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The selective impact of pathogen epidemics on host defenses can be strong but remains 18	  
transient. By contrast, life-history shifts can durably and continuously modify the balance 19	  
between costs and benefits of immunity, which arbitrates the evolution of host defenses. Their 20	  
impact on the evolutionary dynamics of host immunity, however, has seldom been documented.  21	  
Optimal investment into immunity is expected to decrease with shortening lifespan, because a 22	  
shorter life decreases the probability to encounter pathogens or enemies. Here, we document that 23	  
in natural populations of Arabidopsis thaliana, the expression levels of immunity genes correlate 24	  
positively with flowering time, which in annual species is a proxy for lifespan. Using a novel 25	  
genetic strategy based on bulk-segregants, we partitioned flowering time-dependent from –26	  
independent immunity genes and could demonstrate that this positive co-variation can be 27	  
genetically separated. It is therefore not explained by the pleiotropic action of some major 28	  
regulatory genes controlling both immunity and lifespan. Moreover, we find that immunity genes 29	  
containing variants reported to impact fitness in natural field conditions are among the genes 30	  
whose expression co-varies most strongly with flowering time. Taken together, these analyses 31	  
reveal that natural selection has likely assorted alleles promoting lower expression of immunity 32	  
genes with alleles that decrease the duration of vegetative lifespan in A. thaliana and vice versa. This 33	  
is the first study documenting a pattern of variation consistent with the impact that selection on 34	  
flowering time is predicted to have on diversity in host immunity. 35	  
 36	  
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INTRODUCTION 40	  
The ability of organisms to defend against pathogens is a major determinant of survival in natural 41	  
populations (Parker & Gilbert, 2004; Chisholm et al., 2006; Lee & Mazmanian, 2010). Pathogens 42	  
have long been suspected to impose a fast evolution of the host immune system and the “Red 43	  
Queen” Hypothesis is nowadays a keystone of evolutionary biology (Van Valen, 1973; Liow et al., 44	  
2011). Evidence that pathogens drive the molecular evolution of host defense systems has been 45	  
accumulating in an array of plant and animal systems (Bergelson et al., 2001; de Meaux & 46	  
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Mitchell-Olds, 2003; Moeller & Tiffin, 2005; Ravensdale et al., 2010; Laine et al., 2010; Maekawa et 47	  
al., 2011; Dybdahl et al., 2014; Karasov et al., 2014; Siddle & Quintana-Murci, 2014; Parker et al., 48	  
2015; Metzger et al., 2016).   49	  
Yet, the possible impact of changes in ecology on the evolution of defense systems should also 50	  
be considered as they may durably change the exposure of hosts to pathogens. Invasive species, 51	  
for example, owe much of their success to the release from pathogen and pest pressures (Mitchell 52	  
& Power, 2003; Mitchell et al., 2010). Similarly, shifts in life history can alter the balance between 53	  
costs and benefits of host defense systems (Herms & Mattson, 1992). Shifting from perennial to 54	  
annual life cycles, or evolving from a winter-annual to summer-annual cycling occurs frequently 55	  
across plant phylogenies (Garnier, 1992; Michaels et al., 2003; Franks et al., 2007; Tank & 56	  
Olmstead, 2008; Matthew Ogburn & Edwards, 2015; Kiefer et al., 2017). The reduction in 57	  
lifespan that follows such life history changes concomitantly reduces the probability to encounter 58	  
ennemies (Jokela et al., 2000). As a matter of fact, woody plant species with longer lifespan often 59	  
display stronger herbivore defenses (Endara & Coley, 2010). As a consequence, immunity and 60	  
lifespan are expected to coevolve.   61	  
Arabidopsis thaliana populations offer an optimal model for catching the co-evolution of life 62	  
history and immunity in the act. A. thaliana has become over the last decade a powerful model 63	  
system to address ecological questions at the genetic level (Mitchell-Olds & Schmitt, 2006; 64	  
Bergelson & Roux, 2010; Roux & Bergelson, 2016). Experiments in common gardens have been 65	  
performed to describe the architecture of natural variation in fitness and to infer geographic 66	  
distributions of locally adaptive mutations (Fournier-Level et al., 2011; Hancock et al., 2011; 67	  
Fournier-Level et al., 2016). Analyses of mutants and recombinant inbred lines (RIL) have 68	  
allowed reconstructing the contribution of phenotypes to fitness (Wilczek et al., 2009; Chiang et 69	  
al., 2013; Fournier-Level et al., 2013). Secondary chemical compounds were shown to have 70	  
evolved to deter predominant herbivores in natural populations (Brachi et al., 2013; Kerwin et al., 71	  
2015). Clinal variation along the latitudinal range of the species reveals how phenotypes 72	  
expressed along the life cycle are jointly shaped by natural selection (Lasky, 2012; Debieu et al., 73	  
2013; Vidigal et al., 2016).  74	  
A. thaliana is arguably one of the species for which we have the largest amount of genetic and 75	  
phenotypic information on both immune reactions against pathogens and variation in the 76	  
duration of the vegetative lifespan. As such, it is an optimal model system for assessing the 77	  
impact of life history changes, which modify plant vegetative lifespan, on the evolution of the 78	  
immunity system. Indeed, in annual (monocarpic) species, which grow and reproduce only once, 79	  
flowering time marks the end of the vegetative growth phase. Seed production in monocarpic 80	  
species is terminated by senescence and death, so that flowering time provides a good proxy for 81	  
lifespan. In A. thaliana, it has been scored in a number of conditions (Brachi et al., 2010; Sasaki et 82	  
al., 2015; Roux & Bergelson, 2016) and flowering time changes are often locally adaptive (Le 83	  
Corre, 2005; Toomajian et al., 2006; Montesinos-Navarro et al., 2011; Debieu et al., 2013; Li et al., 84	  
2014; Hu et al., 2017). Natural variation in flowering time can thus be used to investigate the 85	  
impact of lifespan changes on host defenses.  86	  
The immune system has also been intensively studied in this species, revealing multiple layers of 87	  
defenses, ranging from basal immunity, which is sufficient to control most microbes, to severe 88	  
reactions that actively defeat virulent pathogens (Jones & Dangl, 2006). Strain-specific immunity 89	  
components are likely to be linked in their evolution to the virulence specificity of co-occurring 90	  
pathogens (de Meaux & Mitchell-Olds, 2003; Moeller & Tiffin, 2005; Roux & Bergelson, 2016). 91	  
Recent fluctuations in the composition of the pathogen population may therefore affect the 92	  
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specific components of immunity targeted by these epidemics and thereby mask or blur the long-93	  
term impact of lifespan modifications. To minimize this effect and to highlight the impact of 94	  
lifespan variation, we took a genomics approach and examined how flowering time co-varies with 95	  
expression levels of genes with an experimentally-supported function in immunity. These 96	  
approximately 700 genes jointly reflect a broad spectrum of traits, which, when their expression 97	  
increases have a positive effect on immunity (Eulgem, 2005; Vetter et al., 2012; Boccara et al., 98	  
2014). We test below whether their expression level, a proxy for their effectiveness,  co-variates 99	  
with flowering time, a proxy for lifespan in the field and further examine the roles played by 100	  
