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Abstract  

The identification of functional non-coding mutations is a key challenge in the field of genomics, 

where whole-genome re-sequencing can swiftly generate a set of all genomic variants in a 

sample, such as a tumor biopsy. The size of the human regulatory landscape places a challenge on 

finding recurrent cis-regulatory mutations across samples of the same cancer type. Therefore, 

powerful computational approaches are required to sift through the tens of thousands of non-

coding variants, to identify potentially functional variants that have an impact on the gene 

expression profile of the sample. Here we introduce an integrative analysis pipeline, called µ-

cisTarget, to filter, annotate and prioritize non-coding variants based on their putative effect on 

the underlying 'personal' gene regulatory network. We first validate µ-cisTarget by re-analyzing 

three cases of oncogenic non-coding mutations, namely the TAL1 and LMO1 enhancer mutations 

in T-ALL, and the TERT promoter mutation in melanoma. Next, we re-sequenced the full genome 

of ten cancer cell lines of six different cancer types, and used matched transcriptome data and 

motif discovery to infer master regulators for each sample. We identified candidate functional 

non-coding mutations that generate de novo binding sites for these master regulators, and that 

result in the up-regulation of nearby oncogenic drivers. We finally validated the predictions using 

tertiary data including matched epigenome data. Our approach is generally applicable to re-

sequenced cancer genomes, or other genomes, when a disease- or sample-specific gene signature 

is available for network inference. µ-cisTarget is available from http://mucistarget.aertslab.org.  
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Introduction 

Oncogenic programs are characterized by aberrant gene expression profiles. A gene regulatory 

network underlying a cancer transcriptome can be considered as a perturbed stable network 

configuration, or as a cancer attractor state [1]. Gene expression changes leading from a normal 

cell to a malignant state are generally due to a series of acquired somatic mutations, which often 

affect proteins playing a key role in transcriptional regulation [2]. These can include mutations, 

amplifications, or translocations leading to an altered function or expression of transcription 

factors (e.g., MYC, TAL1, MITF, TP53), co-factors (EZH2, RB1, IDH1, MLL), or signalling 

molecules that lead to downstream alterations in transcription factor activity (e.g., 

RAS/RAC/RAF, KIT, PTEN, CDKN2A). More subtle changes can also occur in gene regulatory 

networks, which may cause fine-tuning of the emerging transcriptome rather than necessarily 

yielding a different attractor state. Such local network changes can involve the addition or 

removal of an edge in the network, affecting a single interaction between a transcription factor 

and a target gene. Edge perturbations can be caused by a mutation of a transcription factor 

binding site in a promoter or enhancer, leading to a de novo gain, or a loss, of the binding site, 

and a consequential expression change of a nearby target gene. Several examples of such 

perturbations are known to be associated to oncogenic programs, such as the gain of an ETS-

family binding site in the TERT promoter, the gain of a MYB binding site in a 7.5 kb upstream 

TAL1 enhancer [3–5], and the recently identified gain of a MYB binding site 4 kb upstream of 

LMO1 oncogene	[6]. Note that whereas these three examples occur recurrently across melanoma 

or liver cancer (for TERT) or across T-cell acute lymphoblastic leukemia (for TAL1 and LMO1), 

they represent exceptional cases, since whole-genome sequencing, even across large cohorts such 

as 560 breast cancer genomes [7] failed to identify additional binding site changes that are 

significantly recurrent [8] (see also recent reviews [9–11]). This suggests either that cis-acting 

mutations are usually passenger mutations rather than driver mutations, or that they can occur as 

drivers at diverse positions, spread across hundreds of kilobases affecting the regulation of a 

target gene. The latter would render current cohort sizes underpowered, and would require 

different approaches to identify causal cis-regulatory mutations and their downstream 

consequences.  

Computational predictions of a gain or loss of a transcription factor binding site can be performed 

by scoring the reference and mutated sequence with a position weight matrix (PWM) of the 

candidate factor [12,13]. This results in a "delta" PWM score, to which an arbitrary threshold can 

be applied to decide whether the gain or loss is strong enough. Such an approach is implemented 
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in various bioinformatics tools, such as FunSeq2 [14] and OncoCis [15]. However, as position 

weight matrices are notorious in producing false positive predictions, also the delta score results 

in an excess of false positive gains or losses of binding sites. A possible solution to this problem 

is to take the context of the binding site into account, thus the encompassing regulatory region 

(promoter or enhancer). For example, the gain of MYB binding site in a random genomic position 

may not lead to de novo enhancer activity, whereas such a gain in the context of RUNX binding 

sites (MYB and RUNX bind together to leukemia enhancers) may cause ectopic enhancer activity 

[16]. Computationally, this solution depends on training more complex enhancer models, for 

example based on k-mer SVMs [17], Random Forests [16], or deep learning (deepSEA [18]). The 

main limitation of this approach is the dependence on high-quality training data to construct 

accurate enhancer models [16]. 

Here we investigate how "personalised" gene regulatory network reconstruction can be used to 

identify specific candidate cis-regulatory driver mutations in cancer genomes. Gene regulatory 

network inference is a common technique that has provided insight into master regulators in 

many cancer types [19–21], and the targets they regulate. Here, we exploit gene regulatory 

networks for the prioritization of non-coding mutations. Particularly, by first identifying the 

master regulators operating in cancer sample, we can identify those non-coding mutations that 

generate de novo targets of these master regulators. We develop an online tool to streamline this 

process, called µ-cisTarget, and we demonstrate the use of µ-cisTarget on known cases of TERT 

promoter and TAL1 enhancer mutations. Finally, we predict new cis-regulatory mutations in ten 

cancer cell lines for which we sequenced the genome, transcriptome, and epigenome.  
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Results 

A small number of non-coding mutations generate de novo oncogenic edges in driver gene 

regulatory networks  

We developed a new computational pipeline, called µ-cisTarget, to identify cis-regulatory 

mutations in a cancer sample, when both the whole genome sequence and the gene expression 

profile of that sample are available. The concept behind µ-cisTarget is to simultaneously identify 

“personalized” candidate master regulators for a given cancer sample, based on the gene 

expression profile of the sample (and optionally combined with a 'general' cancer gene signature 

of the same cancer subtype), and to prioritise SNVs and INDELs in the non-coding genome of the 

sample by their likelihood to generate de novo binding sites for any of these master regulators 

(Figure 1). Among the list of candidates, we further determine a final set of mutations by 

applying two filters, namely: (i) the transcription factor for which a binding site is generated is 

itself expressed in the sample and is related to the cancer type; and (ii) the mutation is located 

close (up to 1 megabase (Mb)) to a target gene that is over-expressed, and within the same 

topologically associating domain (TAD) as the over-expressed target, it is related to the cancer 

type under study, and/or it is a potential driver gene (Figure 1, see Methods). These criteria are 

largely inspired by previously published cis-regulatory driver mutations, such as those driving 

TERT, TAL1 and LMO1 [3–6]: these oncogenes are over-expressed, and the generated binding 

sites are bound by (over-) expressed and cancer-type relevant transcription factors, namely 

GABPA for TERT and MYB for both TAL1 and LMO1. 

