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Abstract 16 

Next-generation sequencing data is accompanied by quality scores that quantify sequencing 17 

error. Inaccuracies in these quality scores propagate through all subsequent analyses; thus 18 

base quality score recalibration is a standard step in many next-generation sequencing 19 

workflows, resulting in improved variant calls. Current base quality score recalibration 20 

algorithms rely on the assumption that sequencing errors are already known; for human 21 

resequencing data,  relatively complete variant databases facilitate this. However, because 22 

existing databases are still incomplete, recalibration is still inaccurate; and most organisms do 23 

not have variant databases, exacerbating inaccuracy for non-human data. To overcome these 24 

logical and practical problems, we introduce Lacer, which recalibrates base quality scores 25 

without assuming knowledge of correct and incorrect bases and without requiring knowledge 26 

of common variants. Lacer is the first logically sound, fully general, and truly accurate base 27 

recalibrator. Lacer enhances variant identification accuracy for resequencing data of human 28 

as well as other organisms (which are not accessible to current recalibrators), simultaneously 29 

improving and extending the benefits of base quality score recalibration to nearly all ongoing 30 

sequencing projects. Lacer is available at: https://github.com/swainechen/lacer. 31 

Introduction 32 

Next-generation sequencing (NGS) has revealed broad insights into the prevalence and 33 

function of genetic variation, especially with respect to single nucleotide polymorphisms 34 

(SNPs) that influence human disease (Thorisson et al. 2005; Cotton et al. 2008; The 1000 35 

Genomes Project Consortium 2012; The Cancer Genome Atlas Network 2012). Given the 36 

scale of the data, even incremental increases in accuracy have an enormous impact. Accurate 37 

SNP identification relies on accurate sequencing, which is quantified by base quality scores; 38 

unfortunately, machine-reported qualities are inaccurate (Li et al. 2009b). Therefore, 39 
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recalibration of base quality scores improves downstream variant calling, mostly by 40 

excluding false positive SNPs (Li et al. 2009b; DePristo et al. 2011).  41 

Quality score recalibration is trivial if the status of every base (correct or error) is known; the 42 

fraction of sequencing errors with a given quality score can be used to calculate the empirical 43 

(recalibrated) quality. For real sequencing data, however, erroneous bases are of course not 44 

already known. Intriguingly, all current recalibrators (Li et al. 2009b; DePristo et al. 2011; 45 

Zook et al. 2012; Cabanski et al. 2012) are strongly based on this assumption that erroneous 46 

bases are known; sequencing errors are identified as mismatches to a reference genome, 47 

excluding sites of known variants (e.g., dbSNP (Sherry et al. 2001) for humans). This 48 

assumption would be tenable if variant databases were complete, but this is also not the case 49 

(The 1000 Genomes Project Consortium 2010), and the purpose of sequencing is often to 50 

discover variants not present in existing databases. Furthermore, outside of humans and 51 

several model organisms, variant databases are not available and thus recalibration is often 52 

not done.  53 

We have solved these logical and practical problems with a new algorithm for recalibrating 54 

base quality scores, Lacer. By comparing Lacer with GATK (DePristo et al. 2011), the 55 

current standard for base recalibration software, on four Illumina sequencing data sets 56 

(Escherichia coli, human, macaque and marmoset), we show that Lacer more accurately 57 

recalibrates base quality scores in the absence of complete (or any) variant knowledge, 58 

enabling application to any organism. Lacer’s more accurate recalibration in turn results in a 59 

specific increase in the confidence of true variants (based on variant quality scores), leading 60 

to more effective exclusion of false positive variants and more accurate variant calls. Finally, 61 

we demonstrate that Lacer can be applied to a wide range of NGS data sets, including 62 

different types of sequencing data (whole genome, exome, metagenome, and targeted 63 

sequencing) and data from different sequencing platforms (Illumina, Ion Torrent, and 454). 64 
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Results 65 

The Lacer algorithm 66 

Lacer (summarized in Fig. 1A) uses linear algebra concepts instead of assuming that correct 67 

and incorrect bases can be directly identified. Briefly, sequencing reads are mapped to a 68 

reference, and bases are binned into sets based on consensus status and depth of coverage. 69 

The sorting leverages the intuition that high coverage, consensus bases are likely to be 70 

correct, whereas singly observed, nonconsensus bases at high coverage positions are likely 71 

incorrect. Each set of bases defines a histogram of quality scores. The collection of 72 

histograms is cast as a matrix and analyzed by singular value decomposition (SVD). 73 

Assuming that correct and incorrect bases have a consistent distribution of quality scores and 74 

that the percentage of incorrect bases in each set varies, SVD will extract information that can 75 

be used to infer these distributions and the percentage of incorrect bases (for further details, 76 

see Methods); importantly, no individual bases are assumed to be either correct or incorrect. 77 

Finally, a Bayesian calculation based on the inferred aggregate frequency of incorrect bases 78 

and the distributions of correct and incorrect quality scores yields recalibrated quality scores. 79 

Lacer matches a gold standard GATK recalibration on bacterial resequencing data 80 

regardless of reference sequence 81 

We first compared Lacer with GATK, the current standard for base recalibration software, on 82 

an Illumina resequencing data set for Escherichia coli UTI89 (Chen et al. 2006), for which a 83 

complete reference sequence is available; in other words, for this data set we do know that all 84 

mismatches are indeed errors. Lacer and GATK yielded nearly identical results on UTI89 85 

when the UTI89 genome itself was used as a reference sequence (Fig. 1B). Consistent with 86 

this, the quality profiles for error bases predicted by both Lacer and GATK were nearly 87 

identical (Fig. 1C) and matched a third method (Quake (Kelley et al. 2010)) that identifies 88 

sequencing errors using k-mer analysis (Supplemental Fig. S1A). GATK performs a second 89 
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order recalibration incorporating covariates (sequence context and cycle number); Lacer also 90 

matched these well (Supplemental Fig. S1B). Therefore, in the presence of perfect 91 