demographic history and pleiotropy in shaping patterns of co-variation.  101	  
 102	  
RESULTS 103	  
Positive co-variation between expression levels of immunity genes and the timing of 104	  
flowering in Swedish A. thal iana  populations 105	  
 106	  
We first focused on a set of 138 genotypes originating from Sweden because high quality data 107	  
were available for both genome-wide expression profiles and flowering time estimates (Dubin et 108	  
al., 2015; Sasaki et al., 2015). These two studies were part of a single experiment in which 109	  
flowering time and gene expression were characterized at both 16°C and 10°C under long day 110	  
conditions in growth chambers. We focused on the data collected at 16°C and computed 111	  
Spearman correlation coefficients between the expression level of each gene and flowering time. 112	  
Of 22,686 genes, for which expression levels could be quantified, 1,374 (6%) were significantly 113	  
correlated with flowering time under a 5% false discovery rate (FDR). We first verified that genes 114	  
annotated for their function in flowering time were among the genes whose expression correlates 115	  
with the phenotype. Overall, genes with an experimentally validated function in flowering time in 116	  
the genome were not enriched among those genes (6.9% of 630 genes at FDR 0.05, 117	  
Hypergeometric test, p= 0.19), yet the two well-known regulators of flowering time, 118	  
FLOWERING LOCUS C and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS-1 119	  
(FLC and SOC1, Spearman correlation ρ=0.50 and -0.62, FDR-corrected p=2.87e-6 and p=7e-120	  
12, respectively) were the two most strongly correlated genes. In addition, using the R-package 121	  
TopGO, we examined patterns of functional enrichment among genes that tended to be more 122	  
expressed in early flowering genotypes. Many functional gene ontology (GO) categories related to 123	  
cell differentiation and growth were enriched (Suppl. Table S1) and the GO category “regulation 124	  
of flower development” was among the most over-represented (p=8.00e-14, Suppl. Table 1). 125	  
This observation confirmed the biological relevance of the data set examined.  126	  
Next, we tested whether immunity genes were enriched among genes whose expression 127	  
correlated with the timing of flowering. Among genes with significant correlation with the 128	  
phenotype, we observed a significant excess of immunity genes (8.6% of 691 genes at 5% FDR, 129	  
hypergeometric test, p=0.002). The distribution of correlation coefficients was also significantly 130	  
skewed towards higher correlation coefficients for immunity genes (Fig. 2A, Kolmogorov-131	  
Smirnov test, p<2.2e-16). GO enrichment analysis showed that genes involved in GO 132	  
“oxidation-reduction process” and “response to wounding” were among the most strongly 133	  
enriched (p<1e-30, p=1.1e-19, respectively, Suppl. Table 1). This first analysis revealed a 134	  
pronounced pattern of positive co-variation between flowering time and the expression of 135	  
immunity genes. 136	  
In laboratory conditions, genotypes with a strong requirement for vernalization tend to show a 137	  
strong delay in flowering that often does not translate into late flowering in the field (Brachi et al., 138	  
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2010; Li et al., 2014). Indeed, in the field plants often experience sufficient levels of cold to fulfill 139	  
their vernalization requirement. In fact, only the 51 genotypes that advanced their flowering time 140	  
at 16°C compared to 10°C (e.g. those that did not need low temperatures to induce flowering), 141	  
showed a correlation in their flowering across temperatures (Sasaki et al., 2015). Flowering time 142	  
variation across the latter sub-sample of genotypes may therefore allow a more accurate 143	  
classification of genotypes with increasing vegetative lifespan. Among the 507 out of 22,686 144	  
(2.2%) genes that displayed a significant positive correlation with flowering time at 10% FDR 145	  
across this restricted sample of genotypes, 16/630 genes were annotated for their function in 146	  
flowering. As in the above, several known flowering time regulators were among the genes 147	  
associated with flowering time, such as FLOWERING LOCUS C (FLC), GIGANTEA, 148	  
FLOWERING PROMOTING FACTOR 1-LIKE PROTEIN 2 (FLP2) or even the genes 149	  
PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PHYTOCHROME 150	  
INTERACTING FACTOR 5 (PIF5), which had been associated with accelerated flowering 151	  
(Andrés & Coupland, 2012; Thines et al., 2014). Although the whole set of flowering time genes 152	  
was not significantly enriched among genes correlating positively with the timing of flowering 153	  
(2.5%, hypergeometric test, p=0.24), they tended to be more highly expressed in early flowering 154	  
genotypes (excess of negative correlations, Kolmogorov-Smirnov test, p=1.16e-13, Fig. 2B). The 155	  
GO category “regulation of flower development” was even more over-represented in this dataset 156	  
(p<1e-30, Suppl. Table 1). Higher expression of genes associated with the positive regulation of 157	  
flowering was observed among early-flowering genotypes. This further confirms that expression 158	  
variation was correctly quantified. 159	  
We also observed that variation in immunity gene expression tended to correlate positively with 160	  
variation in flowering time, after excluding vernalization-sensitive genotypes. In total expression 161	  
of 28 of the 691 genes belonging to the immunity gene category correlated significantly with 162	  
flowering at 10% FDR. They were significantly enriched (4%, 1.8-fold enrichment, 163	  
hypergeometric test, p=0.0009). Compared to the ensemble of expressed genes in the genome, 164	  
they generally tended to be more highly expressed in late flowering genotypes (marked excess of 165	  
positive correlations, Kolmogorov-Smirnov test, p<2.2e-16, Fig. 2B). GO enrichment analysis 166	  
showed that genes involved in the GO categories “response to chitin” and “regulation of plant-167	  
type hypersensitive response” were the two most strongly enriched (both p<1e-30, Suppl. Table 168	  
1). We thus conclude that the correlation between expression of immunity genes and the timing 169	  
of flowering is independent of allelic variation in vernalization requirements.  170	  
 171	  
Positive co-variation of immunity gene expression with flowering time is independent of 172	  
population structure and is also detected in a second sample of broader geographic 173	  
origin 174	  
 175	  
Relatedness among individuals in the sample may drive the correlation between expression of 176	  
immunity genes and the timing of flowering. In fact, flowering time in the Swedish lines is 177	  
strongly associated with the demographic history of these populations and thus with their 178	  
population structure (Dubin et al., 2015; Sasaki et al., 2015). We therefore also computed for each 179	  
gene, the correlation between gene expression and flowering time with a mixed-model that 180	  
included a kinship matrix for the 51 genotypes that lacked vernalization requirement (see 181	  
methods; Yu et al., 2006; Stich et al., 2008). This analysis revealed that, for immunity genes, the 182	  
distribution of correlation coefficient estimates remained strongly skewed towards positive 183	  
values, after population structure was accounted for (Kolmogorov-Smirnov test, p=2.2e-16, 184	  
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Suppl. Fig. 1). However, the whole set of immunity genes was no longer enriched among genes 185	  
with a significant co-variation with flowering time (5.2%vs. 5%, hypergeometric test, p= 0.6).  186	  
