
Title: Reassessment of lesion-associated gene and variant pathogenicity in focal human 

epilepsies 

 

Short Running Title: Neuropathology variant evaluation 

 

Lisa M. Neupert1 MSc, Michael Nothnagel1 PhD, Patrick May2 PhD, Aarno Palotie3,4,5 MD PhD, Mark 

Daly4,5 PhD, Peter Nürnberg1,6,7 PhD, Ingmar Blümcke8 MD, Dennis Lal1,4,5 PhD 

 

1 Cologne Center for Genomics (CCG), University of Cologne, Germany 

2 Luxembourg Centre for Systems Biomedicine, University Luxembourg, Luxembourg  

3Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland 

4 Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., USA 

5 Analytical Translational Genetics Unit, Massachusetts General Hospital, Harvard University, USA 

6 Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany  

7 Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 

University of Cologne, Cologne, Germany 

8 Department of Neuropathology, University Hospital Erlangen, Germany 

 

Corresponding Author:    

Dennis Lal, PhD 

Cologne Center for Genomics, University of Cologne 

Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA,  

Psychiatric & Neurodevelopmental Genetics Unit, Harvard Medical School / Massachusetts General 

Hospital Boston, MA, USA 

     

  

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2017. ; https://doi.org/10.1101/130203doi: bioRxiv preprint 

https://doi.org/10.1101/130203
http://creativecommons.org/licenses/by/4.0/


Purpose: 

Increasing availability of surgically resected brain tissue from Focal Cortical Dysplasia and low-grade 

epilepsy-associated tumor patients fostered large-scale genetic examination. However, assessment 

of germline and somatic variant pathogenicity remains difficult.  

 

Methods: 

Here, we critically reevaluated the pathogenicity for all neuropathology-associated variants reported 

to date in the PubMed and ClinVar databases, including 12 disease-related genes and 88 

neuropathology-associated missense variants. We (1) assessed evolutionary gene constraint using 

the pLI and missense z scores, (2) applied guidelines by the American College of Medical Genetics 

and Genomics (ACMG), and (3) predicted pathogenicity by using PolyPhen-2, CADD, and GERP.  

 

Results: 

Constraint analysis classified only seven out of 12 genes to be likely disease-associated, while 35 

(40%) of those 88 variants were classified as being variants of unknown significance (VUS) and 53 

(60%) as being likely pathogenic (LPII). Pathogenicity prediction yielded discrimination between 

neuropathology-associated variants (LPII and VUS) and rare variant scores obtained from individuals 

present in the Genome Aggregation Database (gnomAD).  

 

Conclusion: 

We conclude that several VUS are likely disease-associated and will be reclassified by future 

molecular evidence. In summary, interpretation of lesion-associated gene variants remains complex 

while the application of current ACMG guidelines including bioinformatic pathogenicity prediction will 

help improving interpretation and prediction.  

 

Key Words: Gene pathogenicity, variant pathogenicity, focal epilepsies, Focal cortical dysplasia, 

Low-grade epilepsy associated tumors 
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INTRODUCTION 

 

Somatic gene variants have increasingly been detected and reported in brain tissue obtained from 

patients with epilepsy-associated focal lesions and considered causal for the lesion and the patient’s 

epilepsy. Most common structural brain lesions comprise Focal Cortical Dysplasia (FCD) [1, 2] and 

low-grade epilepsy associated tumors (LEAT) [3], both of which represent umbrella terms for a 

variety of diagnostically related but histologically independent etiologies. FCD are a heterogeneous 

group of cortical malformations accounting for the most common structural brain lesions within the 

broad spectrum of malformations of cortical development [4, 5]. FCD is diagnosed in 29-39% of 

patients who undergo epilepsy surgery [1], mostly affect the frontal lobe, and can histopathologically 

present with a large spectrum of abnormalities, including cortical architecture, bizarre neuronal cell 

morphology, blurred gray-white matter boundaries, and heterotopic neurons or increased 

oligodendroglial cell densities in white matter [5]. The most frequent tumors in patients with drug-

resistant focal epilepsy starting in the first two decades of life are ganglioglioma (GG) and 

dysembryoplastic neuroepithelial tumors (DNT), representing 65% of 1,551 tumors collected at the 

European Epilepsy Brain Bank [6]. Intriguingly, these tumors histopathologically present with a 

variable mixture of glial and neuronal cell morphologies, and were mostly affecting the temporal lobe 

[6]. 

 

Unlike recent large-scale studies on rare and common germline variant-associated epilepsies, 

genetic studies on focal brain lesions comprise so far only small cohorts with insufficient patient 

numbers to perform reasonably powered hypothesis-free exome-wide gene discovery screens. 