information about which bases are correct and incorrect (using the known reference 92 

sequence), satisfying the assumptions made by GATK, Lacer and GATK provide concordant 93 

recalibration, which we take as gold standard recalibration for this particular UTI89 94 

resequencing data. 95 

In general, there is not perfect information about mutations; to mimic this, we recalibrated the 96 

same sequencing data using a different reference genome, E. coli MG1655 (which is ~98% 97 

identical to UTI89). Lacer’s overall and covariate recalibration still matched the gold 98 

standard (GATK using the UTI89 reference sequence), but GATK (using the MG1655 99 

reference sequence) reported a dramatically different recalibration, based on overall base 100 

quality recalibration, second order recalibration, and concordance of error base quality score 101 

profile with Quake (Fig. 1B, Supplemental Fig. S1B,C). This could not be fully mitigated 102 

by providing GATK with a maximal variant database generated by marking SNP calls from 103 

uncalibrated data as well as potentially mismapped reads (Fig. 1B), while Lacer’s 104 

recalibration was unaffected by exclusion of sites in this bootstrapped variant database 105 

(Supplemental Fig. S1D). Therefore, Lacer provides an accurate recalibration independent 106 

of an imperfect reference sequence and of knowledge of known variants, suggesting that 107 

Lacer might effectively be used to recalibrate sequencing data for any organism. 108 

Lacer accurately recalibrates human resequencing data without a perfect reference 109 

sequence 110 

We therefore tested Lacer on human sequencing data for the CEPH individual NA12878 (The 111 

1000 Genomes Project Consortium 2012), where no true gold standard recalibration is 112 

available. As seen with the UTI89 data using an imperfect reference, Lacer recalibrated the 113 

NA12878 chr1 data (mapped to the GRCh37.p13 reference genome) to higher quality scores 114 
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than GATK (Fig. 2A) and was insensitive to the provision of known variants (Supplemental 115 

Fig. S1E). To definitively verify the independence of Lacer from known variants, we 116 

restricted Lacer to only dbSNP sites and found that it produced a similar recalibration to that 117 

obtained from the full data set (Fig. 2A). To reconcile the differences between the Lacer and 118 

GATK recalibrations, we again used Quake as an independent method. The quality profiles 119 

for error bases predicted by Lacer and Quake were similar; however, error bases identified by 120 

GATK had consistently higher quality scores (Supplemental Fig. S1F), somewhat 121 

resembling the quality profile of correct bases (Fig. 2B (inset), Supplemental Fig. S1G).  122 

We suspected that the discrepancy between the GATK and Lacer recalibrations was because 123 

GATK misclassified some correct bases; an incomplete variant database would result in bases 124 

supporting novel variants being classified as incorrect, and in the extreme, without a variant 125 

database, GATK indeed recalibrates to lower quality (Fig. 2A). We therefore examined bases 126 

of a given quality score (for example, Q39 (arrow in Fig. 2A)) that did not match the 127 

reference and that were not in the variant database. These are bases that would be called 128 

errors by GATK. We extracted bases that supported these “errors” – bases from different 129 

reads but mapping to the same position with the same nucleotide. The quality score 130 

distribution of these supporting bases was similar to the quality score distribution of correct 131 

bases as predicted by Lacer (Fig. 2B), suggesting that these bases were largely correct. 132 

However, a fraction of the Q39 “errors” was not supported (“single”). This fraction was 133 

relatively small for both the NA12878 chr1 data set and for UTI89 mapped to the MG1655 134 

genome, but was ~90% for UTI89 mapped to the UTI89 genome (Supplemental Fig. S2A). 135 

The increase in single bases was not due to generally lower coverage at these positions 136 

(Supplemental Fig. S2B). By hypothesizing that single bases were the only true incorrect 137 

bases, we could derive the difference in recalibrated quality scores between Lacer and GATK 138 

(Fig. 2C, Supplemental Fig. S2C). In other words, amending error bases identified by 139 
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GATK to include only single bases and to exclude all supported bases (whose overall quality 140 

profile was similar to that for correct bases) resulted in concordant recalibration with Lacer. 141 

Given the results using both E. coli and human data, we conclude that Lacer provides a more 142 

robust and more accurate recalibration regardless of organism. 143 

Lacer recalibration improves SNP calling on human sequencing data 144 

Using the GATK best practices pipeline (DePristo et al. 2011; Van der Auwera et al. 2013) to 145 

call SNPs on NA12878 chr1, we next compared no base quality recalibration to Lacer and 146 

GATK (Table 1). Recalibration with either Lacer or GATK resulted in ~250,000 final calls; 147 

without calibration, an additional 45-57,000 SNPs were identified. SNPs excluded by Lacer 148 

appeared to be of lower quality, based on the transition-transversion ratio (Ti/Tv) of 1.49 for 149 

Lacer compared to 1.66 for GATK. The expected value for true positives is ~2. On a high 150 

confidence, true positive SNP call set (NIST (Zook et al. 2014)), Lacer and GATK both 151 

predicted ~7,000-8,000 unique SNPs each; the Ti/Tv for the unique Lacer SNPs was closer to 152 

the value in the intersection and higher than the value for the unique GATK SNPs (Fig. 2D). 153 

Therefore, recalibration with Lacer provides more effective exclusion of false positive SNPs 154 

(the primary benefit of recalibration) than with GATK. 155 

To discover why Lacer excluded more false positive SNPs, we examined the final variant 156 

quality scores (VQS) of SNPs following variant quality score recalibration (VQSR). Lacer 157 

recalibration produced overall higher VQS than GATK or uncalibrated SNP calls on the 158 

high-confidence NIST SNPs (Fig. 2E). Notably, GATK resulted in generally lower VQS than 159 

uncalibrated data. To verify that Lacer was not simply elevating the quality scores of all 160 

bases, we took the set of final high and low quality SNP calls from GATK recalibration and 161 

examined their VQS in the GATK, Lacer, and uncalibrated data. Lacer had increased the 162 