We note that accounting for population structure also did not change the pattern of co-variation 187	  
between gene expression of flowering genes and timing of flowering itself. They showed a 188	  
coefficient distribution that was strongly skewed towards negative values (Kolmogorov-Smirnov 189	  
test, p=2.2e-16) and were significantly over-represented among genes with expression 190	  
significantly associated with flowering time (8% vs 5% at 5% FDR, hypergeometric test, 191	  
p=0.0005).  192	  
We further investigated whether the skew towards positive co-variation between immunity gene 193	  
expression and flowering time is limited to the regional subset of genotypes growing in Sweden 194	  
or whether it is a feature of diversity that segregates across the whole range of the species. For 195	  
this, we turned to a species-wide dataset of gene expression variation collected in young seedlings 196	  
(Schmitz et al., 2013). For 52 of these genotypes, the duration of vegetative growth had been 197	  
determined under natural conditions in the field (Brachi et al., 2010). Although a skew towards 198	  
negative correlation for flowering time genes was observed (Kolmogorov Smirnov test, p=5.3e-5, 199	  
Fig. 2C), the seedling of these earlier flowering genotypes did not yet express genes important for 200	  
the formation of flower (Suppl. Table 1).  201	  
Nevertheless, we again observed a strong skew towards positive correlation between immunity 202	  
gene expression and flowering time, indicating that genotypes that will flower later expressed 203	  
them at a higher level (Kolmogorov Smirnov test, p<2.2e-16, Fig. 2C). Immunity genes were not 204	  
particularly enriched among genes with significantly correlated expression and flowering time at 205	  
5% FDR (5% for both, hypergeometric test, p=0.24). Yet, GO categories such as “response to 206	  
chitin”, “respiratory burst involved in immunity response”, “response to wounding” and 207	  
immunity response to fungus” were the four most strongly enriched functions among genes with 208	  
highest Spearman correlation coefficients (all p<1e-30, Suppl. Table 1). 209	  
Contrasting genotypes of diverse flowering time (e.g. lifespan) revealed that, in natural 210	  
populations, immunity genes tend to co-vary positively with this trait. The latter two analyses 211	  
showed that this effect remained when population structure was accounted for and was also 212	  
detectable in another gene expression dataset and with a different set of genotypes.  213	  
 214	  
A bulk-segregant analysis demonstrates that co-variation is not due to pleiotropic effect 215	  
of flowering time control 216	  
 217	  
The tendency of immunity genes to show expression levels correlating positively with flowering 218	  
may be due to the pleiotropic action of regulatory genes that co-regulate flowering time and 219	  
immunity. In plants, the impact of development and growth regulators on defense systems is 220	  
being increasingly recognized (Alcázar et al., 2011). There is evidence that flowering time and 221	  
defense control each other (Korves & Bergelson, 2003; Pagán et al., 2008; Fan et al., 2014; 222	  
Lozano-Durán & Zipfel, 2015; Jiménez-Góngora et al., 2015; Davila Olivas et al., 2017; Develey-223	  
Riviere & Galiana, 2007; Pajerowska-Mukhtar et al., 2009; Martinez et al., 2004; Whalen, 2005; 224	  
Kerwin et al., 2015; Lyons et al. 2015). If so, the pattern we observed would not reflect the joint 225	  
optimization of immunity and life history strategy but only the pleiotropic action of their 226	  
regulators. We therefore asked to which extent flowering time and the expression of immune-227	  
related genes could be genetically separated and thus evolve independently.  228	  
We therefore designed an experiment to describe the level of pleiotropy of flowering time 229	  
regulators on the expression of immunity genes. If such regulators control the pattern of 230	  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 31, 2018. ; https://doi.org/10.1101/131136doi: bioRxiv preprint 

https://doi.org/10.1101/131136
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   6	  

covariation reported in Fig. 2, it should not be possible to separate variation in immunity gene 231	  
expression from variation in flowering time in a segregating recombinant inbred population. We 232	  
used the two genotypes Col-0 and Bur-0, which differ in flowering time (Simon et al., 2008) and 233	  
were also reported to exhibit markedly distinct sensitivities to flagellin, with the later flowering 234	  
genotype Bur-0 displaying stronger basal immunity (Vetter et al., 2012). We analyzed the 235	  
transcriptomes of these two lines at 14 and 28 days after germination (see methods) and found 236	  
that the skews shown in Fig. 2 remain when the dataset was reduced to the genes that differed in 237	  
expression between these two lines (Suppl. Fig. 2). This confirmed that these two genotypes 238	  
could help identify immunity genes that share genetic regulators with flowering time.  239	  
We designed a cost-effective approach to identify the genes whose expression variation cannot be 240	  
separated from flowering time. We used 244 recombinant inbred lines (RILs) derived from a 241	  
cross between the parents Bur-0 and Col-0, followed by >8 generations of selfing (Simon et al., 242	  
2008). We bulked RILs by their flowering time and characterized their transcriptomes at 14 and 243	  
28 days after germinations using RNA sequencing (see methods). In RILs, the genomes of the 244	  
parental genotypes are randomly shuffled by recombination. Because of this genetic property, 245	  
RILs are commonly used to identify Quantitative Trait Loci (QTL), which are genomic regions 246	  
underlying the genetic control of phenotypic variation. In our approach, this means that 247	  
differences in gene expression between early- and late-flowering RILs reflect differences that are 248	  
genetically associated with flowering time. The experimental strategy is described in Suppl. Fig. 3-249	  
4. This strategy does not allow characterizing the exact genetic architecture of gene expression 250	  
variation, but it allows the identification of genes whose expression variation is controlled either 251	  
by flowering-time regulators or by genes located in the genomic vicinity of these regulators. 252	  
Thereafter, we named these genes Flowering-Time (FT)-dependent genes. 253	  
Of a total of 20,553 genes expressed in both the parental genotypes and RIL pools, 6,097 (29%) 254	  
were differentially expressed between early and late flowering RIL pools, i.e. FT-dependent. As 255	  
expected, there was a strong excess of genes annotated as having a function in flowering time 256	  
among FT-dependent genes (223/630 – 36%, hypergeometric test, p=3.7e-5). This demonstrated 257	  
that this strategy effectively highlighted genes whose expression is under the genetic control of 258	  
flowering time regulators. By contrast, immunity genes were not over-represented among FT-259	  
dependent genes. More so, they were clearly under-represented among FT-dependent genes at 260	  
the second time point of sampling (1.15 fold less abundant than expected by chance at day 28, 261	  
hypergeometric test, p=0.01). Only 19% of all immunity genes were FT-dependent. These genes, 262	  
however, did not explain the skew towards positive co-variation with flowering time reported in 263	  
Fig. 2. Immunity genes, whose expression was not differently expressed between RIL pools (i.e. 264	  
genes whose expression is not dependent on the regulators of flowering time), in fact, tended to 265	  
be more skewed towards positive correlation coefficients than FT-dependent immunity genes 266	  