Patient ascertainment is challenging since the disease-associated variants are expected to be 

present only in the brain or even in a fraction of the lesional brain tissue [1]. In addition to the limited 

access to the target tissue, the prevalence of somatic mosaicism in the human brain of healthy 

individuals is not well understood, and thus current small cohort studies without large control sets 

might lead to biased or even false conclusions. Even for genuine disease-associated genes, not all 

observed variants would contribute to disease etiology. Due to time and cost constrains, functional 
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testing can usually be conducted only for a minor part of variants observed in patients. The latter 

represents a more general problem that holds true for all epilepsies since the accurate interpretation 

of variation in disease genes has largely lagged behind the massive up-scaling of data generation 

enabled by the increased accessibility of sequencing.  

Here, we critically reevaluate the pathogenicity of genes and variants that have previously been 

reported to be associated with histopathologically confirmed brain lesions. We hypothesize that 

somatic variants in disease-associated genes, being present only in a small fraction of cells in the 

brain but leading to severe neuropathologies, should have substantially different molecular functional, 

evolutionary and prediction tool signatures when compared to rare benign germline variants that are 

located within the same genes and that are found in individuals from the general population in the 

Genome Aggregation database (gnomAD; http://gnomad.broadinstitute.org). The evaluation 

procedure represents state of the art evaluation of all reported neuropathology-associated as well as 

other disease-associated risk genes and variants and can be reapplied to other variant sets.  
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MATERIALS AND METHODS 

 

Gene and variant identification 

The evaluation of pathogenicity for loss-of-function variants (e.g. full gene deletions or nonsense 

variants) is relatively straightforward, however, for missense variants the criteria to establish 

pathogenicity rely on supportive genetic data and functional evidence [7]. Therefore, we focused on 

the interpretation of heterozygous dominant acting missense neuropathology-associated variants. 

Firstly, we performed a PubMed-based (https://www.ncbi.nlm.nih.gov/pubmed; accessed February 

2017) literature review to identify studies that report genes and dominant acting missense 

neuropathology-associated variants. We used either single search terms or two- or three-word 

combinations of the following keywords: ‘focal cortical dysplasia’, ‘ganglioglioma’, ‘dysembryoplastic 

neuroepithelial tumor’, ‘neuropathology’, ‘genetics’, ‘somatic’ and ‘mutations’. Secondly, we collected 

all missense variants in genes associated with neuropathologies in the literature from the ClinVar 

database (http://www.ncbi.nlm.nih.gov/clinvar; release: 01/11/2016) using filters described in the 

Supplementary Methods. We removed copy number, synonymous, frameshift, splice site and 

nonsense variants from the dataset.   

Variant classification  

All identified neuropathology-associated variants were classified in accordance to 31 criteria defined 

by guidelines of the The American College of Medical Genetics and Genomics (ACMG) [7]. We used 

the online tool provided by Kleinberger et al. [8] to aid the variant interpretation process. This tool 

displays all evidence categories from the ACMG guidelines and offers the possibility to select the 

appropriate criteria with simple checkboxes. We used the algorithm incorporated in the tool to assign 

either pathogenicity or a benign, non-deleterious impact based on the selected evidence categories, 

resulting in two positive variant groups in our study: 1) Variants of unknown significance (“VUS”) and 

2) likely pathogenic variants (“LPII”). 

In addition to the database-reported neuropathology-associated variants, we included two other 

groups in the pathogenicity prediction analysis as positive and negative comparison groups to guide 
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the interpretation of our results with confidence 3) Functional variants from LEAT-associated genes 

that were also associated with non-brain tumors and had been validated in molecular studies [9]; 

ACMG guidelines categorized these variants as likely pathogenic variants (“LPIIC”). 4) Singleton 

germline variants in neuropathology-associated genes identified in >130k individuals from the general 

population (“GP”) from the Genome Aggregation Database (gnomAD; 

http://gnomad.broadinstitute.org; accessed November 2016). 

Assessment of evolutionary gene constraints 

We evaluated literature-reported neuropathology-associated genes for evolutionary constraints by 

use of the pLI and missense z conservation scores [10] and compared the results with the proposed 

pathomechanism in the recent literature. These scores use a depletion of variants in a gene when 

compared to the expectation under neutral evolution. The expectation has been estimated from a 

population reference cohort of >60,000 individuals [10] as an indication of purifying selection, 

rendering variants affecting these genes more likely to be implicated in disease etiology. Following 

the authors’ recommendations, we considered genes with pLI scores >0.9 as being intolerant for 

loss-of-function (LoF) mutations and those with z-scores >3 intolerant for missense mutations.  

  

In silico evaluation of variant pathogenicity 

We functionally annotated all missense neuropathology-associated (“VUS” and “LPII”), non-brain 

tumor-associated (“LPIIC”) and gnomAD singleton (“GP”) variants using three commonly used in 

silico prediction tools, namely CADD [11], GERP ++ [12] and PolyPhen-2 [13] with wANNOVAR [14]. 