VQS on high quality SNPs without affecting VQS for low quality SNPs, as expected, when 163 

compared with GATK or no recalibration. (Fig. 2F, Supplemental Fig. S2D). Again, GATK, 164 
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in contrast, reduced the VQS specifically on high quality SNPs compared with uncalibrated 165 

data, the opposite of what would be expected (Supplemental Fig. S2E). We noticed a 166 

bimodal distribution in the VQS differences between GATK and uncalibrated or Lacer 167 

recalibrated data (potentially due to bimodal base quality scores after GATK recalibration) 168 

(Supplemental Fig. S2F). We therefore performed the entire analysis on another 169 

chromosome (chr19) that didn’t have this artifact and saw similar improved results for Lacer 170 

(Supplemental Fig. S3, Supplemental Table S1). Thus, Lacer recalibration results in a 171 

specific increase in the confidence of true SNPs without inflating the confidence of false 172 

SNPs, as would be expected from accurate recalibration, while GATK has the opposite effect. 173 

Lacer recalibration of non-human sequencing data results in improved SNP calls 174 

To further show that Lacer can effectively recalibrate the sequencing data for any organism in 175 

the absence of a perfect reference, we tested Lacer on two non-human primate data sets, 176 

Tibetan macaque (Macaca thibetana) (Fan et al. 2014) and common marmoset (Callithrix 177 

jacchus). Lacer recalibrated the Tibetan macaque chr1 data (mapped to the rhesus macaque 178 

(Macaca mulatta) reference) to higher quality scores than GATK; given that known variants 179 

in this organism are likely incomplete, this was similar to the result obtained with the human 180 

data and the E. coli data mapped to an imperfect reference (Fig. 3A, compare with Fig. 1B 181 

and Fig. 2A). Furthermore, error bases identified by GATK again had consistently higher 182 

quality scores, and the quality profile resembled that of correct bases predicted by both 183 

GATK and Lacer (Supplemental Fig. S4A,B). In the presence of a complete reference 184 

sequence (calJac3 (The Marmoset Genome Sequencing and Analysis Consortium. 2014)), 185 

Lacer and GATK again yielded concordant results on the common marmoset exome data 186 

(Fig. 3B). To mimic the absence of perfect information about mutations, we recalibrated the 187 

same sequencing data using the rheMac3 reference genome. Again Lacer’s recalibration 188 

matched the recalibration on the perfect data, but GATK’s recalibration was very different 189 
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(Supplemental Fig. S4C,D). Unfortunately, we could not independently verify the quality 190 

score profiles of error bases predicted by Lacer using Quake due to the low coverage (<20×) 191 

of these data sets.  192 

We next used the GATK best practices pipeline and the quality score-aware SNP caller, 193 

LoFreq (Wilm et al. 2012), to call SNPs on these data sets (Table 1). For the Tibetan 194 

macaque chr1 data, recalibration with either Lacer or GATK resulted in ~1,300,000 final 195 

calls; without calibration, an additional 180-190,000 SNPs were identified. Recalibration by 196 

Lacer led to a slightly higher Ti/Tv in the higher call set than GATK; but the SNPs unique to 197 

Lacer (~7,000) had a much higher Ti/Tv (1.70) than SNPs unique to GATK (~20,000, Ti/Tv 198 

0.94) (Fig, 3C). For the common marmoset exome data, recalibration with either Lacer or 199 

GATK resulted in ~2,400,000 final calls; without calibration, an additional ~4.6 million 200 

SNPs were identified. Once again, SNPs unique to Lacer (~39,000) had a higher Ti/Tv ratio 201 

(1.86) than SNPs unique to GATK (~54,000; 1.59) (Fig. 3D). Therefore, accurate 202 

recalibration by Lacer provides substantial improvement to SNP calling without requiring a 203 

variant database or a perfect reference sequence. 204 

Discussion 205 

Lacer solves the two primary practical and logical problems with current recalibrators and is 206 

thus the first and only way at present to correctly recalibrate most NGS data (including 207 

exome, metagenome, targeted sequencing, and data across multiple sequencing platforms) 208 

(Supplemental Fig. S5). Lacer (i) does not require a variant database, (ii) can tolerate an 209 

imperfect reference sequence (Lacer may in future be extended to utilize k-mer analysis, 210 

potentially eliminating the need for reference sequences entirely), and (iii) is more accurate 211 

across a wider range of data sets (including human) than GATK, resulting in better 212 
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downstream variant calls. Lacer is the first algorithm to extend the increased accuracy of 213 

variant calling from base quality recalibration to all non-human resequencing projects. 214 

Current base recalibrators assume that any mismatch to a reference genome is a sequencing 215 

machine error. In reality, these mismatches may also include true variants, PCR-amplification 216 

errors, and data processing errors (e.g. alignment errors). These three classes of mismatches 217 

arise from sources outside of the sequencing process itself; in other words, if there is a true 218 

unknown variant, current recalibrators will treat those bases as errors despite the sequencing 219 

machine having sequenced them correctly. A complete variant database will only prevent 220 

misidentification true variants as error bases, and mapping scores could be used to minimize 221 

the impact of alignment errors. However, errors introduced during PCR cannot be eliminated 222 

by current recalibrators. In practice, we find that current recalibration algorithms significantly 223 

(10- to 100-fold) underestimate empirical quality scores, especially among high quality bases, 224 

even when provided with a variant database. Importantly, these high quality bases account for 225 

the majority of the data (see, for example, the black bars in Fig. S2F). In contrast, the Lacer 226 

algorithm directly extracts quality scores and aggregate error probabilities based on the 227 

assumption that correct and incorrect bases have different quality score profiles. The 228 

calculation of consensus bases effectively eliminates unknown true variants as a source of 229 

error and seems to mitigate against mapping errors. Based on the bacterial and human 230 

sequencing data, single (unsupported), non-consensus bases are the majority of true 231 

sequencing errors; in other words, the majority of supported bases, even with only 2 232 

supporting bases at high coverage (>50×) positions, are actually correct. These bases 233 

generally do not result in a SNP call by current algorithms, and we therefore hypothesize that 234 

these bases may be due to PCR amplification or other unknown sources of error. Regardless, 235 