(Kolmogorov-Smirnov test, p=0.01, Fig. 2A). We observed that FT-dependent flowering time 267	  
genes did not shift significantly from the distribution of correlation in the rest of the genome 268	  
(Kolmogorov-Smirnov test, p=0.15, Fig. 2A). Therefore, the excess of positive expression co-269	  
variation with flowering time observed among immunity genes is most strongly driven by genes 270	  
whose expression level was easily separated from variation in flowering by recombination.  271	  
 272	  
Age-regulated immunity genes often show positive co-variation with flowering time  273	  
 274	  
Immunity genes are often observed to change their activity with age and development (Barton & 275	  
Boege, 2017). Because we had sampled material at day 14 and day 28 after germination, we could 276	  
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also separate genes whose expression changed with age (here after named age-regulated genes) 277	  
from genes with similar expression levels in 14- and 28-day-old plants (see methods). Age-278	  
regulated genes were markedly more frequent among annotated immunity genes than among 279	  
annotated flowering time genes (243/630 – 38% vs 334/691 - 48%, for flowering-time and 280	  
immunity genes, respectively, Chi Square test, p= 7.2e-11). In A. thaliana, a so-called age-related 281	  
resistance is activated in older A. thaliana plants, providing them with a immunity barrier against a 282	  
broad spectrum of pathogens (Rusterucci et al., 2005). In agreement with our findings, the timing 283	  
of age-related resistance had been reported not to stand under the direct control of flowering 284	  
time (Wilson et al., 2013). 285	  
The subset of genes, whose expression variation in natural populations correlated with flowering 286	  
time, were also enriched among age-regulated genes (hypergeometric test, p= 7.2e-11). 287	  
Altogether, 4% (348/8565) and 6% (498/7935) of age-independent and age-regulated genes, 288	  
respectively, were correlated with flowering time at 5% FDR. Immunity genes contributed 289	  
significantly to this excess, because the expression levels of immunity genes that were age-290	  
regulated tended to show a strong skew towards positive correlation with flowering time in 291	  
natural populations (Fig. 2B, Kolmogorov-Smirnov test, p=0.0009). Our analysis thus indicates 292	  
that the tendency of immunity genes to co-vary positively with flowering time in natural 293	  
population is i) not explained by the genetic control of flowering time and ii) increased among 294	  
genes whose expression is regulated by plant age. 295	  
 296	  
Genes activated by elicitors of basal immunity also show an excess of positive 297	  
correlations with flowering time 298	  
 299	  
In the above analyses, immunity levels were represented by a set of 731 genes annotated for 300	  
functions related to immunity. To test whether this trend towards positive covariation between 301	  
immunity gene expression and flowering time was limited to the set of genes defined by Gene 302	  
Ontology categories, we analyzed an independent set of immunity-related genes: the 245 genes 303	  
whose expression is activated in Arabidopsis seedlings upon perception of flagellin by the PAMP 304	  
receptor kinase FLAGELLIN SENSING 2 (FLS2), hereafter named FlaRe genes (Navarro et al., 305	  
2004). FlaRe genes coordinate cellular and developmental responses to exposure of molecular 306	  
signatures of bacteria. Only 10 FlaRe genes overlapped with the immunity-annotated genes used 307	  
above. We observed that FlaRe genes were enriched among genes showing positive co-variation 308	  
with flowering time (Fig. 2A-C, Kolmogorov-Smirnov test, p< 2.2e-16). This observation 309	  
remained when accounting for population structure (Suppl. Fig. 1, Kolmogorov-Smirnov test, 310	  
p<2.2e-16) and was also seen for flowering time measured in the field in a species-wide sample 311	  
of genotypes (Fig. 2C, Kolmogorov-Smirnov test, p<2.2e-16). When partitioning genes according 312	  
to whether or not they were FT-dependent or age-regulated, we observed that FT-dependence 313	  
did not significantly change the distribution of correlation coefficients between FlaRe gene 314	  
expression and flowering time across natural genotypes (Fig. 2A-B, Kolmogorov-Smirnov test, 315	  
p=0.15 and p=0.32, for FT-controlled and age-regulated genes, respectively). Nevertheless, FlaRe 316	  
genes were significantly under-represented among FT-dependent genes, especially at the second 317	  
sampling time point (1.8-fold less frequent among flowering time controlled genes, 318	  
hypergeometric test, p= 2.24e-05). By contrast, they were over-represented among age-regulated 319	  
genes (2.1-fold more frequent among age-regulated genes, hypergeometric test, p= 2.6e-08). 320	  
Thus, the positive co-variation reported in Fig. 1A-C is unlikely to result from the pleiotropic 321	  
action of flowering time regulators on FlaRe genes. This suggests that, like for annotated 322	  
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immunity genes, alleles attenuating the expression of FlaRe genes were assorted with early-323	  
flowering alleles in natural populations and vice versa. 324	  
 325	  
Fitness-associated immunity genes show higher correlation coefficients with flowering 326	  
time 327	  
 328	  
We further asked whether genes with fitness-relevant variation have expression levels that are 329	  
more strongly assorted with variation in the timing of flowering. A reciprocal transplant 330	  
experiment performed in 4 locations throughout Europe identified 866 nucleotide variants in the 331	  
genome of A. thaliana that significantly associated with fitness differences manifested in natural 332	  
conditions (Fournier-Level et al. 2011). Of these variants, 15 mapped to immunity genes and 17 333	  
to flowering genes. Association with fitness coincided with a skew towards higher correlation 334	  
coefficients for immunity genes only (Fig. 3, Kolmogorov-Smirnov test, D=0.46, p=0.014 and 335	  
p>0.05 for immunity and flowering time genes, respectively). One of the immunity genes 336	  
(AT3G16720), which is activated upon exposure to the fungal PAMP chitin, was FT-dependent 337	  
but it did not explain this pattern (Kolmogorov-Smirnov test, p=0.028 without AT3G16720). 338	  
Five of the immunity genes with FT-independent immune functions were age-regulated 339	  
(AT1G18150, AT1G80840, AT4G01700, AT5G19510, AT5G57220) but this did not explain the 340	  
pattern either (Kolmogorov-Smirnov test, p=0.009 without these genes). Of the 245 FlaRe genes, 341	  
3 contained fitness-associated SNPs. These three genes were among the genes with highest 342	  
correlation coefficients (AT1G19670: ρ=0.397, AT3G16720: ρ=0.282, AT4G38860: ρ=0.487). 343	  
We thus observe that immunity genes that can be most relevant for fitness in natural populations 344	  
of A. thaliana are also genes whose expression levels were most strongly assorted with alleles 345	  
determining flowering time.  346	  
 347	  
DISCUSSION 348	  
 349	  
Evidence for concerted evolution of immunity and flowering time in A. thal iana   350	  
 351	  
Our analyses reveal that, in A. thaliana, individuals with a shorter vegetative lifespan tend to 352	  
express immunity genes at a lower level. The bulk analysis of early- and late-flowering RILs 353	  
shows that this pattern of co-variation results from the combination of independent alleles 354	  
controlling immunity gene expression and flowering time in natural populations, because these 355	  
alleles could be separated in the segregating recombinant offspring of an early- and a late-356	  