To illustrate how µ-cisTarget works we first apply it to a simulated set of 67 variants spread 

around the TAL1 gene (up to 1 Mb upstream or downstream), where we inserted the true driver 

variant that generates a de novo MYB binding site. In the first step of the method, we used as 

input the top 500 MYB ChIP-seq peaks obtained in the same sample where the variant occurs (the 

JURKAT cell line), which finds the MYB and RUNX1 motifs as enriched (Supplementary 

Figure 1). This analysis thus infers a candidate network with MYB and RUNX1 as master 

regulators (Figure 2a). Among the 68 variants, only one generates a new binding site for any of 

the enriched motifs, which is the true driver mutation, with a strong gain for the MYB motif 

(Figure 2b-c). We then used the same master regulators to interrogate the recently discovered 

LMO1 enhancer mutation and again we could correctly predict MYB gain of motif as a result of 

this non-coding mutation (Figure 2b,d).  
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Next, we tested whether µ-cisTarget could identify the well-known TERT promoter mutation 

from a sample with a fully sequenced genome (having the TERT mutation) and a matched 

transcriptome. The TERT promoter mutation results in a de novo ETS-binding site and occurs in 

55% of melanoma samples [22]. We selected 7 melanoma samples from TCGA with a TERT 

promoter mutation and for which expression and whole genome mutation data is available 

through TCGA. We ask whether µ-cisTarget can identify the TERT promoter mutation in each 

individual sample as a candidate cis Gain-of-Function (cis-GoF) mutation, starting from the 

matched gene expression and mutation data. The first step consists of the identification of master 

regulators, starting from a gene signature of sample-specific up-regulated genes. For six out of the 

seven samples, µ-cisTarget predicts at least one ETS family member as master regulator 

(Supplementary Table 1). The second step of µ-cisTarget consists of identifying mutations that 

result in a gain-of-binding site near potential oncogenic drivers per sample (i.e. over-expressed 

genes that are either specific for the cell type or a potential driver gene, see Supplementary 

Table 2). In all those cases where an ETS factor is found as a master regulator, the TERT 

promoter mutations (both C228T and C229T) are predicted as gains of ETS binding sites (Figure 

3a-c, Supplementary Table 1). Next, to test the specificity of our method we used whole-

genome mutation calls for three of these melanoma samples and predicted candidate cis-GoF 

mutations (Figure 3b). From the initial 110K to 240K mutations, µ-cisTarget identified 58 to 114 

candidate cis-GoF mutations, including the TERT promoter mutations. All these candidates were 

either within introns or distal regulatory regions, while the TERT promoter mutations are among 

the few predictions located in a gene promoter (only TCGA-EE-A20H has two other candidate 

mutations that are located in a gene promoter) (Supplementary Table 3). This demonstrates that 

µ-cisTarget is able to identify a manageable number of candidate functional non-coding mutations 

among thousands of candidates, while providing a prediction of their function in terms of sample-

specific gene regulatory networks. More importantly, our results demonstrate that µ-cisTarget can 

identify a functional non-coding mutation (such as the TERT promoter mutation) in a sample-

centric manner without requiring recurrence across a large cohort.  

 

Application of µ-cisTarget to ten re-sequenced cancer cell lines  

After validating µ-cisTarget on the TAL1, LMO1, and TERT mutations, we analysed ten widely 

used cancer cell lines as a discovery set (Supplementary Table 4). We essentially implemented 

the same strategy as in the validation cases. Namely, we first identify cell-line specific master 

regulators that are relevant genes per cell line using motif enrichment analysis. Next, we identify 
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non-coding mutations in the genome of that cell line that create de novo binding sites for any of 

these master regulators, and that are near oncogenic drivers (relevant or driver genes 

(Supplementary Table 2)). For the first step we obtained gene expression profiles of these cell 

lines from COSMIC Cell Lines Project [23] and predicted master regulators using gene signatures 

of these cell lines (Table 1). For each sample, all genes expressed with Z-score above 1 

(compared to all other cell lines in Cosmic Cell Line Project) are used for motif-enrichment based 

master regulator discovery. The initial set of predicted transcription factors are filtered for their 

own over-expression (Z-score above 1) and their cancer type specificity (based on 

Supplementary Table 2).  Interestingly, our motif-based predictions of master regulators is 

supported by ChIP-seq data (when available) for 6 / 33 master regulators across the 10 cell lines 

(Supplementary Table 4).  

Transcription factors identified at this step can be linked to several signalling pathways 

(Supplementary Figure 2) but two functional classes of transcription factors emerge at this step: 

lineage-associated transcription factors and EMT-associated transcription factors. Lineage 

associated transcription factors include MITF for the melanoma cell line SK-MEL-5 [24], TP63 

for the lung cancer line A549 [25], KLF5 for the colon cancer line HT-29 [26], and ETS-family 

transcription factors for prostate, colon, ovarian and breast cancer cell lines [27–31]. This class of 

transcription factors is expressed at an earlier developmental stage and is reactivated during 

tumorigenesis. Another group of transcription factors are the EMT associated factors: FOSL1 for 

MDA-MB-231 and DU-145, ZEB1 for SKOV-3, FOS for OVCAR-3, and SNAI2 for SK-MEL-5. 