Lacer is robust to all of these potential sources of error that affect current recalibrators, and in 236 

so doing is the first recalibrator to effectively isolate and correct the errors introduced during 237 
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the sequencing process itself, which is precisely what the base quality scores should be 238 

measuring. 239 

Lacer specifically increases the confidence (or VQS) of high quality SNPs without affecting 240 

the confidence of low quality SNPs. Intriguingly, GATK’s recalibration resulted in a 241 

reduction in VQS for high quality SNPs; again, incomplete variant knowledge leads to the 242 

misclassification of error bases, a reduction in the empirical quality score, and the 243 

concomitant decrease in VQS. Interestingly, these lowered VQS did not significantly impact 244 

GATK’s ultimate SNP calls from the human data, based on Ti/Tv ratios and comparison to 245 

the high confidence NIST SNP set. This may be a result of the fact that GATK’s best 246 

practices pipeline is tuned for the identification of genetic variants in human sequencing data; 247 

the availability of large human training data sets enables more effective prediction of SNPs. 248 

The tuning of GATK for human data, however, limits its utility for non-human sequencing. 249 

Indeed, when applied to non-human data sets, Lacer’s consistent performance relative to 250 

GATK is apparent; not only are false positive SNPs more effectively excluded, but unique 251 

SNPs predicted from Lacer-recalibrated data also have quality metrics more consistent with 252 

that of true positive SNPs. Use of the LoFreq SNP caller (instead of the GATK 253 

HaplotypeCaller) for these data sets more effectively captures the benefit of accurate 254 

recalibration, since LoFreq takes into account base quality scores for SNP prediction. 255 

Furthermore, VQSR is not applicable to non-human data sets due to the lack of training data, 256 

which substantially reduces the accuracy of SNP identification. 257 

Currently, there are very few methods to objectively and computationally assess the accuracy 258 

of variant calls; since Lacer uses the distribution of quality scores to calculate aggregate 259 

numbers of correct and incorrect bases, it could conceivably accomplish this when combined 260 

with the analysis of supporting bases. A further extension could enable the systematic 261 

assessment of variant calling covariates to identify rigorous filtering criteria. Finally, future 262 
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SNP callers may gain additional power and accuracy by directly incorporating these insights 263 

about quality scores. 264 

Methods 265 

Lacer algorithm – theory 266 

We first assume that correct and incorrect bases have consistent but different reported quality 267 

distributions. The quality score distribution of correct bases is denoted as C = { cj } and that 268 

of incorrect bases as E = { ej }. C and E are probability distributions over the set of assigned 269 

quality scores and therefore satisfy  =  = 1. Considering a set s containing n bases, s 270 

will have a fraction p correct bases and (1 - p) incorrect bases. Since correct and incorrect 271 

bases have consistent distributions, s is sampled from the quality score distribution: 272 

{ qj } = { p cj + (1 – p) ej } 273 

also satisfying  = 1. Clearly, as n increases, the sampling error of { qj } decreases. Given 274 

a collection of sets S = { si }, each with n bases and containing a fraction pi of correct bases, a 275 

collection of quality profiles Q = { qij } can be created and represented as a matrix. 276 

Crucially, for any given i: 277 

qij = { pi cj + (1 – pi) ej } 278 

Considering this as a vector, and given cj and ej, differences between qij can be parameterized 279 

with one variable, pi. Although pi, cj and ej are a priori unknown, providing pi are not all 280 

identical, a singular value decomposition (SVD) can extract the covariance between the 281 

individual quality score variations and enable deduction of pi. Explicitly: 282 

qij = { ej + pi (cj – ej) } 283 
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An SVD produces cj – ej (defined up to a sign) as the first eigenvector, while pi is related (up 284 

to addition of a constant due to data centering) to the eigencoordinates in the first 285 

eigendimension. Careful construction of the sets of bases S = { si } provides a reasonable 286 

assurance that pi spans close to the entire range from 0 to 1; this is done as described in the 287 

main text by sorting bases by consensus status (including number of supporting bases) and 288 

depth of coverage at that position. Thus, cj and ej can be directly calculated from the SVD 289 

results as min(x1i) v1j and max(x1i) v1j (adjusted for centering), respectively, where x1i are the 290 

coordinates in the first SVD dimension and v1j are the components of the first SVD 291 

eigenvector. 292 

Once cj and ej are known, a Bayesian calculation determines the relationship between 293 

reported and empirical quality. Empirical quality can be recorded as: 294 

qempirical = -10 log10(P(error|qreported)) 295 

By Bayes theorem:  296 

P(error|qreported) = P(qreported|error) P(error) / P(qreported) 297 

Tabulation of the overall distribution of quality scores in the sequencing data set gives 298 

P(qreported). P(qreported|error) is given by E = { ej }. Importantly, since each set si contains n 299 

bases and the SVD provides pi, the total number of error bases can be calculated as 300 

 (without classifying individual bases as correct or incorrect). Division by the 301 

total number of bases then yields P(error). 302 

Sequencing data and data processing 303 

Human data sets. The sequencing data set for the CEPH individual NA12878 (sequenced on 304 

an Illumina Genome Analyzer II and aligned to the GRCh37.p13 human reference genome) 305 

was publically available from the 1000 Genomes database (The 1000 Genomes Project 306 
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Consortium 2012). The high-confidence variant call set used for benchmarking was available 307 

at the NCBI Genome in a Bottle ftp site (Zook et al. 2014): 308 

NISTIntegratedCalls_14datasets_131103_allcall_UGHapMerge_HetHomVarPASS_VQSRv309 

2.18_all_nouncert_excludesimplerep_excludesegdups_excludedecoy_excludeRepSeqSTRs_n310 

oCNVs.vcf. The BAM file for the NA12878 exome data set (sequenced on the Illumina 311 

