of using a non-independent likelihood. 304 

 305 

Discussion 306 

Integrated modeling methods allow ecologists to bring together multiple data sources to expand 307 

the scope of potential inferences for and enhance understanding of complex ecological systems.  308 

The recent growth of these techniques coincides with the development of hierarchical models 309 
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(Gimenez et al. 2014), which posit data generation as a combination of observation processes 310 

and latent ecological processes (Royle & Dorazio 2008).  When multiple sources of data provide 311 

information on the same ecological processes of interest, joint data likelihoods can be defined to 312 

explicitly link diverse observations and improve estimation of model parameters describing 313 

relevant phenomena.  The result is an increased ability for ecologists to join empirical data to 314 

ecological theory using robust quantitative approaches. 315 

 The integrated SCR-RSF model developed by Royle et al. (2013) connects observed 316 

spatial encounters of animals to established theory on multi-scale resource selection (Johnson 317 

1980).  By combining data from devices that differ in their ability to target variation at specific 318 

scales (i.e., individual vs. population level), the model is better able to simultaneously describe 319 

both scales.  Our application of the integrated SCR-RSF model allowed for more complex 320 

covariate relationships with parameters related to individual movement and multi-scale resource 321 

selection of marten than possible under standard SCR model fitting.  In the absence of telemetry 322 

data, spatial variation in third-order selection (i.e., through encounter rate) could not be detected 323 

with the camera trap observations and instead, the standard SCR model suggested more variation 324 

in second-order selection.  Both model types indicated that expected marten density decreased 325 

with increasing distance to mixed conifers.  So while the camera trap data alone were sufficient 326 

for identifying an existing density relationship, the slope of this relationship was potentially 327 

biased due to unmodeled heterogeneity in encounter rate.  The integrated SCR-RSF model 328 

indicated that areas of the landscape with relatively short distances to mixed conifer forest had 329 

more marten, and those marten spent more time in these locations.  Additional model complexity 330 

supported by our telemetry integration included an interaction between sex and year on 331 

movement scale (σ), with female marten in 2012 being encountered at shorter distances from 332 
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their activity centers than individuals of either sex in other years.  The standard SCR model had 333 

little power to detect variation in σ according to locations of spatial encounters at camera traps 334 

alone, likely due to small sample sizes.  Similarly, the small number and strategic placement 335 

(i.e., to increase encounters) of camera traps made it difficult to detect variation in encounter rate 336 

according to spatial environmental variables without the additional data provided by telemetry. 337 

 Telemetry has been used in multiple ways as an auxiliary data source to improve 338 

inferences from population size estimation, including both ad-hoc adjustments (Soisalo & 339 

Cavalcanti 2006) and more recent joint modeling techniques (Ivan, White & Shenk 2013; Bird et 340 

al. 2014).  Spatially-explicit applications have generally focused on the contribution of telemetry 341 

data to informing the scale of individual movement in SCR models for the purposes of 342 

improving the precision and/or identifiability of parameter estimates (Sollmann et al. 2013a; 343 

Sollmann et al. 2013b).  Even as few as Ntel = 3 collared individuals with an adequate collection 344 

of telemetry locations can greatly increase the precision of the σ estimate (Royle et al. 2013), 345 

though such small sample sizes will limit the exploration of potentially important relationships 346 

with individual attributes (e.g., sex; Sollmann et al. 2013a).  Here we had some flexibility with 347 

Ntel = 14 collared marten and were able to model more variation in σ, though at the expense of a 348 

significant improvement in precision (Table 4).  Most importantly, we were better able to model 349 

variation in encounter rate as it related to individual space use due to the relatively large 350 

collection of telemetry locations.   351 

Proffitt et al. (2015) is the only other application we could find where telemetry-informed 352 

resource selection was integrated into an SCR framework in the vein of Royle et al. (2013).  353 

Their analysis involved a two-stage approach where 30+ years of radiotelemetry data on 354 

mountain lions (Puma concolor) were used to estimate and validate an RSF that corresponded to 355 
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second-order selection (Robinson et al. 2015); spatial predictions from the RSF were then 356 

specified as a density covariate in an SCR model fitted to search encounter data collected during 357 

a 4-month sampling period.  The RSF covariate appeared to improve the accuracy and precision 358 

of density estimates (Proffitt et al. 2015), yet, without integrating the telemetry data into the 359 

likelihood directly, their analysis could not incorporate information on third-order selection or 360 

benefit from increased precision in σ estimates.  The latter may have provided a significant 361 

improvement due to the small number of spatial encounters and could have alternatively been 362 

achieved in their Bayesian modeling approach by using an informed prior for σ calculated from 363 

the 18,000+ telemetry locations on 85 individuals (Proffitt et al. 2015).  The individuals in the 364 

telemetry data need to be representative of the focal population being exposed to capture and the 365 

degree to which this is true will dictate how many model parameter estimates can reasonably be 366 

shared between the data. 367 

The marten study consisted of individuals that overlapped entirely between the telemetry 368 

and camera-trap data, as all radio-collared individuals were also photo captured.  While this 369 

obviously addressed concerns about collared individuals being representative of the focal 370 

population targeted by camera traps, it required a modification to the joint likelihood (Appendix 371 