The majority of cell lines with these TFs as master regulators are derived from metastatic sites 

(SK-MEL-5, DU-145, PC-3). Of the remaining two cell lines, OVCAR-3 is derived from a 

chemo-resistant patient [32] and MDA-MB-231 demonstrates mesenchymal cell morphology [33] 

and is regarded as invasive in vitro [34]. Master regulators obtained at this step also corroborate 

well with what is known about these cell lines. For instance, the predicted master regulators for 

the lung cancer cell line A549 include NFE2L2 (NRF2) which is an essential gene for cell 

proliferation and chemoresistance in lung cancers, and specifically in A549 since knock-down of 

NFE2L2 in A549 inhibits proliferation [35]. Another example involves the MDA-MB-231 cell 

line for which ETS factors ETS1 and ETV1, as well as FOSL1 and STAT5A/B (the motif is 

directly annotated for both STAT5A and STAT5B) are found as master regulators. Gene knock-

down studies involving these four transcription factors in this cell line demonstrated that each of 

these transcription factors are essential for growth, migration and metastatic potential of this cell 

line [36–39]. And lastly, it has been shown for the ovarian cancer cell line SKOV-3 that 

inhibition of ZEB1, which is predicted as a master regulator, hampers migration in vivo and 
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tumor growth in vitro when xenografted in mice [40]. In conclusion, master regulator predictions 

seem to capture and represent oncogenic processes ongoing in these cell lines.  

Next, we obtained whole genome mutation calls for 10 cell lines by re-sequencing them using a 

combination of Illumina and Complete Genomics (CG) technology (Supplementary Table 5).  

On average the cell lines contain 1.69 Mio variants (SNVs and INDELS combined) of which, on 

average, 98% are non-coding (Table 1, Supplementary Table 5). For each sample, we scored 

non-coding mutations using sample-specific master regulators identified in the first step. Again, 

we defined candidate cis-GoF mutations as variants that generate de novo binding sites for any of 

the predicted master regulators, near oncogenic drivers. There is a high variation between the 

number of candidate cis-GoF mutations between cell lines and this correlates with the number of 

somatic coding mutations for these cell lines (r = 0.96 & p-value < 0.05 except for HCT-116) 

(Figure 4, Supplementary Figure 3). Across all ten cell lines, µ-cisTarget initially identifies 485 

candidate mutations, and even though we assign mutations to genes in a regulatory space up to 1 

Mb, almost all of them results in an association covered within a TAD (468/485). We focus on 

those 468 mutations associated to their targets within a known TAD affecting 290 oncogenic 

drivers (Figure 4, Supplementary Table 6). Only 29 genes have a protein altering mutation (i.e. 

missense substitution, in-frame or frameshift indel) that might be associated with its over-

expression and none of these genes are affected by copy number aberrations, thus 94% of the 

genes are affected only by non-coding mutations (Supplementary Table 7). Although there are 

no genomic positions recurrently mutated across the 10 cell lines, there are 24 genes that are 

recurrently affected by a cis-GoF mutation in 2 or more samples. For instance, FOXA1, which 

acts as pioneering factor in prostate cancer [41], is found be affected by cis-GoF mutations in the 

prostate cancer cell lines DU-145, PC-3 and in the colon cancer cell line HT-29 (Supplementary 

Table 8). Moreover, there are two de novo master regulator – target gene pairs recurrent across 

10 cell lines: FOSL1- FOXA1 in prostate cancer cell lines DU-145 and PC-3; and FOSL1- MTRR 

in the breast cancer cell line MDA-MB-231 and prostate cancer cell line DU-145. Although it 

may be possible that other binding site gains, located near genes that are not (yet) known as 

oncogenes for the cancer type under study, could play a role in the oncogenic program, we 

consider this as unlikely, given the large amounts of cancer type specific (and general) oncogenes 

that are known so far. In conclusion, µ-cisTarget provides a short list of candidate cis-regulatory 

mutations, that have a potential impact on the expression of relevant oncogenes.  
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Evaluation of predicted cis-regulatory mutations using matched epigenomes and allele-

specific expression 

Evaluating the potential impact of predicted oncogenic cis-mutations is challenging. Here, we test 

whether the predicted mutations may have an impact on the regulatory activity of the 

encompassing region. To this end, we use existing as well as newly obtained regulatory data, and 

allele specific expression information (as obtained from RNA-seq) for our 10 cell lines. Note that 

previous studies have used regulatory data to filter non-coding mutations [42], but these were not 

sample-matched. Here we explicitly use matched regulatory data for the same sample. 

Overlapping candidate cis-GoF mutations with sample matched H3K27Ac peaks revealed that 98 

out of the 468 candidate mutations are in a potentially active regulatory region. For 6 out of the 

10 cell lines, candidate cis-GoF mutations are enriched in active regulatory regions 

(hypergeometric test p-value <= 0.05, Figure 4, Supplementary Table 9). The same holds true 

for cis-GoF SNPs, since for all cell lines cis-GoF SNPs are enriched in active regulatory regions, 

indicating that µ-cisTarget can identify potentially functional variants, be it SNPs or mutations. 

Additionally, we queried a large set of ChIP-seq peaks against other regulatory marks and 

transcriptions factors as obtained from the ChIP-Atlas database (http://chip-atlas.org) (433 

datasets for 7 of our 10 cell lines, Supplementary Table 10, see Methods) which revealed an 

additional 12 cis-GoF mutations that are located in a TF ChIP-seq peak in the corresponding 

sample (Supplementary Table 6). In one of these examples, a predicted gain of a AP-1 binding 

site is observed upstream of the RARB gene in the breast cancer cell line MDA-MB-231, and this 

site co-localizes with a JUNB ChIP-seq peak (ChIP-seq performed in MDA-MB-231). Moreover, 

this mutation is indeed observed in the actual reads of the JUN ChIP-seq data so it strongly 

suggests that our prediction that this candidate mutation creates a de novo AP1 binding site 

(Figure 5).    