Genome Analyzer IIx and aligned to the NCBI36 human reference genome using Maq) was 312 

available from the 1000 Genomes Project database (The 1000 Genomes Project Consortium 313 

2012). The BAM file for the TruSeq Amplicon Cancer Panel targeted sequencing data 314 

(sequenced on an Illumina MiSeq and aligned to the NCBI36 human reference genome) was 315 

available from the BaseSpace Public Data repository 316 

(https://basespace.illumina.com/run/358358). 317 

Sequencing data were aligned to the corresponding reference genomes using BWA (Li and 318 

Durbin 2009). SAMtools (Li et al. 2009a) was utilized for alignment, sorting, and indexing of 319 

sequencing reads. The aligned data was then processed following the GATK (version 2.8-1) 320 

best practices workflow (DePristo et al. 2011; Van der Auwera et al. 2013). For the NA12878 321 

whole genome sequencing data set, a variant database for GATK’s recalibration was 322 

generated by including variant positions from dbSNP (BUILD_ID 137, reference 323 

GRCh37.p10), Mills and 1000 Genomes gold standard indels (reference GRCh37.p10), and 324 

1000 Genomes Phase 1 indels (reference GRCh37.p10), which were downloaded from the 325 

GATK resource bundle (version 2.5). For the NA12878 exome and TruSeq Amplicon Cancer 326 

Panel targeted sequencing data sets, a variant database for GATK’s recalibration was 327 

generated using the GATK resource bundle for the NCBI36 reference genome. Blank VCF 328 

files for all data sets were generated by including mock VCF headers and fields alone. 329 

Non-human data sets. For the UTI89 Illumina sequencing data set, UTI89 was grown in LB 330 

broth overnight at 37°C with agitation. Genomic DNA was purified using the Wizard 331 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/130732doi: bioRxiv preprint 

https://doi.org/10.1101/130732
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

genomic DNA purification kit (Promega). DNA was sheared using the Covaris S2x and size 332 

selected on a Pippin Prep (Sage Science) to isolate 400-500 bp fragments. Illumina 333 

sequencing libraries were constructed using the Illumina TruSeq kit using manufacturers 334 

protocols, then sequenced on a HiSeq 2000 with 2×76 paired end reads. For the UTI89 Ion 335 

Torrent sequencing data set, UTI89 was grown in LB broth overnight at 37°C with agitation. 336 

Genomic DNA was purified using the Wizard genomic DNA purification kit (Promega). Ion 337 

Torrent sequencing libraries were constructed using the Ion Xpress Plus Fragment Library kit 338 

(Life Technologies) according to the manufacturer’s protocols, then sequenced on an Ion 316 339 

chip. The MG1655 454 data set (sequenced on a Roche 454 GS FLX Titanium System) was 340 

available from the SRA database (SRX255226; www.ncbi.hlm.nih.gov/sra). The UTI89 and 341 

MG1655 sequencing data were aligned to the E. coli UTI89 (NC_007946) or E. coli MG1655 342 

(NC_000913) reference genomes. The SRS017191 human metagenome (sequenced on an 343 

Illumina Genome Analyzer IIx and aligned to the Bacteriodes vulgatus ATCC 8482 344 

(NC_009614) reference genome) data set was available from the Human Microbiome Project 345 

database (The NIH HMP Working Group 2009). The Tibetan macaque (Macaca thibetana) 346 

data set (sequenced on an Illumina HiSeq 2000) was available from the SRA database 347 

(SRX373102); sequences were trimmed to equal lengths and aligned to the Macaca mulatta 348 

(rheMac3; rhesus macaque) reference genome. The common marmoset (Callithrix jacchus) 349 

exome data set (sequenced on an Illumina HiSeq 2000 and aligned to the calJac3 (Callithrix 350 

jacchus; The Marmoset Genome Sequencing and Analysis Consortium. 2014) or rheMac3 351 

reference genomes) was available from the SRA database (SRX375642). 352 

The sequencing data were aligned to the corresponding reference genomes using BWA. 353 

SAMtools was utilized for alignment, sorting, and indexing of sequencing reads. With the 354 

exception of the Tibetan macaque and marmoset data sets, which were processed following 355 

the GATK best practices workflow, all aligned data were recalibrated directly. A variant 356 
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database for GATK’s recalibration was generated by including variants called by SAMtools, 357 

LoFreq (Wilm et al. 2012), and where indicated, positions showing poor mappability. 358 

Supporting base analysis 359 

The SAMtools Perl API and custom Perl scripts were used to perform pileups and extract 360 

nonconsensus bases, their corresponding quality, and the same data from supporting bases 361 

(identical bases from different reads) at positions outside of dbSNP from the aligned 362 

NA12878 data. Using custom R scripts, histograms of supporting base qualities were plotted 363 

and compared to the Lacer predicted correct and error base quality profiles. For these, the 364 

target base quality was excluded; for example, an analysis of Q39 bases utilized only quality 365 

score histograms for Q6-Q38 and Q40. The fraction of single (unsupported) bases (out of the 366 

total number of nonconsensus, non-VCF bases; denoted fQ;single) was plotted for each quality 367 

score, and converted to a recalibration amendment as -10log10(fQ;single) for each quality score 368 

Q from 30-40. 369 

Quake analysis 370 

Quake (version 0.3) (Kelley et al. 2010) was run on the FASTQ file for UTI89 using a k-mer 371 

of 13 and the --log option to output the bases and associated qualities that were corrected. 372 

Quake was similarly run on a downsampled (to 1%) FASTQ file of reads mapping to chr1 or 373 

chr19 of NA12878 using a k-mer of 15. The histogram of quality scores for bases corrected 374 

by Quake was taken as the error profile of bases identified by Quake. 375 

Program availability 376 

Lacer is available at https://github.com/swainechen/lacer. 377 
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Figure Legends 388 

Figure 1: Lacer and recalibration of E. coli sequencing data. (A) Workflow of the Lacer 389 

algorithm. For details, see main text and Methods. (B) Empirical (recalibrated) quality scores 390 

plotted against reported (uncalibrated) quality scores for the UTI89 sequencing data from 391 