flowering genotype. Because co-variation is also i) robust to the demographic history of the 357	  
populations and ii) particularly pronounced for immunity-gene variants that associate with 358	  
fitness, our analyses suggest that this allelic combination is assembled by natural selection. This 359	  
pattern is confirmed by the examination of genes annotated with a function in immunity and 360	  
genes observed to respond to elicitation by the common bacterial elicitor flagellin. Our data 361	  
further suggests that much of the positive co-variation between immunity gene expression and 362	  
flowering depends on plant age. This factor is of recognized importance in plant immunity 363	  
(Alcázar et al., 2011; Lozano-Durán & Zipfel, 2015; Carella et al., 2015) and also very well 364	  
documented in ecological studies (Barton & Boege, 2017). Based on our findings, it is tempting 365	  
to speculate that variation in age-dependent regulation of immunity may mediate the co-variation 366	  
we report. 367	  
 368	  
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Co-variation between immunity and flowering time is not explained by variation in 369	  
vernalization requirements 370	  
Flowering time variation depends on seasonal fluctuations, on the timing of germination and on 371	  
the genetics of its control (Lempe et al., 2005; Balasubramanian et al., 2006; Korves et al., 2007; 372	  
Burghardt et al., 2015; Hu et al., 2017). Genotypes with a strong vernalization requirement, which 373	  
are thought to have an obligate winter annual strategy, contribute strongly to the variation 374	  
reported in the literature because they display much delayed flowering in the laboratory (Lempe et 375	  
al., 2005; Li et al., 2014; Sasaki et al., 2015). The pattern we report, however, is not due to the 376	  
assortment of immunity gene expression variants with alleles imposing a strong vernalization 377	  
requirement. Indeed, since we observed that the pattern of co-variation between immunity gene 378	  
expression and flowering time is magnified in plants whose flowering is not accelerated by cold 379	  
exposure (Fig. 2A-B), this pattern is not driven by the genotypes requiring vernalization. In 380	  
addition, the same pattern of co-variation is observed in a global sample of ecotypes, whose 381	  
flowering time was scored in an outdoor common garden experiment, where plants were 382	  
naturally vernalized (Fig. 2C). Therefore, we believe that the flowering time measures we used 383	  
here do capture some of the natural lifespan variation. Future studies will have to confirm that 384	  
flowering time variation scales with average differences in the lifespan expressed at the location 385	  
of origin of each genotype.   386	  
 387	  
Positive co-variation between lifespan and immunity suggests cascading effect of 388	  
flowering time adaptation on immunity evolution 389	  
Two alternative scenarios may lead to concerted evolution of flowering time and immunity. First, 390	  
in conditions where disease pressure is high, both shorter lifespan and stronger immunity can be 391	  
expected to be advantageous, in order to simultaneously minimize the probability of attack, and 392	  
maximize the probability of survival in case of attack. Under such scenario, negative co-variation 393	  
between immunity and lifespan is expected. Alternatively, if lifespan is evolving under 394	  
evolutionary forces independent of disease pressure, a reduced probability to encounter 395	  
pathogens will favor mutations transferring energy allocated to immunity into energy allocated to 396	  
growth. Indeed, defensive functions are known to be costly for the organism (Lochmiller & 397	  
Deerenberg, 2000; Purrington, 2000). As a consequence the allocation into immunity is predicted 398	  
to decrease where shorter lifespan evolves. Under this second scenario, a pattern of positive co-399	  
variation is expected between immunity and lifespan.  400	  
The pattern of co-variation we report here for immunity vs. flowering time is indeed positive and 401	  
thus lends support to the second scenario. Local adaptation of flowering time is well documented 402	  
in A. thaliana (Le Corre, 2005; Toomajian et al., 2006; Méndez-Vigo et al., 2011; Brachi et al., 2013; 403	  
Li et al., 2014; Debieu et al., 2013; Burghardt et al., 2015; Vidigal et al., 2016). In addition, several 404	  
studies support the idea that increased basal level in immunity components improves immunity 405	  
(Vetter et al., 2012; Boccara et al., 2014). At the same time, variants involved in the surveillance 406	  
systems directed against pathogenic virulence factors were shown to incur substantial fitness 407	  
costs (Tian et al., 2003; but see also MacQueen et al., 2016) and variation in basal immunity was 408	  
negatively correlated with plant growth (Vetter et al., 2012).  Our results are thus compatible with 409	  
an evolutionary scenario in which local adaptation of flowering time has cascading effect on 410	  
immunity, possibly because a reduction of the plant’s lifespan increases the cost/benefit ratio of 411	  
immunity. This may also explain why genes involved in local adaptation in China are enriched 412	  
among both flowering time and immunity genes (Zou et al. 2017).   413	  
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However, a positive pattern of covariation could also arise even if the two traits evolve 414	  
independently. Indeed, it is possible that populations where early flowering is advantageous 415	  
coincide with populations where disease pressure is lower and vice versa. We cannot formally 416	  
exclude that this scenario does not apply, because too little is known about variation in disease 417	  
pressure in A. thaliana natural populations.  Several elements, however, indicate it is unlikely.  418	  
First, the rapid cycling genotypes are more frequent at intermediate latitudes, where summers are 419	  
mild and wet (Lempe et al., 2005; Debieu et al., 2013). Since these conditions are also favorable to 420	  
diseases, it is unlikely that higher disease pressure is found in areas where delayed flowering is 421	  
more adaptive. Second, it is unlikely that this pattern may be due to herbivore enemies. Indeed, 422	  
more severe herbivory damage has been observed on early-flowering A. thaliana individuals 423	  
grown in the field (Weinig et al., 2003). This seems to be common in plant species and should 424	  
select for higher defense among early-flowering genotypes (Carmona et al., 2010). Third, such 425	  
scenario would assume that variation in disease pressure does not alter the trade-off between 426	  
survival and reproductive output. This trade-off, however, is central in many models explaining 427	  
the evolution of the timing of flowering in monocarpic plant species (Mitchell-Olds, 1996; 428	  
Metcalf & Mitchell-Olds, 2009; Ashworth et al., 2016).  429	  
Our results are therefore compatible with a scenario, in which adaptation of life history traits has 430	  
a cascading effect on the evolution of immunity in A. thaliana. These findings do not contradict 431	  
evidence that a tug of war characterizes the evolution of pathogen-specific components of 432	  
immunity (Tellier & Brown, 2007; Roux & Bergelson, 2016). Indeed, by examining the basal 433	  
expression level of a large set of genes involved in the immune reaction, the impact of durable 434	  
selective forces on general immunity levels can be detected. This approach circumvents the 435	  
potentially confounding signature left by a recent epidemics on strain-specific R-genes. Indeed, 436	  
testing phenotypic variation in disease resistance across genotypes with different life-history 437	  