Next, we investigated whether the predicted cis-regulatory mutations were present in an allele-

specific manner in the expression data, in other words we checked if the mutation is associated to 

a gene with allele specific expression (ASE). Using coding heterozygous SNPs from WGS calls 

and RNA-seq data (which was not available for SKOV-3 and OVCAR-3) we identified genes 

with ASE, and this revealed that 154 of 468 candidate cis-GoF mutations show allelic bias in 

expression data (Supplementary Table 6). Note that our effort to identify mutations showing 

allelic bias in regulatory data failed since the coverage of H3K27Ac data was too low to 

determine variant allele frequency (80/98 candidate cis-GoF mutations in peaks have a depth of 

coverage below 5). When we expanded our search to also include SNPs, we identified 1304 SNPs 
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in H3K27Ac peaks with a motif gain for a master TF, and of these, 41 show allelic bias in the 

regulatory data (Supplementary Table 11). This illustrates that gain of important motifs can 

yield allele-specific regulatory activity, but very few non-dbSNP, thus candidate somatic 

mutations were identified with this property across the 10 cell lines. On the other hand, by 

combining regulatory activity information and RNA-seq based ASE we found evidence of 

selection for 217 of 468 candidate cis-GoF mutations (Figure 4). In conclusion, µ-cisTarget can 

be applied to matched genome-transcriptome data, or to matched genome-epigenome data, to 

obtain non-coding gain-of-function mutations resulting in gains of subtype-specific master 

regulators, near over-expressed oncogenes. 
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Discussion 

Whole-genome re-sequencing of cancer genomes is taking a prominent place in research and the 

clinic. The identification and prioritization of candidate driver mutations in the non-coding 

genome is therefore a key challenge. Indeed, several recent studies indicate an important role for 

cis-regulatory mutations in disease, not only in cancer (e.g., TERT, TAL1 [3–5]), but also in 

complex diseases (e.g., Type II Diabetes FTO locus	 [43], Parkinson’s disease [44]) and in 

familial disorders (e.g. preaxial polydactyly [45]). However, other studies have highlighted that 

cancer cis-regulatory mutations are usually not recurrent across patients, except for a few 

exceptions such as the TERT promoter mutation. To reconcile these two opposing directions, we 

decided to step away from recurrence calculations in a cohort, but to work under the assumption 

that cis-regulatory mutations may be rarer than expected. A consequence of this assumption, if 

each sample harbours none or only few cis-regulatory mutations, is that statistical enrichment 

analyses may fail to provide meaningful results. Rather, the identification of functional cis-

regulatory mutations may require a more ad hoc biological approach, which we explored in this 

study.  

We are not the first to score and prioritize candidate mutations based on their putative gain (or 

loss) of transcription factor binding sites. In fact, most previously existing methods, such as 

FunSeq2, OncoCis, or RegulomeDB, use an ad hoc approach to annotate and filter candidate 

mutations based on motif loss/gain (FunSeq2, OncoCis) or on regulatory data from publicly 

available databases such as ENCODE (RegulomeDB). However, several important pieces of 

information are not utilized by previously existing tools, and are explored in our study. Firstly, 

the gain (or loss) of a motif is expected to be functionally relevant if the transcription factor itself 

is expressed in the cancer cells under study. If the transcription factor is (or was) not expressed, 

the gain of a binding site is not expected to be under positive selection.  

Secondly, the motif gain (for an expressed transcription factor) should preferably represent a new 

binding site for a master regulator, meaning that this (over-expressed) transcription factor 

regulates other genes in the cancer cell through this motif. The approach we present here is to our 

knowledge the first one to take this criterion into account. Practically, to address this challenge 

we use a patient-specific, or subtype specific gene signature, in which over-represented motifs 

represent candidate motifs of master regulators.  

Thirdly, the motif gain should yield either de novo regulatory activity of the encompassing 

enhancer, or should strengthen/amplify that enhancer. Such a gain of function may be visible as 
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allele-specific bias of regulatory activity, whereby for example the ChIP-seq reads are 

homozygous for the variant.  

Fourthly, the motif and enhancer gain should result in the up-regulation of a nearby oncogene, so 

that it provides a growth advantage to the cancer cell, and can be positively selected. Moreover, 

under this fourth piece of information, we expect that the predicted target gene is actually a 

known oncogene. Indeed, it is rather unlikely that previously unknown oncogenes could be 

discovered that are only up-regulated by a cis-regulatory mutation, and not by any other means 

(e.g., duplication, translocation, or mutation).  

Our approach currently focuses on gain-of-function mutations that generate new binding sites for 

over-expressed activators, yielding up-regulation of a nearby oncogene. Clearly, several other 

scenarios are not covered by our proof-of-concept analyses. These include for example: the loss 

of an activator binding site near a tumour suppressor (e.g., loss of p53 binding site); the loss of a 

repressor binding site near an oncogene; or the gain of a repressor binding site near a tumour 

suppressor. We have focused in this study on the gain of an activator site near an oncogene 

because the currently known cis-regulatory driver mutations are all of this class, and this is the 

most conceivable and most pragmatic way to work within the context of motif discovery and 

gene regulatory networks. Future work is needed to address the other categories, and may reveal 

new types of cis-regulatory mutations. Another possible increase of sensitivity would be to also 

allow motif gains for relevant transcription factors that are expressed in the sample, and related to 

the cancer type, but for which the motif was not enriched in the input gene signature.  

Our method provides a handle on understanding non-coding mutations in the context of 

regulatory genomics, thus we envisioned µ-cisTarget not as a method for a final analysis but 

rather a starting point for in depth analysis. The typical use of a strategy like we depict here can 

be either to annotate a cancer genome with functional information regarding cis-regulatory 

mutations; or in a research context to generate a list of candidate mutations that can be further 

tested in a targeted screen, for example using massively parallel enhancer-reporter assays or 

CRISPR-Cas9 based modulation/mutation of the candidate mutations.  

In conclusion, we present a computational framework inspired by a cancer biological viewpoint 

on oncogenic driver mutations. Our method can be used to identify candidate cis-regulatory 

mutations using sequence information alone, but works best on samples with combined genome 

and transcriptome data; while optimal results can be obtained if also matching epigenome data is 
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available. Overall our results suggest the presence of only few cis-regulatory driver mutations per 

genome in cancer genomes that may alter the expression levels of specific oncogenes. 
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Materials and methods 

Analysis of melanoma whole genomes for TERT promoter mutations  

Expression data (Z-scores across all TCGA sequenced cancers) for seven melanoma samples 

(Supplementary Table 1) with TERT promoter mutations based on [22] were downloaded from 

Cosmic (v74). The signatures per sample (i.e. genes that have an expression Z-score above 1) 

were analysed by iRegulon to build the personalized gene regulatory networks (using the 

following parameters: motif collection 19K, putative regulatory region centered around TSS 

[20kb, 10kb, 500bp], motif rankings database across 10 and 7 species, NES threshold=3, 

ROC=0.03, rank threshold=5000).  