GATK, using UTI89 or MG1655 as a reference sequence (with or without excluding variant 392 

positions based on poorly-mapped positions and variant calls from SAMtools and LoFreq) 393 

(w/ or w/o VCF, respectively); and from Lacer, using UTI89 or MG1655 as reference and 394 

without excluding variants. Lacer recalibration using UTI89 or MG1655 as a reference 395 

matches the gold standard GATK recalibration using UTI89 as the reference. GATK 396 

recalibration using MG1655 as the reference results in generally lower recalibrated quality 397 

scores which are not fully rescued by provision of a variant database (w/ VCF). (C) Quality 398 

score distribution of correct and erroneous bases following recalibration of UTI89 sequencing 399 

data by GATK (with UTI89 as a reference) or Lacer (with MG1655 as a reference). The 400 

distributions generated by Lacer using the MG1655 reference match those generated by 401 

GATK using the UTI89 reference.  402 

Figure 2: Recalibration of human sequencing data. (A) Recalibration of the NA12878 403 

chr1 sequencing data using GATK, with or without excluding known variants based on 404 

dbSNP, Mills and 1000 Genomes gold standard indels, and 1000 Genomes Phase 1 indels (w/ 405 

or w/o VCF, respectively), or using Lacer, w/o VCF or with dbSNP variant positions only 406 

(VCF positions only). The Lacer recalibration results in generally higher recalibrated quality 407 

scores compared with GATK, and these are not rescued by provision of a variant database 408 

(w/ VCF). Recalibration using only VCF positions by Lacer approaches the Lacer 409 

recalibration using the full data set. (B) Quality score distributions of error (red) and correct 410 

(green) bases defined by Lacer recalibration and of supporting bases (black) for all non-411 

reference, non-VCF bases with a quality score of 39 (Q39) for the NA12878 chr1 data set. 412 
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All Q39 bases themselves have been excluded from this graph. The distribution for the Q39 413 

supporting bases is similar to the distribution for the correct bases. Inset, quality score 414 

distributions for error (blue) and correct (yellow) bases defined by GATK recalibration of the 415 

NA12878 chr1 data set. The quality score distribution for error bases is enriched for high 416 

quality scores and somewhat resembles the distribution for correct bases. Only data for 417 

quality scores greater than 25 are shown. The full distribution is shown in Supplemental Fig. 418 

S1G. (C) Correction of GATK recalibration using supporting base analysis. Dark gray bars 419 

represent the difference between Lacer and GATK recalibration for each quality score. Light 420 

gray bars represent quality difference from the GATK recalibration assuming only single 421 

(unsupported), non-reference, non-VCF bases are true errors. (D) Venn diagram of Lacer- 422 

and GATK-recalibrated SNP calls for NA12878 chr1 identified by GATK HaplotypeCaller 423 

that passed recalibration by the GATK VariantRecalibrator (VQSR) and that also matched 424 

the high-confidence NIST call set. Total numbers of SNP calls (black) in each category and 425 

their associated Ti/Tv ratios (red) are shown. SNP calls unique to Lacer recalibration have an 426 

aggregate Ti/Tv closer to the intersection than the SNP calls unique to GATK recalibration. 427 

(E) Comparison of VQS for SNPs identified in the uncalibrated, Lacer-recalibrated, or 428 

GATK-recalibrated NA12878 chr1 data which matched the NIST call set. Lacer recalibrated 429 

data results in overall higher VQS than that from uncalibrated (red) and GATK recalibrated 430 

(green) data on these high confidence true positive SNPs. GATK recalibrated data results in 431 

overall lower VQS than uncalibrated (gray) data on these same SNPs. (F) Difference in VQS 432 

between the Lacer- and GATK-recalibrated call sets for NA12878 chr1 for all high quality 433 

(PASS; green) or low quality (LowQual; red) SNPs in the GATK-recalibrated call set. Lacer 434 

recalibrated data results in a mild increase in VQS on low quality SNPs (as called by GATK 435 

recalibrated data), but this is small compared to the increase in VQS for high quality SNPs.  436 
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Figure 3: Recalibration of non-human primate sequencing data. Recalibration of (A) 437 

Tibetan macaque chr1 sequencing data using Lacer or GATK, with or without excluding 438 

known variants based on SAMtools and LoFreq (w/ or w/o VCF, respectively). GATK 439 

recalibration produces lower quality scores that are only partially increased by exclusion of 440 

known variants, and (B) common marmoset exome sequencing data using Lacer or GATK, 441 

with or without excluding known variants based on SAMtools and LoFreq (w/ or w/o VCF, 442 

respectively), and the calJac3 or rheMac3 reference genomes. Lacer recalibration using 443 

calJac3 or rheMac3 as a reference matches the gold standard GATK recalibration using 444 

calJac3 as the reference. GATK recalibration using rheMac3 as the reference results in 445 

generally lower recalibrated quality scores which are not fully rescued by provision of a 446 

variant database.  447 

Venn diagram of Lacer- and GATK-recalibrated final SNP calls for (C) Tibetan macaque 448 

chr1 and (D) common marmoset exome data, as identified by LoFreq. Total numbers of SNP 449 

calls (black) in each category and their associated Ti/Tv ratios (red) are shown. SNP calls 450 

unique to Lacer recalibration have an aggregate Ti/Tv closer to the intersection than the SNP 451 

calls unique to GATK recalibration for both data sets. 452 
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Table Legends 453 

Table 1: Impact of base quality score recalibration by Lacer and GATK on SNP calls from the NA12878 chr1 (GATK HaplotypeCaller; filtered 454 

by VQSR), Tibetan macaque chr1 (LoFreq), and common marmoset exome (LoFreq) data sets. 455 

 456 

VQSR: variant quality score recalibration; recal: recalibration; LRA: local realignment. 457 

Call Set 

 