alleles would probably reveal variation in gene-for-gene resistance, but the pervasive impact of 438	  
selection fine-tuning energetic costs associated with immunity strategies would remained masked. 439	  
 440	  
Interspecific differences in the investment in defence against herbivory has been often associated 441	  
with differences in lifespan and growth rate (Endara & Coley, 2010; Kooyers et al., 2017). Future 442	  
studies will also have to examine whether a similar evolutionary trend has emerged in species that 443	  
have reshaped their life history to decrease overall vegetative lifespan. Early flowering is actually 444	  
often favored when the favorable season is shortened (Franks et al., 2007; Kenney et al., 2014). 445	  
Ongoing selection for early flowering is clearly widespread at temperate latitudes (Munguía-Rosas 446	  
et al., 2011) and transitions from perenniality to annuality occur frequently within phylogenies 447	  
(Kiefer et al., 2017). Testing whether life span reduction associates with an attenuation of 448	  
immunity gene expression should therefore be possible in many taxa.  449	  
 450	  
 451	  
The impact of life history evolution on defense systems is expected across all kingdoms 452	  
 453	  
In animals, the idea that the optimal investment in immunity depends on the life history of a 454	  
species was also incorporated in evolutionary models (Jokela et al., 2000). For plants and animals 455	  
alike, resources available to the organism are limited. Energetic demands on growth may compete 456	  
with those required for mounting immunity or counteracting the negative effects of parasites and 457	  
pathogens (van Boven & Weissing, 2004; Lazzaro & Little, 2009; Dowling & Simmons, 2009; 458	  
Seppälä, 2015). Several evolutionary models show that a prolonged lifespan is predicted to favor 459	  
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resource investment into immunity (Jokela et al., 2000; Medzhitov & Janeway, 2000; van Boven & 460	  
Weissing, 2004; Miller et al., 2007). As a consequence, changes in life history can mold the 461	  
evolution of immune systems in animals as well (Van Valen, 1973; Sheldon & Verhulst, 1996; 462	  
Schulenburg et al., 2009). This theoretical prediction is supported by analyses of sexual 463	  
dimorphism in the duration of effective breeding: females with increased reproductive longevity 464	  
show stronger immune-competence but also by a meta-analysis of selection experiments (Rolff, 465	  
2007; Nunn et al., 2009, van der Most et al. 2011). In frogs, fast developing species were also 466	  
shown to be more susceptible to infection by trematodes (Johnson et al., 2012). Yet, such studies 467	  
cannot exclude that longevity and immunity are constrained in their evolution by common 468	  
regulatory factors or causal inter-dependence. To the best of our knowledge, this study is the first 469	  
to provide evidence that natural variation in the activity of genes that are important for defeating 470	  
pathogens is assorted with alleles controlling variation in a life history trait of considerable 471	  
importance for adaptation. Local adaptation for lifespan should therefore be considered as a 472	  
potentially important contributor to the maintenance of genetic diversity in immune systems.  473	  
 474	  
 475	  
  476	  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 31, 2018. ; https://doi.org/10.1101/131136doi: bioRxiv preprint 

https://doi.org/10.1101/131136
http://creativecommons.org/licenses/by-nc-nd/4.0/


	   12	  

MATERIAL AND METHODS 477	  
 478	  
Flowering and immunity candidate genes 479	  
Gene Ontology (GO) categories were used to identify functionally related genes whose 480	  
annotation was inferred from experiments, direct assays, physical interaction, mutant phenotype, 481	  
genetic interactions or from expression patterns. Based on the keyword “flowering” in the TAIR 482	  
database, 659 flowering time genes were selected. For immunity genes, we united 17 GO 483	  
categories yielding 731 genes (Suppl. Table S2). For flagellin responsive (FlaRe) genes, we took 484	  
the set of 245 genes that were activated in seedlings described in (Navarro et al., 2004) (Suppl. 485	  
Table S2). Subsets of flowering, immunity and FlaRe genes containing fitness-associated single 486	  
nucleotide polymorphisms (SNPs) were retrieved from Fournier-Level et al. 2011. 487	  
 488	  
Correlation between gene expression and flowering time in a natural population 489	  
We analyzed two published sets of natural ecotypes for which both genome-wide expression 490	  
profiles and flowering time estimates were available. The first dataset comprised 138 lines from 491	  
Sweden scored for both flowering time (for plants grown at 16h light-8hour dark at constant 492	  
16°C) and gene expression in whole rosette collected at the 9-true-leaf stage (Dubin et al., 2015; 493	  
Sasaki et al., 2015). For this first dataset, gene expression and flowering were determined in the 494	  
same experiment. The second dataset combined data from two sources. RNA extracted from 7-495	  
day old seedlings of 144 genotypes grown on agar plate in long days had been sequenced 496	  
(Schmitz et al., 2013) and expression levels quantified as quantile normalized fragment numbers 497	  
per kilobases and million reads (FPKM). For 52 of these genotypes, flowering time, measured in 498	  
cumulative photothermal units, had been scored in the field (Brachi et al., 2010). Photo-thermal 499	  
units sum up the combination of temperature and day length and thus provide an estimate of the 500	  
duration of the favorable season.  501	  
 502	  
Expression counts were loge +1-transformed to include null values of expression and a Spearman 503	  
correlation coefficient between flowering time and expression level was computed for each gene. 504	  
P-values were adjusted for false discovery rate using the p.adjust function in R (Benjamini & 505	  
Hochberg, 1995; Yekutieli & Benjamini, 1999). A Kolmogorov-Smirnov test was used to 506	  
compare the distribution of Spearman correlation coefficients ρ of flowering time and immunity 507	  
genes with the distribution of ρ for 22,686 genes for which gene expression was quantified. Gene 508	  
enrichments were tested using hypergeometric tests in R. The GO enrichment analysis was 509	  
performed with the Gene Set Enrichment Analysis (GSEA) test akin to non-parametric 510	  
Kolmogorov-Smirnov tests, first described by Subramanian et al., 2005, and implemented in the 511	  
“topGO” R package (Alexa and Rahnenfuhrer, 2010). We further applied the elim procedure, 512	  
available in this package, which calculates enrichment significance of parent nodes after 513	  
eliminating genes of significant children nodes. This controls for the dependency among nested 514	  
parent-child GO categories so that the significance of each enrichment can be interpreted 515	  
without over-conservative p-value corrections for multiple-testing (Alexa et al. 2006). To test the 516	  
impact of population structure on the correlation, we ran a mixed model with the help of the R 517	  
package lmekin. For each gene, we used gene expression level as a dependent variable.  Flowering 518	  
time was used as independent variable and a kinship matrix, generated with a matrix of SNPs 519	  
segregating among Swedish genotypes (Dubin et al., 2015), was included as random effect. The 520	  
estimate of the flowering time effect was extracted. This allowed compared the distribution of 521	  
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estimates observed for the whole genome, the subset of flowering time genes, or the subsets of 522	  
defense genes.  523	  
 524	  
Analysis of gene expression in segregant pools bulked by flowering time 525	  