S1) originally constructed under an assumption of data independence (Royle et al. 2013).  The 372 

primary benefit to our joint likelihood came from the increased precision of predicted activity 373 

centers for collared individuals (Figure 3), which theoretically should have improved estimation 374 

of the inhomogeneous point process model for density and the conditional probabilities of 375 

encounter.  The resulting inferences were mostly similar to the separate analyses previously 376 

described by Sirén et al. (2016a) and Sirén et al. (2016b) regarding average density and multi-377 

scale resource selection, respectively, of American marten in alpine forests of New England.  378 
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Sirén et al. (2016b) used a “design III” approach to fitting an RSF (Manly et al. 2002) and found 379 

that regenerating forest was the most important factor influencing second-order resource 380 

selection by marten, as individuals tended to avoid it on the landscape.  Here, our 381 

inhomogeneous point process was akin to a “design II” approach (Manly et al. 2002) and we 382 

used proximity metrics (e.g., distance to feature) instead of compositional metrics for the spatial 383 

habitat covariates; therefore, some differences were to be expected.  In other landscapes of 384 

eastern North America, marten have similarly exhibited second- and third-order selection for 385 

older-aged mixedwood forest (Potvin, Bélanger & Lowell 2000; Cheveau et al. 2013).  In the 386 

present analysis, density estimation was simultaneously modulated by both second-order and 387 

third-order resource selection, which were found to be important predictors of variation in the 388 

observed spatial encounters for both camera traps and telemetry locations. 389 

In summary, the integrated SCR-RSF model addresses concerns regarding heterogeneity 390 

in capture due to individual space use which can otherwise generate bias in the estimation of 391 

density using spatial capture-recapture models (Royle et al. 2013).  The increased popularity in 392 

using SCR to estimate density of rare, wide-ranging species (e.g., carnivores) will result in many 393 

sparse datasets that are unlikely to support complex encounter models (Sollmann et al. 2013a).  394 

Adding several individuals with VHF or GPS collars to provide an auxiliary source of movement 395 

information can increase the accuracy and precision of inferences from spatial encounter designs, 396 

particularly when species are selecting resources at multiple scales.  Using the modified 397 

likelihood as made available in oSCR (Sutherland, Royle & Linden 2016) will allow researchers 398 

with data sets containing heavy overlap of individuals to fit integrated SCR-RSF models that can 399 

accommodate the lack of independence and improve parameter estimation.  Integrated modeling 400 

approaches allow ecologists to make inferences with the best available information and improve 401 
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our understanding of ecological systems and our ability to develop effective conservation and 402 

management strategies. 403 
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Table 1.  Model selection results for covariates influencing marten movement scale (σi) using 506 

fully parameterized models for density (Dg) and encounter rate (λijk) both without telemetry and 507 

with telemetry integration.  Covariates specified here include year (yr) and sex; models with 508 

interactions or quadratic terms always included the linear terms. 509 

Model nPar AIC ΔAIC AICwt LogLik 
No telemetry      
   D(*) λ(*) σ(∙) 12 1496.10 0.00 0.42 736.05 
   D(*) λ(*) σ(yr) 13 1497.16 1.06 0.25 735.58 
   D(*) λ(*) σ(sex) 13 1498.05 1.95 0.16 736.02 
   D(*) λ(*) σ(yr + sex) 14 1498.82 2.72 0.11 735.41 
   D(*) λ(*) σ(yr×sex) 15 1500.11 4.01 0.06 734.06 