NA12878 chr1 Tibetan macaque chr1 Common marmoset exome 

No. of SNPs Ti/Tv No. of SNPs Ti/Tv No. of SNPs Ti/Tv 

Lacer GATK Lacer GATK Lacer GATK Lacer GATK Lacer GATK Lacer GATK 

Raw reads, all calls 305,220 305,220 2.00 2.00 1,463,349 1,463,349 1.62 1.62 7,089,824 7,089,824 2.06 2.06 

Unique to raw read calls 2,902 12,859 0.70 0.86 29,771 34,390 0.57 0.66 20,276 69,222 1.05 1.36 

Unique to +recal/+LRA 2,187 3,173 1.01 1.34 40,328 66,202 0.68 0.65 62,459 229,667 1.17 1.17 

+recal/+LRA, all calls 304,505 295,534 2.01 2.07 1,473,906 1,495,161 1.62 1.59 7,132,007 7,250,269 2.05 2.03 

Filtered 57,303 44,853 1.49 1.66 204,625 212,664 0.60 0.58 4,763,917 4,867,640 1.95 1.92 

Final call set 247,202 250,681 2.16 2.16 1,269,281 1,282,497 1.91 1.89 2,368,090 2,382,629 2.27 2.26 

Unique to final call set 12,030 15,509 1.84 1.82 7,080 20,296 1.70 0.94 39,237 53,776 1.86 1.59 
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Supplemental Information 511 

Supplemental Figure S1: Lacer is insensitive to a variant database and an imperfect 512 

reference sequence. (A) Quality score distributions for error bases in the UTI89 data set 513 

(using UTI89 as a reference) as predicted by Quake on the unmapped data (black) or by 514 

Lacer (red) and GATK (green) on the mapped data. When a perfect reference sequence is 515 

used (UTI89 resequencing data mapped to the UTI89 genome), the quality distribution for 516 

error bases is concordant among Lacer, GATK, and Quake. (B) Histogram of deviations of 517 

covariate quality scores for each data set indicated from the covariate quality scores derived 518 

from the GATK “gold standard” recalibration of the UTI89 data set using the UTI89 genome 519 

as the reference. For each covariate (context and cycle number), the difference in recalibrated 520 

quality between GATK (using the UTI89 genome as a reference) and a comparison 521 

recalibration was calculated. A histogram of all of these values is plotted here for GATK 522 

(using the MG1655 genome as a reference and w/ VCF; blue), Lacer (using the MG1655 523 

genome as a reference; red), and Lacer (using the UTI89 genome as a reference; black) as the 524 

comparison recalibrations. Lacer is unaffected by changing the reference sequence, and the 525 

histogram of deviations is centered around zero, indicating no systematic bias in covariate 526 

recalibration. GATK using the MG1655 genome as a reference produces systematically lower 527 

recalibrated covariate quality scores, seen as a bias towards a tail of positive values. (C) 528 

Quality score distributions for error bases in the UTI89 data set (using MG1655 as a 529 

reference) as predicted by Quake on the unmapped data (black) or by Lacer (red) and GATK 530 

(w/ VCF; green) on the mapped data. Quake and Lacer produce concordant quality 531 

distributions for error bases. GATK produces a quality distribution that is biased towards 532 
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high quality bases. (D) Lacer recalibration of the UTI89 data set using MG1655 (w/ or w/o 533 

VCF) as a reference. GATK recalibration of the UTI89 data set using UTI89 as a reference 534 

(w/o VCF) is shown for comparison. Provision of a variant database has minimal effect on 535 

the Lacer recalibration. (E) Lacer recalibration of the NA12878 chr1 data set (downsampled 536 

by region to 1Mbp) with and without excluding known variant positions. The provision of a 537 

database of known variants has little effect on Lacer recalibration. (F) Quality score 538 

distributions for error bases predicted by Quake on the unmapped NA12878 chr1 data set 539 

(black) or by Lacer (red) and GATK (green) recalibration on the mapped data. Quake and 540 

Lacer produce concordant quality distributions for error bases. GATK produces a quality 541 

distribution that is biased towards high quality bases. (G) Quality score distributions for error 542 

(blue) and correct (yellow) defined by GATK recalibration of the NA12878 chr1 data set. 543 

The quality score distribution for error bases is enriched for high quality scores and 544 

somewhat resembles the distribution for correct bases. 545 

Supplemental Figure S2: Validation of Lacer recalibration. (A) Fraction of unsupported 546 

“single” non-reference, non-VCF bases with quality scores >=30. The fraction of single bases 547 

for UTI89 mapped to the UTI89 genome (circles) as a reference is ~0.9. The fraction of 548 

single bases for the same UTI89 data set mapped to the MG1655 genome (triangles) is much 549 

lower, ~0-0.2. The fraction of single bases for NA12878 chr1 mapped to GRCh37.p13 550 

(squares) is also low, ~0-0.1. (B) Histograms of coverage depth at all non-reference, non-551 

VCF bases for the UTI89 (red) and NA12878 chr1 (green) data sets. (C) Correction of GATK 552 

recalibration using supporting base analysis for GATK recalibration on the UTI89 data set 553 

(UTI89 (left) and MG1655 (right) used as the reference sequence). Dark gray bars represent 554 

the difference between Lacer and GATK recalibration for each quality score. Light gray bars 555 

represent the quality difference from the GATK recalibration assuming only single 556 

(unsupported) non-reference, non-VCF bases are true errors. (D) Difference in VQS between 557 
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the Lacer-recalibrated and uncalibrated call sets for all high quality (PASS; green) or low 558 

quality (LowQual; red) SNPs in the GATK-recalibrated call set for NA12878 chr1. On high 559 

quality SNPs, Lacer recalibration results in higher VQS (positive quality difference), while 560 

on low quality SNPs, the quality difference is centered about zero. (E) Difference in VQS 561 

between the GATK-recalibrated and uncalibrated call sets for all high quality (PASS; green) 562 

or low quality (LowQual; red) SNPs in the GATK-recalibrated call set. GATK recalibrated 563 

data results in generally lower VQS for all SNPs compared with uncalibrated data, but the 564 

decrease is greater for high quality SNPs than for low quality SNPs, contrary to expectation. 565 