 526	  
Seeds of Bur-0, Col-0 and 278 Bur-0xCol-0 Recombinant Inbred Lines (RIL) obtained after 8 527	  
generations of selfing were provided by the Arabidopsis Stock Center at INRA Versailles 528	  
(France, (Simon et al., 2008). Each line was grown individually in six replicates, each in 6cm 529	  
diameter pots randomly allocated to 24 trays, each containing 35 pots. Seeds were stratified at 530	  
5°C for 3 days and grown in growth chambers (Elbanton BV, Holland, equipped with Sylvania 531	  
Gro-Lux F36W /Gro (T8) fluorescent tubes and Osram 25 W 220 Lumen light bulbs) under 532	  
long-day conditions (21°C, 16h light, 18°C, 8h dark). Trays were rotated within the chamber 533	  
every other day. Flowering time was scored as the day to the first open flower. Genotypes of 534	  
individuals lines were retrieved from Simon et al. (2008) and mapping of flowering time recovered 535	  
the same QTL (not shown).  536	  
We selected the 40 RIL in the 15% and 85% quantiles of flowering time for RNA sequencing. 537	  
Each RIL and the two parental lines were planted in 20 replicates in the conditions described 538	  
above. At days 14 and 28, the oldest true leaf was flash-frozen in liquid nitrogen. Three pools, 539	  
each combining 13 RIL, were produced at each time point for early and late lines, for a total of 3 540	  
biological replicates, 2 pool types (early and late RIL) and 2 time points (14 and 28 days). For 541	  
each of the two parental lines, leaves of 12 replicates were pooled for each time point.  542	  
RNA was isolated using the TRIzol extraction protocol (ThermoFisher Scientific, USA). DNA 543	  
traces were removed with the Ambion DNA-free kit (ThermoFisher Scientific, USA) and 544	  
purified RNA was stored in TE buffer at -80°C. RNA quality and integrity was confirmed with 545	  
the 2100 Expert Software on a Bioanalyzer (Agilent Technologies, Inc. Waldbronn, Germany). 546	  
All samples had RNA integrity index (RIN) larger than 8. Single-read libraries were prepared with 547	  
1µg of total RNA per sample using the Illumina TruSeq RNA Sample Preparation Kit v2 548	  
(Illumina Inc. San Diego, USA) based on poly-A RNA purification. Sequencing of 75bp single 549	  
reads was performed on the Illumina HighScan SQ system of the Core Facility of the 550	  
Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, 551	  
Germany. Raw data has been deposited in NCBI's Gene Expression Omnibus (Edgar et al., 2002) 552	  
and are accessible through GEO Series accession number GSE97664.  553	  
 554	  
Data analysis of RNA-seq from bulk segregant pools 555	  
In total, 24 RNA libraries were sequenced. Raw sequences were demultiplexed and read quality 556	  
validated with FastQC. Bad quality base calls were trimmed using the fastx-toolkit (Version 557	  
0.013, Li et al. 2009). Trimmed reads (FastQ, quality score 33, quality threshold 20 and minimum 558	  
length 30 base pair) were mapped to the A. thaliana TAIR10 annotated transcriptome using 559	  
Bowtie 2 (version 2-2.0.0-beta6, (Langmead & Salzberg, 2012). Tophat (version-560	  
2.0.5.Linux_x86_64) was used to discover splice sites and Cufflinks for assembling the 561	  
transcriptome (Trapnell et al., 2010). In total 411,5 M sequence reads were obtained, with a mean 562	  
read count per sample of 17,1 M reads. After trimming, 96.5% of the reads were mapped 563	  
uniquely with a final average coverage of 66 reads per base pair.  564	  
We used a custom R script to verify that coverage was uniform across transcripts and confirmed 565	  
that the RNA sequenced was not degraded. Read counts were calculated by counting the number 566	  
of reads that mapped uniquely to the corresponding gene (isoforms were not considered). Lowly 567	  
expressed genes with less than 20 reads over all samples were excluded from the analysis. The 568	  
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samples clustered by time point of sampling (Fig. 2), with the exception of RNA samples from 569	  
the Col-0 at 28 days, which resembled more expression levels measured at 14 days, probably 570	  
because of its early shift to flowering. Differentially expressed (DE) genes were identified by 571	  
running a nested analysis of sampling time effects within parental genotype (and/or early- and 572	  
late-flowering leaf pools) with DESeq2 version 1.2.5 (Anders et al., 2013; Love et al., 2014). P-573	  
values were corrected for false discovery rate (Benjamini-Hochberg correction; (Benjamini & 574	  
Hochberg, 1995). DE genes were defined as having an adjusted p-value<0.05. This analysis 575	  
allowed the identification of genes showing differential expression between the parents (Suppl. 576	  
Table S3) and genes showing flowering time dependent expression (differential expression 577	  
between early and late flowering RIL pools, i.e. FT-regulated genes Suppl. Table S4) both at day 578	  
14 and at day 28. We performed further analyses to disentangle significant sources of gene 579	  
expression variation. To test whether gene expression was significantly modified at each time 580	  
point, separate tests were performed for each parental genotype and RIL pool type. Genes 581	  
differentially regulated at 14- and 28-days in Bur-0 (adjusted p-value<0.05) were defined as age-582	  
regulated genes (Suppl. Table S5). To determine whether one or both sampling time points drove 583	  
significant differential expression, separate tests were performed for each time point (not shown).  584	  
 585	  
Confirmation with qRT PCR 586	  
We confirmed gene expression levels for 11 selected immunity genes with differential expression 587	  
between Bur-0 and Col-0 or early vs. late flowering pools (log2-fold change > 1.5) using RT-588	  
PCR. We followed standard protocols and used RNA Helicase (AT1G58060), Protein 589	  
Phosphatase 2A Subunit A3 (PP2AA3) and transcript AT5G12240 as control genes. Gene 590	  
expression based on RNA sequencing and RT-PCR were strongly correlated (Pearson 591	  
correlation, 0.58<R<0.96, max p <0.01).  592	  
 593	  
 594	  
Figure legends 595	  
 596	  
 597	  
 598	  
Figure 1: Distribution of Spearman correlation coefficients between expression levels of each 599	  
expressed A. thaliana gene and flowering time. Grey: All expressed genes; Blue: Genes annotated 600	  
as flowering time genes (FT genes); Red: Genes annotated as immunity genes; Pink: Flagellin-601	  
responsive (FlaRe) genes (Navarro et al. 2004). A. For 138 Swedish genotypes; B. Analysis 602	  
restricted to 51 Swedish genotypes showing correlated flowering time at 10°C and 16°C; C. 603	  
Species-wide sample of 52 genotypes. Distribution for each group of genes was compared to the 604	  
genome-wide distribution (black double-head arrow) with a Kolmogorov-Smirnov test. P-values 605	  
are given in the color corresponding to the gene class. Spearman correlation coefficients were 606	  
computed between expression levels of each of 23,511 expressed A. thaliana genes, reported in 607	  
Durbin et al. 2015 for 9th leaf seedlings, and flowering time measured in the same condition for 608	  
51 genotypes originating from natural populations in Sweden (Sasaki et al. 2015). *** p < 0.001.  609	  
 610	  
 611	  
Figure 2: Distribution of Spearman correlation coefficients between gene expression level and 612	  
flowering time. A. Partition of genes controlled by flowering time (hatched boxes with blue 613	  
border) vs independent from flowering time (uniform boxes with black border); B. Partition of 614	  
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genes controlled by development (hatched boxes with orange border) vs independent from 615	  
development (uniform boxes with black border). Inserts in the top of the figure illustrates how 616	  