Telemetry      
   D(*) λ(*) σ(yr×sex) 15 5327.34 0.00 0.99 2648.67 
   D(*) λ(*) σ(yr + sex) 14 5336.79 9.45 0.01 2654.39 
   D(*) λ(*) σ(sex) 13 5345.30 17.96 0.00 2659.65 
   D(*) λ(*) σ(yr) 13 5346.79 19.45 0.00 2660.39 
   D(*) λ(*) σ(∙) 12 5350.74 23.39 0.00 2663.37 
  510 
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Table 2.  Model selection results for covariates influencing marten encounter rate (λijk) using the 511 

top model for movement scale (σi) and the fully parameterized model for density (Dg) both 512 

without telemetry and with telemetry integration.  Covariates specified here include distance to 513 

mixed forest (mixed), terrain ruggedness (vrm, vrm2), year (yr), sex, and a trap-specific 514 

behavioral response (b); models with interactions or quadratic terms always included the linear 515 

terms.  Models having variables with 85% confidence intervals that included zero are not listed. 516 

Model nPar AIC ΔAIC AICwt LogLik 
No telemetry      
   D(*) λ(behav + sex) σ(∙) 7 1487.70 0.00 0.52 736.85 
   D(*) λ(behav) σ(∙) 6 1487.85 0.15 0.48 737.93 

Telemetry      
   D(*) λ(behav + mixed + vrm2) σ(yr×sex) 12 5324.80 0.00 0.36 2650.4 
   D(*) λ(behav + mixed + vrm) σ(yr×sex) 11 5326.10 1.29 0.19 2652.05 
   D(*) λ(behav + vrm2) σ(yr×sex) 11 5326.40 1.59 0.16 2652.2 
   D(*) λ(behav + mixed) σ(yr×sex) 10 5327.03 2.22 0.12 2653.51 
   D(*) λ(behav + mixed + vrm2) σ(yr×sex) 9 5327.41 2.61 0.10 2654.71 
   D(*) λ(behav + vrm) σ(yr×sex) 10 5327.67 2.86 0.08 2653.83 
  517 
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Table 3.  Model selection results for covariates influencing marten density (Dg) using the top 518 

models for movement scale (σi) and encounter rate (λijk) both without telemetry and with 519 

telemetry integration.  Covariates specified here include distance to mixed forest (mixed), terrain 520 

ruggedness (vrm, vrm2), year (yr), sex, and a trap-specific behavioral response (b); models with 521 

interactions or quadratic terms always included the linear terms. 522 

Model nPar AIC ΔAIC AICwt LogLik 
No telemetry      
   D(mixed) λ(behav + sex) σ(∙) 7 1487.70 0.00 0.99 736.85 
   D(∙) λ(behav + sex) σ(∙) 6 1497.88 10.18 0.01 742.94 

Telemetry      
   D(mixed) λ(behav + mixed + vrm2) σ(yr×sex) 12 5324.80 0.00 0.85 2650.40 
   D(∙) λ(behav + mixed + vrm2) σ(yr×sex) 11 5328.32 3.52 0.15 2653.16 
 523 

  524 
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Table 4.  Maximum likelihood estimates (with standard errors) from the top-ranked spatial 525 

capture-recapture models. 526 

Parameter No telemetry Telemetry 
Movement scale: log(σi)   
   δ0 –0.23 (0.063) –0.39 (0.055) 
   δ2012 – –0.37 (0.083) 
   δmale – 0.07 (0.066) 
   δ2012,male – 0.32 (0.097) 

Encounter rate: log(λijk)   
   α0 –2.54 (0.228) –2.11 (0.141) 
   α2,mixed – –0.11 (0.057) 
   α2,vrm – –0.11 (0.055) 
   α2,vrm2 – 0.06 (0.034) 
   α2012 – – 
   αmale 0.29 (0.201) – 
   α2012,male – – 
   αbehav 1.33 (0.174) 1.19 (0.151) 

Density: log(E(Dg))   
   β0 –5.58 (0.869) –4.32 (0.311) 
   βmixed –2.09 (0.792) –0.79 (0.397) 
 527 
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Figure 1.  Map of marten study area in northern New Hampshire, USA, reproduced with some 529 

modification from Sirén et al. (2016a). 530 
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Figure 2.  Predicted density of marten (#/km2) under the integrated SCR-RSF model with 532 

telemetry (a) and a standard SCR model with no telemetry (b), illustrating 2nd order resource 533 

selection.  In addition, we map the predicted encounter probability for the integrated model (c), 534 

illustrating 3rd order resource selection.  Blank interior pixels represent water. 535 

 536 
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Figure 3.  Probability densities of the activity center si in pixel g for one radio-collared male 538 

marten in 2012 from the integrated SCR-RSF model with telemetry (a) and a standard SCR 539 

model with no telemetry (b).  Crosses represent camera traps and black dots represent spatial 540 

encounters within a 200 m pixel recorded by cameras and/or telemetry fixes. 541 

 542 
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Appendix S1. Likelihood for integrated SCR-RSF model with non-independence 544 