Raw sequence data (bam files) for six melanoma samples was downloaded from GDC Data Portal 

(Legacy Archieve) and re-analyzed with VarScan [46] (command somatic with minimum variant 

allele frequency of 0.1, and a minimum coverage of 5 and 2 reads in tumor and normal samples, 

respectively). Non-coding mutations associated to melanoma-related or cancer driver genes were 

scored with MotifLocator for master TFs obtained in the previous step. The list of candidate cis-

GoF mutations was filtered further using topologically associating domains (TADs) from 21 

human cell lines and tissues [47] .  

 

Whole-genome-sequencing on 10 cell lines 

A549, COLO-205 and PC-3 cell lines were sequenced with Complete Genomics (CG), DU-145, 

OVCAR-3, SKOV-3 were sequenced with Illumina and HCT-116, HT-29, MDA-MB-231, and 

SK-MEL-5 were sequenced with both technologies. Complete Genomics sequencing was 

performed by the service provider using a proprietary sequencing-by-ligation technology. CG 

also performed primary data analysis, including image analysis, base calling, alignment and 

variant calling.  CG variants were further filtered with depth of coverage threshold of 10, 

mutation coverage threshold of 5, and variant allele frequency threshold of 0.20. Illumina 

sequencing was done in accordance with the manufacturer's protocol. Primary data analysis was 

performed with manufacturer's software Casava (v1.8.2). Illumina variants were further filtered 

with depth of coverage threshold of 10 and mutation coverage threshold of 5. Variant calls were 

intersected for samples that were sequenced with both technologies. Coding variants were 

subtracted using protein coding exon locations from GENCODE (v19). Variants were annotated 

as non-SNPs or SNPs using dbSNP build 144 [48]. 
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Cell line specific regulatory data  

H3K27ac ChIP-seq data for 6/10 cell lines were obtained from GEO and literature: A549 and 

HCT-116 (GSE31755) [49], HT-29 (GSE53602), PC-3 [50], MDA-MB-231 [51], SK-MEL-5 

(GSE60666) [52]. For the remaining 4 cell lines (OVCAR-3, SKOV-3, DU-145, Colo-205), 

ChIP-seq was performed in this study. The cell lines were grown to ~85% confluence per 15-cm 

dish. A total of 20 million cells per sample were collected, yielding ~20 fractions of chromatin. 

ChIP samples were prepared following the Magna ChIP-Seq preparation kit using at least two 

chromatin fractions and 2–2.5 µg of antibody per fraction. Anti-histone H3 acetyl K27 antibody 

(ab4729, Abcam) antibody was used for ChIP. Per sample, 5–30 ng of precipitated DNA or input 

was used to perform library preparation according to the Illumina TruSeq DNA Sample 

preparation guide. In brief, the immunoprecipitated DNA was end-repaired, A-tailed and ligated 

to diluted sequencing adapters (1/100). After PCR amplification (15–18 cycles) and bead 

purification (Agencourt AmpureXp, Analis), the libraries with fragment size of 300–500 bp were 

sequenced using the HiSeq 2000 (Illumina). Sequence reads were mapped to the reference 

genome (hg19-Gencode v18) using Bowtie2 2.1.0 and narrow peaks were called using MACS2 

algorithm (q-value < 0.001) [53]. Then the peaks less than 350 bp from each other were merged. 

Additionally, we have used peak calls from ChIP-Atlas database for 433 regulatory datasets (TF 

and chromatin ChIP-seq) across 7 cell lines (Supplementary Table 10, http://chip-atlas.org).   

 

Selection of cancer type specific TFs and TGs  

Lists of cancer-type specific genes were extracted from NCBI Gene database 

(http://www.ncbi.nlm.nih.gov/gene) (Supplementary Table 2). Next, a collection of 1050 known 

cancer driver genes compiled from different resources [54–59] was used to further annotate the 

cancer type related genes (Supplementary Table 2). 

 

Cell line specific gene signatures and identification of sample-specific master regulators 

Gene expression data (Z-scores) per cell line was obtained from Cosmic Cell Lines project 

(http://cancer.sanger.ac.uk/cell_lines). Cell line specific gene sets were created by selecting genes 

that have an expression Z-score above 1. The signatures were analysed by iRegulon to build the 

personalized gene regulatory networks (using the following parameters: motif collection 19K, 
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putative regulatory region centered around TSS [20kb, 10kb, 500bp], motif rankings database 

across 10 and 7 species, NES threshold=3, ROC=0.03, rank threshold=5000). TFs that are cancer 

type related and expressed in the cell line (Z-score above 1) were considered as master regulators 

of the corresponding cell line (Table 1). 

 

Detection of candidate mutations 

The non-coding mutations were assigned to genes using GREAT tool (up to 1 Mb) [60]. Only the 

non-coding mutations associated with genes that are  

a) over-expressed in the cell line (expression Z-score above 1),  

b) relevant to the cancer type or on the list of known cancer drivers  

were scored by MotifLocator [13]. 

All the motifs corresponding to master TFs from the personalized gene regulatory networks were 

tested to reveal if any mutation from the matched cell line cause a gain of any of these motifs. 

 

Annotation of mutations using topologically associating domains (TADs) 

The assignment of the mutations to the potential target genes within the space 1 Mb is further 

annotated using a large dataset of TAD boundaries generated for 21 samples (14 human tissues 

and 7 human cell lines) [47]. In the output file, the information whether the mutation and the gene 

fall between the boundaries of the certain sample is provided, i.e. if the mutation is in the same 

TAD region with the promoter of the gene. This annotation can be used to further filter mutation-

to-genes associations.  