these gene classes were defined. Immunity genes that are not controlled by flowering time but 617	  
controlled by development tend to have higher correlation coefficients of natural variation for 618	  
expression with natural variation for flowering time. Grey: All expressed genes; Blue: Genes 619	  
annotated as flowering time genes (FT genes); Red: Genes annotated as immunity genes; Pink: 620	  
Flagellin-responsive (FlaRe) genes (Navarro et al. 2004). P-values for Kolmogorov-Smirnov test 621	  
comparing the distribution of genes within each category that are independent of or regulated by 622	  
A. flowering time or B. age are shown when significant. Note that only 12 FlaRe genes are 623	  
controlled by flowering time in our experiment. Spearman correlation coefficients were 624	  
computed between expression levels of each of 23,511 expressed A. thaliana genes, reported in 625	  
Durbin et al. 2015 for 9th leaf seedlings, and flowering time measured in the same condition for 626	  
51 genotypes originating from natural populations in Sweden (Sasaki et al. 2015). * p < 0.05, *** p 627	  
< 0.001. 628	  
 629	  
Figure 3: Distribution of Spearman correlation coefficients between gene expression level and 630	  
flowering time. All expressed genes –uniform boxes with black border- vs. genes with fitness-631	  
associated SNPs in Fournier-Level et al. (2011), - hatched boxes with purple border-. Grey: All 632	  
expressed genes; Blue: Genes annotated as flowering time genes (FT genes); Red: Genes 633	  
annotated as immunity genes. Immunity genes that carry SNPs associating with fitness tend to 634	  
have higher correlation coefficients of natural variation for expression with natural variation for 635	  
flowering time. P-values for Kolmogorov-Smirnov test comparing the distribution for genes 636	  
within each category are shown when significant. Spearman correlation coefficients were 637	  
computed between expression levels of each of 23,511 expressed A. thaliana genes, reported in 638	  
Durbin et al. 2015 for 9th leaf seedlings, and flowering time measured in the same condition for 639	  
51 genotypes originating from natural populations in Sweden (Sasaki et al. 2015). * p < 0.05. 640	  
 641	  
 642	  
Supplementary Tables 643	  
 644	  
Suppl. Table 1: GO categories enriched among genes correlating either positively or negatively 645	  
with flowering time.  646	  
 647	  
Suppl. Table 2: List of immunity genes and GO categories (only gene annotations based on 648	  
experimentally validated open reading frames were considered). FlaRe genes and flowering time 649	  
genes used in the study.  650	  
 651	  
Suppl. Table 3: FT-dependent genes (DE between early and late flowering RIL pools). Output 652	  
of gene expression analysis includes mean read count (FPKM), log2 fold-change, Standard error 653	  
of the log2 fold-change; p-value and FDR adjusted p-value. FT-dependent genes have FDR 654	  
adjusted p-values <0.05.  655	  
 656	  
Suppl. Table 4: Differentially expressed genes between Col-0 and Bur-0. Output of gene 657	  
expression analysis includes mean read count (FPKM), log2 fold-change, Standard error of the 658	  
log2 fold-change; p-value and FDR adjusted p-value. Genes differently regulated between Col-0 659	  
and Bur-0 have FDR adjusted p-values <0.05.  660	  
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 661	  
Suppl. Table 5: Age-regulated genes defined as differential gene expression changes in Bur-0 662	  
between 14- and 28-days. Output of gene expression analysis includes mean read count (FPKM), 663	  
log2 fold-change, Standard error of the log2 fold-change; p-value and FDR adjusted p-value. FT-664	  
dependent genes have FDR adjusted p-values <0.05.  665	  
 666	  
 667	  
 668	  
Supplementary Figures 669	  
 670	  
Suppl. Figure 1: Distribution of estimated effect of flowering time as explanatory factor of gene 671	  
expression variation, taking into account population structure between Swedish genotypes of 672	  
group A (Group A genotypes advance their flowering at 16°C compared to 10°C and show 673	  
correlated flowering at 10°C and 16°C, Sasaki et al. 2015). The trend shown in Figure 1 is 674	  
maintained after accounting for population structure. P-values for Kolmogorov-Smirnov test 675	  
comparing estimate distribution for the gene subset compared to the genome-wide distribution 676	  
are given. A. Density distribution, B. Boxplots.  677	  
 678	  
Suppl. Figure 2: Distribution of correlation coefficients between gene expression and flowering 679	  
time restricted to the genes showing differential expression in Col-0 vs. Bur-0. Expression 680	  
differences between the genotypes Col-0 and Bur-0 recapitulate the pattern reported within 681	  
natural populations in Figure 1. Distribution of Spearman correlation coefficients between gene 682	  
expression level and flowering time for the set of genotypes showing consistent differences in 683	  
flowering at 10°C and 16°C (Sasaki et al. 2015). This analysis is restricted to the 6980 genes 684	  
showing differential expression between Col-0 and Bur-0. Immunity genes have a stronger skew 685	  
in correlation coefficients with flowering time. Spearman correlation coefficients were computed 686	  
between expression level of each of 6980 expressed A. thaliana genes, reported in Durbin et al. 687	  
2015 for 9th leaf seedlings, and flowering time measured in the same condition. Genotypes 688	  
originate from natural populations in Sweden (Sasaki et al. 2015). Black line: All expressed genes, 689	  
Blue lines: Gene annotated as flowering time genes (FT genes), Red lines: Genes annotated as 690	  
immunity genes, Pink line: Flagellin-responsive (FlaRe) genes (Navarro et al. 2004). 691	  
 692	  
Suppl. Figure 3: Bulk-sequencing strategy used to identify FT-dependent genes, i.e. genes whose 693	  
expression is genetically controlled by flowering time regulators or by genes located closely to 694	  
and therefore co-segregating with flowering time regulators.  695	  
 696	  
Suppl. Figure 4: Heatmap of the correlation in gene expression variation for the 1000 genes 697	  
showing highest expression variation between samples. Clustering of gene expression levels 698	  
shows that samples partition by genotype (Col-0, Bur-0), sampling time point (14d, 28d), and 699	  
flowering time (Early Fl.: Early flowering RIL pool, Late Fl.: Late flowering RIL pool).  700	  
 701	  
 702	  
Supplementary datasets: For each expressed genes, Spearman correlation coefficients and their 703	  
FDR significance presented separately for each dataset (whole Swedish populations, only 704	  
vernalization-independent Swedish line, species-wide dataset).  705	  
 706	  
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Suppl.&Figure&1:+Distribu-on+of+es-mated+effect+of+flowering+-me+as+explanatory+factor+of+gene+expression+varia-on,+taking+into+account+popula-on+structure+
between+vernaliza-on#independent+genotypes+from+Sweden+.+The+trend+shown+in+Figure+1+is+maintained+aFer+accoun-ng+for+popula-on+structure.+P#values+for+
Kolmogorov#Smirnov+test+comparing+es-mate+distribu-on+for+the+gene+subset+compared+to+the+genome#wide+distribu-on+are+given.+A.+Density+distribu-on,+B.+
Boxplots.++
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Suppl.&Figure&3:+Bulk#sequencing+strategy+used+to+
iden-fy+FT#dependent+genes,+i.e.+genes+whose+
expression+is+gene-cally+controlled+by+flowering+-me+
regulators+or+by+genes+located+closely+to+and+therefore+
co#segrega-ng+with+flowering+-me+regulators.++ x+
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between+samples.+Clustering+of+gene+expression+levels+shows+that+
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