 545 

Royle et al. (2013; Supplement 1) described the full likelihood for the integrated SCR-RSF 546 

model assuming that the capture data and telemetry data were independent.  To accommodate the 547 

marten study where all collared individuals were also photo-captured, the conditional likelihoods 548 

need to be combined before calculating the marginal likelihood for each individual.  We do not 549 

describe all components of the likelihoods here as they are fully described in Royle et al. (2013; 550 

Supplement 1); we instead emphasize the main differences between the independent and non-551 

independent formulations.  In addition, our model description here is simplified to match that of 552 

Royle et al. (2013), removing some details specific to the marten study. 553 

When the datasets are independent, the total likelihood for the integrated SCR-RSF 554 

model is the product of the likelihoods for the capture data (SCR) and the telemetry data (RSF): 555 

0 1 2 1 2( , ; , ) (α ,α ,α , ; ) (α ,α ; )rsf scr scr rsfN N+ = ×αL L Ly m y m  556 

Here the α parameters correspond to variation in the encounter rate (for spatial encounters, y) and 557 

usage rate (for telemetry locations, m), while population size (N) is only estimated from the SCR 558 

model.  Note that α0 only appears in the SCR likelihood as it corresponds to the baseline 559 

encounter rate and does not involve spatial variation.  The other parameters represent availability 560 

(α1), conditional on the latent activity centers (s), and resource selection (α2). 561 

The conditional-on-s likelihoods, here represented as f(data | s, parameters), differ 562 

according to the observation models for the capture data and the telemetry data. The marginal 563 

distributions, here represented as f(data | parameters), for each individual i are calculated by 564 

integrating the conditional-on-s likelihoods over the possible locations for the individual activity 565 

centers, si: 566 
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( | ) ( | , ) ( )i i i i i
S

f f g d= ∫α s α s sy y  567 

( | ) ( | , ) ( )i i i i i
S

f f g d= ∫α s α s sm m  568 

Here, S represents the continuous state space over which the integral is calculated and g(si) = 569 

1/||S|| when density does not vary, indicating a homogeneous point process for activity centers 570 

(note: we used a discrete state space and an inhomogeneous point process (Borchers & Efford 571 

2008) for the marten study).  The likelihoods for all observed individuals in the data (n for 572 

captures, Ntel for telemetry) are then the products of the individual likelihoods: 573 

1 2
1

( , ,..., ) ( | )
n

scr n i
i

f
=

=∏α | αy y y yL  574 

1 2
1

( , ,..., ) ( | )
Ntel

rsf Ntel i
i

f
=

=∏α | αm m m mL  575 

As described earlier, the product of these two data likelihoods then provides the total likelihood.  576 

Royle et al. (2013; Supplement) provide a more complete description of the likelihoods, 577 

including the important contribution of unobserved individuals for estimating N from the capture 578 

data.  We do not highlight the components of the likelihood that remain the same regardless of 579 

independence between datasets. 580 

 In applications where the data sources are not independent (including the marten study), 581 

the individual conditional-on-s likelihoods for each data source must be combined before 582 

computing the marginal likelihood for each individual.  When all collared individuals are also 583 

captured, the marginal likelihood for collared individuals is as follows: 584 

( , | ) ( | , ) ( | , ) ( )i i i i i i i i
S

f f f g d= ∫α s α s α s sy m y m  585 
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The marginal likelihood for the n – Ntel individuals that were captured but not collared does not 586 

change.  The joint likelihood for the observations, assuming collared individuals are sorted first, 587 

is then: 588 

|
1 1

( | , ) ( , | ) ( | )
Ntel n

scr rsf i i i
i i Ntel

f f
= = +

= ×∏ ∏α α αy m y m yLs  589 

In this way, the likelihood for the telemetry data becomes embedded in the likelihood for 590 

the capture data for those collared individuals that were also captured.  If there were also some 591 

collared individuals that were never captured, the joint likelihood would involve the product of 592 

the two components above and a third representing the marginal distribution of the telemetry 593 

data.  Thus, depending on how individuals overlap between data sets, there are three potential 594 

marginal distributions to calculate for the observed individuals: 1) captures only; 2) collars only; 595 

and 3) captures and collars.  Assuming independence, only #1 and #2 are used in the joint 596 

likelihood.  The marten study here consisted of #1 and #3.  The integrated likelihood in oSCR 597 

(Sutherland, Royle & Linden 2016) currently supports model fitting to data consisting of #1 and 598 

combinations involving #1 and #2, and #1 and #3. 599 

 600 

 601 
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