 

Genome-wide screening of DNA sequences by MotifLocator 

A collection of 8053 unique PWMs directly annotated to 1628 TFs was used for scoring with 

MotifLocator [13]. Scoring was performed at the mutation sites with a window size between 20 

bp to 60 bp depending on the motif size (20 bp if the motif size is 15 bp or less, 30 bp if motif 

size is between 16 bp and 25 bp, and 60 bp if the motif size is larger than 25 bp). The variants 

with mutant MotifLocator score >= 0.90 and delta >= 0.1 were selected (where delta represents 

the difference between MotifLocator scores of mutant and wild type sequences).   
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Validation of candidate mutations using matched transcriptome and epigenome data 

RNA-seq data (bam files) was downloaded for 8 (A549, COLO-205, DU-145, HCT-116, HT-29, 

MDA-MB-231, PC-3, SK-MEL-5) cell lines from GDC Data Portal (Legacy Archieve). 

Heterozygous SNPs per cell line were obtained from whole genome mutation calls by requiring at 

least 5 reads for reference and variant allele, as well as requiring at least 0.10 VAF. Heterozygous 

SNPs were intersected for samples that were sequenced with both Illumina and Complete 

Genomics. Allele specific expression per cell line was calculated using MBASED one-sample 

analysis [61]. Any gene with an adjusted p-value ≤ 0.05 and estimated MAF ≥ 0.6 was annotated 

as exhibiting allele-specific expression.  

 

Availability 

The data generated for this study (H3K27ac ChIP-seq for OVCAR-3, SKOV-3, DU-145, COLO-

205) will be deposited in NCBI’s Gene Expression Omnibus. Genome data are being deposited at 

the European Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/) which is hosted at the 

EBI. The code for µ-cisTarget is freely available at https://github.com/aertslab/mucistarget and a 

web-implementation is available at http://mucistarget.aertslab.org. 
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Tables 

Table 1. Sample-specific master regulators predicted from sample-specific gene signatures.  

Cell line 
Cancer 
type 

# of Master 
TFs / motifs 

Master TFs 
(Master TFs with gained binding sites – in 
bold) 

# of cancer-type relevant 
or driver genes 
associated to Master 
TFs 

HCT-116 Colon 3/42 ATF3, DDIT3, NFE2L2 347 

HT-29 
Colon 

15/254 
ETS2, FGF19, GPD1, HDAC1, HNF1A, KLF4, 
KLF5, KLF6, MZF1, NR1H3, PPARG, RELA, 
RXRA, SP1, ZBTB7A 

448 

MDA-MB-
231 Breast 4/111 ETS1, ETV1, FOSL1, STAT5A 419 

SK-MEL-5 

Melanoma 

20/211 

BAX, CAT, CTCFL, CTNNB1, E2F3, ETV4, 
HHAT, MITF, MXI1, NR4A1, OLIG2, PAX3, 
PIR, PPARGC1A, RAB7A, RUNX3, SNAI2, 
SOX10, TBX2, TFAP2A 

263 

DU-145 Prostate 4/99 FOSL1, HOXA1, SETDB1, YY1 345 

SKOV-3 Ovarian 1/31 ZEB1 284 

OVCAR-3 Ovarian 2/62 EGR1, FOS 255 

A549 Lung 3/67 CEBPB, NFE2L2, TP63 304 

COLO-205 Colon 7/160 BCLAF1, CLOCK, ELF3, HNF1A, HOXB13, 
PITX1, TFF3 445 

PC-3 Prostate 7/216 
ELK1, ETV1, ETV4, FOSL1, HOXB13, 
MTHFD1, SPDEF 427 

 

The table lists the number of predicted master regulators per cell line (together with the number of motifs 

directly associated with these TFs; the names of the master TFs (bold indicating gains), and finally the 

number of candidate over-expressed cancer-type related or driver genes (near these genes we score 

mutations for motif gains). 
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Figures 

Figure 1. Overview of the μ-cisTarget pipeline to predict cis-regulatory mutations  

a) As input μ-cisTarget takes a gene signature and a list of genomic variations. The gene 

signature can be derived from the matched transcriptome of the same cancer sample, or can be a 

general gene signature of the matching cancer subtype. b) Motif discovery on the gene signature 

yields enriched motifs and candidate transcription factors. Motif discovery can be performed 

using i-cisTarget or iRegulon. c) Variations are selected by their proximity (<1Mb) from the 

genes in the input gene signature, and are scored with the motifs found under b). d) Genes with 

gains of motifs for cancer-type-related factors that are expressed in the sample are added to the 

inferred gene regulatory network (red edge). An optional filtering step selects only over-

expressed cancer-related driver genes as targets.  

 

Figure 2. Detection of TAL1 insertion and LMO1 mutation in JURKAT cell line.  

a) Gene regulatory network inferred from the top 500 MYB ChIP-seq peaks on JURKAT cell line 

(by i-cisTarget [62]). The top enriched motifs are directly annotated for RUNX1 and MYB 

transcription factors (TFs), which are also expressed in the JURKAT cell line. Only over-

expressed target genes (TGs) in JURKAT are shown (blue nodes) from which some of them are 

moreover relevant to leukemia cancer type (green nodes) and some are known as cancer drivers 

(orange nodes). The grey edges represent the link between the TF and TG based on the presence 

of the TF motif in a MYB ChIP-seq peak near (<1Mb) the target gene. b) Non-coding mutations 

close to candidate target genes that are over-expressed, relevant and drivers are tested by 

MotifLocator to find candidate mutations that yield a motif gain. Because there is no whole 

genome available for JURKAT cell line, we simulated a dataset with the JURKAT insertion 

upstream of TAL1 together with 67 control mutations from 10 sequenced cancer cell lines (see 

Table 1), that are found in the TAL1 locus. Out of all 68 mutations, only the JURKAT insertion 

showed the gain of MYB motif, which caused a new link between TAL1 and MYB (red arrow). c, 

d) Details of the JURKAT insertion 7.5 kb upstream of the TAL1 oncogene (c) and the JURKAT 

SNV 4 kb upstream of the LMO1 oncogene (d), where the reference and mutated sequences are 

shown (the insertion/SNV in red, the core of the motif is highlighted) together with their scores 

given by MotifLocator for the master MYB motifs. 
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Figure 3. TERT mutation identification through personalized gene regulatory network of 

TCGA-EE-A2M6 

a) Gene regulatory network inferred by iRegulon analysis from over-expressed genes (Z-score 