(F) Distribution of overall base quality scores for the uncalibrated (black), Lacer-recalibrated 566 

(red), and GATK-recalibrated (green) NA12878 chr1 data. GATK recalibration results in a 567 

bimodal distribution that is not seen in the uncalibrated or Lacer-recalibrated data.  568 

Supplemental Figure S3: Recalibration of NA12878 chr19. (A) Recalibration of the 569 

NA12878 chr19 sequencing data using GATK, with or without excluding known variants 570 

based on dbSNP, Mills and 1000 Genomes gold standard indels, and 1000 Genomes Phase 1 571 

indels (w/ or w/o VCF, respectively), or using Lacer, w/o VCF or with dbSNP variant 572 

positions only (VCF positions only). GATK recalibration produces lower quality scores that 573 

are only partially increased by exclusion of known variants. Lacer recalibration using only 574 

known variant positions results in relatively similar recalibration to Lacer using the entire 575 

data set. (B) Distribution of quality scores for error bases predicted by Quake (black) on the 576 

unmapped data or by Lacer (red) and GATK (green) on the mapped data. Quake and Lacer 577 

produce concordant quality distributions for error bases. GATK produces a quality 578 

distribution that is biased towards high quality bases. (C) Distribution of overall base quality 579 

scores for the uncalibrated (black), Lacer-recalibrated (red), and GATK-recalibrated (green) 580 

data. None of the data sets have a bimodal distribution of base quality scores for chr19. (D) 581 

Venn diagram of Lacer- and GATK-recalibrated SNP calls identified by GATK 582 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2017. ; https://doi.org/10.1101/130732doi: bioRxiv preprint 

https://doi.org/10.1101/130732
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

HaplotypeCaller on chr19 that passed recalibration by the GATK VariantRecalibrator and 583 

that also matched the high-confidence NIST call set. Total numbers of SNP calls in each 584 

category and their associated Ti/Tv ratios are shown. SNP calls unique to Lacer recalibration 585 

have an aggregate Ti/Tv closer to the intersection than the SNP calls unique to GATK 586 

recalibration. (E) Comparison of VQS for SNPs identified in the uncalibrated, Lacer-587 

recalibrated, or GATK-recalibrated data which matched the NIST call set. Lacer recalibrated 588 

data results in overall higher VQS than that from uncalibrated (red) and GATK recalibrated 589 

(green) data on these high confidence true positive SNPs. GATK recalibrated data results in 590 

overall lower VQS than uncalibrated (gray) data on these same SNPs. (F) Difference in VQS 591 

between the Lacer-recalibrated and GATK-recalibrated call sets for all high quality (PASS; 592 

green) or low quality (LowQual; red) SNPs in the GATK-recalibrated call set. Lacer 593 

recalibrated data results in a mild increase in VQS on low quality SNPs (as called by GATK 594 

recalibrated data), but this is small compared to the increase in VQS for high quality SNPs. 595 

(G) Difference in VQS between the GATK-recalibrated and uncalibrated call sets for all high 596 

quality (PASS; green) or low quality (LowQual; red) SNPs in the GATK-recalibrated call set. 597 

GATK recalibrated data results in generally lower VQS for all SNPs compared with 598 

uncalibrated data, but the decrease is greater for high quality SNPs than for low quality SNPs, 599 

contrary to expectation. (H) Difference in VQS between the Lacer-recalibrated and 600 

uncalibrated call sets for all high quality (PASS; green) or low quality (LowQual; red) SNPs 601 

in the GATK-recalibrated call set. On high quality SNPs, Lacer recalibration results in higher 602 

VQS (positive quality difference), while on low quality SNPs, the quality difference is 603 

centered about zero. 604 

Supplemental Figure S4: Recalibration of non-human primate sequencing data. Quality 605 

score distributions for error (red) and correct (green) defined by: (A) GATK recalibration 606 

(excluding known variants) or (B) Lacer recalibration of the Tibetan macaque chr1 607 
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sequencing data, and (C) GATK recalibration (excluding known variants) or (D) Lacer 608 

recalibration of the common marmoset exome sequencing data. For both data sets, the quality 609 

score distributions for error bases defined by GATK are enriched for high quality scores and 610 

somewhat resemble the distributions for correct bases. The quality profiles for Lacer were 611 

similar to those observed in previous data sets (c.f. Fig. 1c). 612 

Supplemental Figure S5: Recalibration of different NGS data sets using Lacer. 613 

Empirical (recalibrated) quality scores plotted against reported (uncalibrated) quality scores 614 

for: (A) NA12878 chr1 exome (NCBI36 reference) sequencing data (Illumina GAIIx). 615 

Recalibrated quality scores are shown for each read group individually; (B) SRS017191 616 

human metagenome (Bacteriodes vulgatus ATCC 8482 reference) sequencing data (Illumina 617 

GAIIx); (C) TruSeq Amplicon Cancer Panel (NCBI36 reference) targeted sequencing data 618 

(Illumina MiSeq); (D) UTI89 (UTI89 or MG1655 reference) sequencing data (Ion Torrent); 619 

(E) MG1655 (MG1655 or UTI89 reference) sequencing data (Roche 454). Recalibration by 620 

Lacer (w/o VCF) and GATK (w/ or w/o VCF) is shown. In the absence of a perfect reference, 621 

GATK recalibration produces lower quality scores compared with Lacer recalibration; these 622 

lower quality scores are only partially increased by exclusion of known variants. 623 

Furthermore, Lacer recalibration (using a perfect or imperfect reference) matches GATK’s 624 

recalibration when a perfect reference is provided. Lacer is therefore more accurate across a 625 

wide range of NGS data sets without the requirement of a variant database. 626 

627 
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Supplemental Table S1: Impact of base quality score recalibration by Lacer and GATK on 628 

SNP calls from NA12878 chr19 (GATK HaplotypeCaller).  629 

 630 
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