>=1) of melanoma sample TCGA-EE-A2M6. Among the enriched motifs are directly annotated 

motifs for ETS TFs (ELF1, ETS1), BRCA1, E2F family TFs (E2F1, E2F3, TFDP1, TFDP2), 

RB1, and SETDB1 (for simplicity the network is drawn only with cancer driver TFs, for a full list 

of predicted master regulators for this sample see Supplementary Table 1). The grey edges 

represent the link between TFs and TGs based on iRegulon analysis, while red edge indicates 

gain of ETS motif caused by the TERT promoter mutations C228T and C229T. All the 

represented TGs are over-expressed in TCGA-EE-A2M6, associated with melanoma and known 

cancer drivers. b) Detail of the mutation at the TERT promoter, where the reference and mutated 

sequences are shown (the mutation in red, the core of the motif is highlighted) together with their 

scores given by MotifLocator for the swissregulon__hs__ELF1_2_4.p2 motif (which is directly 

annotated to ELF1, ELF2 and ELF4). 

 

Figure 4. Candidate cis-GoF mutations in 10 cancer cell lines  

For each cell line the number of candidate cis-GoF mutations (above) and SNPs (below) are 

indicated within each box. Across 10 cell lines we identified 468 candidate cis-GoF mutations 

and 11816 SNPs. Identified candidates are validated using matched regulatory (H3K27Ac ChIP-

seq) and transcriptomic data, and overall 217 out of 468 candidate cis-GoF mutations (4452 out 

of 11816 SNPs) exhibited evidence for selection.  

 

Figure 5. Personalized gene regulatory network of MDA-MB-231 

Gene regulatory network inferred by motif-enrichment analysis from over-expressed genes (Z-

score >=2) of breast cancer cell lines MDA-MB-231. Four master regulators are identified for this 

cell line: ETS1, ETV1, FOSL1, STAT5A. The grey edges represent the link between TFs and 

TGs based on iRegulon analysis, while red edges indicate gain of motifs caused by the cis-GoF. 

All the represented TGs are over-expressed in MDA-MB-231, are associated with breast cancer 

and are known cancer drivers. b) A cis-GoF mutation in a distal enhancer (590Kb upstream) of 

RARB gene creates a de novo AP1 binding site (resulting in a red edge between AP1 family 

transcription factor FOSL1 and RARB).  c) IGV screenshot shows that the mutation is 
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heterozygous in MDA-MB-231 whole genome sequence data (below), and homozygous in JUN 

ChIP-seq data (above).  
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Supplementary Tables 

Supplementary Table 1.  Analysing 7 melanoma whole genomes with TERT promoter mutation 
using μ-cisTarget 

Supplementary Table 2. Cell type specific genes and potential driver genes 

Supplementary Table 3. Candidate cis-GoF mutations in 3 melanoma whole genomes 

Supplementary Table 4. Transcription factor ChIP-seq track enrichment for predicted master 
regulators  

Supplementary Table 5.  Overview of variants in 10 cell lines; sequencing technologies, number 
of variants before and after various filtering steps. 

Supplementary Table 6. Candidate (non-SNP) cis-GoF mutations in 10 cell lines. 

Supplementary Table 7. Protein altering coding mutations in genes affected by a cis-GoF 
mutation 

Supplementary Table 8. Genes affected by cis-GoF mutations across 10 cell lines 

Supplementary Table 9. Enrichment of cis-GoF mutations and SNPs in active regulatory 
regions 

Supplementary Table 10. Matching TF and chromatin ChIP-seq data for 10 cell lines from 
ChIP-Atlas database 

Supplementary Table 11. cis-GoF SNPs with regulatory allelic bias in 10 cell lines 

 

 

Supplementary Figures 

Supplementary Figure 1. i-cisTarget motif enrichment results for the MYB ChIP-seq peaks on 

JURKAT. Distribution of the area under the curve results for all 18832 motifs tested using the top 

500 MYB ChIP-seq peaks on JURKAT cell line as input set. The arrows indicate the first motif 

found for RUNX and MYB transcription factors together with their respective normalized 

enrichment scores (NES). The table shows the top ten enriched motifs with their respective 

origins, NES and motif logos. 

Supplementary Figure 2. Heatmap visualizing pathways each master regulator per cell line 

involved based on GeneAnalytics analysis (geneanalytics.genecards.org) [63] 

Supplementary Figure 3. Scatter plot showing the number of somatic coding mutations in 10 

cell lines versus number of cis-GoF mutations. Here the somatic coding mutations were extracted 

from Cosmic Cancer Cell Lines project database by selecting coding mutations with “Confirmed 

somatic variant” or “Reported in another cancer sample as somatic” tags. The black line 
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represents the linear fit excluding the colon cancer cell line HCT-116 and dashed grey line 

represents the linear fit including all cell lines.   

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130641doi: bioRxiv preprint 

https://doi.org/10.1101/130641


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130641doi: bioRxiv preprint 

https://doi.org/10.1101/130641


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 25, 2017. ; https://doi.org/10.1101/130641doi: bioRxiv preprint 

https://doi.org/10.1101/130641


Sample
Total # of 
mutations

# of candidate cis-gof 
mutations

Master Regulators Gene body Proximal Distal

TCGA-EE-A20H 240074 43 3 68 BRCA1, E2F1, E2F3, ETS1, 
NR3C1, RB1, TFDP1, TFDP2

TCGA-EE-A2M6 122342 17 1 40
BRCA1, E2F1, E2F3, ELF1, 
ETS1, NR3C1, RB1, SETDB1, 
TFDP1, TFDP2

TCGA-ER-A19N 110064 31 1 70

ELF1, ELF4, ELK4, EP300, ERG, 
ETS1, ETV4, ETV6, FLI1, IKZF1, 
IRF4, MYB, NAP1L1, NFKB1, 
NR1H2, RAB7A, RARA, RARB, 
RXRA, TFAP2A, TFAP2C, ZEB1

TCGA-FS-A1ZA-06 
chr5:1295228 G/A

CCCGGAGGGGG….….……………………0.814 
CCCGGAAGGGG…..………………………0.968

Reference:  
Mutant:

GABPA motif

delta=0.154 

Motiflocator  
scores

TG

TF endogenous interaction

interaction via motif-gain

TCGA-EE-A2M6 
chr5:1295228 GG/AA

CCCGGAGGGGG….… …………………..……………0.808 
CCCGGAAAGGG………………….……………………0.940

Reference:  
Mutant:

ELF1 motif

delta=0.132 

Motiflocator  
scores

Sample Mutation
TERT expression 

(Z-score)

# of ETS TFs & 
motifs found in 

the network
#of ETS TFs & 
motifs found

TCGA-EE-A20H-06 C228T 2.834 1 1

TCGA-EE-A2M6-06 C228T,C229T 5.724 4 6

TCGA-ER-A19N-06 C228T 1.412 19 34

a b

c

Sample
Total # of 
mutations

# of candidate cis-gof 
mutations 
(in TADs)

Proximal 
(+-100bp to TSS) Master Regulators 

TCGA-EE-A20H 240074 114 3
BRCA1, E2F1, E2F3, 
ETS1, NR3C1, RB1, 
TFDP1, TFDP2

TCGA-EE-A2M6 122342 58 1
BRCA1, E2F1, E2F3, 
ELF1, ETS1, NR3C1, RB1, 
SETDB1, TFDP1, TFDP2

TCGA-ER-A19N 110064 102 1

ELF1, ELF4, ELK4, 
EP300, ERG, ETS1, ETV4, 
ETV6, FLI1, IKZF1, IRF4, 
MYB, NAP1L1, NFKB1, 
NR1H2, RAB7A, RARA, 
RARB, RXRA, TFAP2A, 
TFAP2C, ZEB1
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A549 
13 

255

DU-145 
229 
805

COLO-205 
5 

281

MDA-MB-231 
14 

643

HCT-116 
11 
77

HT-29 
58 
XX

SK-MEL-5 
80 

3119

SKOV-3 
9 

335

OVCAR-3 
28 

1773

PC-3 
21 

940

468 candidate cis-GOF mutations 
8228 candidate cis-GOF SNPs

A549 
1 

41

DU-145 
90 

316

COLO-205 
2 

68

MDA-MB-231 
2 

18

HCT-116 
0 
4

HT-29 
0 

XX

SK-MEL-5 
0 

79

SKOV-3 
3 

49

OVCAR-3 
9 

314

PC-3 
3 

53

110 candidate cis-GOF mutations in active regulatory regions 
942 candidate cis-GOF SNPs in active regulatory regions 

Filtering with sample matched H3K27Ac 
and transcription factor CHIP-seq data

Filtering with sample matched allele 
specific expression data

154 candidate cis-GOF mutations associated to genes with ASE 
2337 candidate cis-GOF SNPs associated to genes with ASE 

A549 
6 

XX

DU-145 
99 

805

COLO-205 
0 

281

MDA-MB-231 
2 

643

HCT-116 
3 

77

HT-29 
15 
XX

SK-MEL-5 
24 

3119

SKOV-3 
NA 
335

OVCAR-3 
NA 

1773

PC-3 
5 

940

A549 
13 

255

DU-145 
229 
805

HCT-116 
11 
77

SKOV-3 
9 

335

110 cis-GOF mutations in active regulatory regions 
942 candidate cis-GOF SNPs in active regulatory regions 

A549 
6 

86

DU-145 
99 

425

COLO-205 
0 

46

MDA-MB-231 
2 

215

HCT-116 
3 

13

HT-29 
15 

1370

SK-MEL-5 
24 

1313

SKOV-3 
NA 
NA

OVCAR-3 
NA 
NA

PC-3 
5 

239

154 cis-GOF mutations associated to genes with ASE 
3707 candidate cis-GOF SNPs associated to genes with ASE 

A549 
13 

255

DU-145 
229 
805

COLO-205 
5 

281

MDA-MB-231 
14 

643

HCT-116 
11 
77

HT-29 
58 

3588

SK-MEL-5 
80 

3119

SKOV-3 
9 

335

OVCAR-3 
28 

1773

PC-3 
21 

940

468 candidate cis-GOF mutations 
11816 candidate cis-GOF SNPs

A549 
1 

41

DU-145 
80 

316

COLO-205 
2 

68

MDA-MB-231 
1 

18

HT-29 
0 

92

HCT-116 
0 
4

SKOV-3 
3 

49

SK-MEL-5 
0 

79

OVCAR-3 
9 

314

PC-3 
2 

53

98 cis-GOF mutations in peaks 
1304 cis-GOF SNPs in peaks

Filtering with sample matched regulatory 
activity data (H3K27Ac ChIP-seq)

Filtering with sample matched allele specific 
expression data (RNA-seq)

A549 
0 
0

DU-145 
1 
5

COLO-205 
0 
1

MDA-MB-231 
0 
5

HCT-116 
0 
1

HT-29 
0 
9

SK-MEL-5 
0 

10

SKOV-3 
0 
1

OVCAR-3 
0 
8

PC-3 
0 
2

6 cis-GOF mutations in peaks with allelic bias 
75 candidate cis-GOF SNPs in peaks with allelic bias

A549 
6 

108

DU-145 
146 
579

COLO-205 
2 

100

MDA-MB-231 
3 

223

HCT-116 
3 

17

HT-29 
15 

1430

SK-MEL-5 
24 

1352

SKOV-3 
3 

49

OVCAR-3 
9 

314

PC-3 
6 

280

217 candidate cis-GOF mutations in peaks or associated to genes with ASE 
4452 candidate cis-GOF SNPs in peaks or associated to genes with ASE
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ba

A549 
chr9:20543872 G/T

CTTGCTTGATGCAA.……..………………0.802 
CTTGCTTTATGCAA.………   ……………0.904

Reference:  
Mutant:

CEBPB  
motif

delta=0.101 

Motiflocator  
scores

TG

TF endogenous interaction

interaction via motif-gain

MLLT3

RARB
~ 590 kb

JU
N 

Ch
IP

-se
q

W
GS

a

b c
MDA-MB-231 

chr3:24879388  T/C

AAAATTCGTGCCT.………   ……………0.802 
AAAACTCGTGCCT.………   ……………0.933

Reference:  
Mutant:

FOSL1  
motif

delta=0.130 

Motiflocator  
scores
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