Whereas CADD and PolyPhen-2 represent meta-tools, which incorporate multiple different biological 

and evolutionary scores, GERP ++ only scores conservation across species.  

In order to identify the most accurate predictor to be used in subsequent analyses for distinguishing 

“LPII” and “VUS” variants from neutral ones (“GP”), we assessed predictor performance using the 

area under (AUC) receiver-operating-characteristic curves (ROC curves), thereby simultaneously 

assessing specificity and sensitivity, as implemented in the R package pROC (https://cran.R-
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project.org/package=pROC).  

Statistical analyses 

Association p-values were obtained from a Wilcoxon ranked sum test, as implemented in the 

wilcox.test function of the R statistical software, version 3.3.1. [15]. A two-sided p-value < 0.05 was 

considered statistical significant. P-values were Bonferroni corrected in multiple testing. Furthermore, 

in order to correct for the effect of largely disparate group sizes, we performed 1000 times 

subsampling.  
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RESULTS 

 

Assessment of evolutionary gene constraints 

In our literature and ClinVar review, we identified a total of 12 genes associated with heterozygous 

dominant acting neuropathology-associated variants, namely AKT3, BRAF, DEPDC5, FGFR1, IDH1, 

MTOR, NPRL2, NPRL3, PIK3CA, PTEN, TSC1, TSC2, in 13 studies (Table S1). Six of 13 studies 

(46.2%) used whole exome sequencing (WES) as variant discovery technique, five of these 

combined with targeted sequencing or Sanger sequencing to identify variants in the rest of the cohort 

(Table S2). In total nine studies performed targeted sequencing of 1-14 genes (Median = 1, SD = 

5.1). Only six out of 13 WES and targeted sequencing studies (46.2%) list detailed variant calling 

parameters and only six (46.2%) list all variants passing their filter criteria.  

Based on the literature, we categorized TSC1 and PTEN as intolerant for LoF, MTOR, PIK3CA, 

BRAF, IDH1, and AKT3 intolerant for missense and NPRL2, NPRL3, TSC2, FGFR1, and DEPDC5 

as intolerant for both (Table 1). Conservation scores (pLI and missense z) indicated that only seven 

(AKT3, BRAF, DEPDC5, MTOR, PIK3CA, PTEN, TSC1) out of 12 genes showed support for 

association with a severe disease by harboring less variants than expected under neutral evolution. 

For ten out of those 12 neuropathology-implicated genes, disease-associated missense variants had 

been reported in patients. We next classified these variants according to recently published ACMG 

guidelines. Our literature and database review identified in total 88 neuropathology-associated 

missense variants (Figure 1a; Figure S1; Figure S2). Out of these, 53 (located in the AKT3, BRAF, 

FGFR1, MTOR, PIK3CA and PTEN genes) were classified as ‘likely pathogenic II (LPII)’, because 

they held several of the following criteria: showed a damaging effect on the gene or gene product in 

functional studies, were located in a mutational hot spot and/or critical and well-established functional 

domain, were absent from controls, had received a missense z score ≥ 3.0, showed a deleterious 

effect in multiple lines of computational evidence and/or were reported as pathogenic in a reputable 

source (Table S3). The ‘variant of uncertain significance (VUS)’ group comprised 35 variants present 

in all 10 neuropathology-associated genes, representing 1/3 of identified neuropathology-associated 
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missense variants.  

 

In silico evaluation of variant pathogenicity 

VUS categorization does not rule out disease association. It is quite conceivable that at least some of 

the 35 VUS truly might contribute to disease but currently not enough evidence has been generated 

for being classified as LPII. We explored this assumption further and investigated whether VUS 

variants behave in silico similar to LPII and known disease variants. We compared the missense 

variant prediction scores of functionally validated cancer variants, LPIIC variants (N=45, as positive 

control), the classified neuropathology-associated LPII (N=53) and of VUS (N=35) variants in 

comparison with rare variants from the general population (GP, as negative control) (Figure 1b). 

VUS, LPII and more pronounced LPIIC variants were significantly more pathogenic predicted than 

variants from the general population for in all prediction tool analyses (p ≤ 0.017, Bonferroni 

corrected; Figure 1b).  
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DISCUSSION 

We performed a comprehensive literature review to identify genes and missense variants associated 

with epilepsy-associated focal brain lesions. Evaluation of disease association using recently 

developed methods and guidelines confirmed pathogenicity for only 7 out of reported 12 genes and 

53 (60%) out of reported 88 variants. Large variability observed in published assessment strategies 

challenges overall evidence and call for consensus use of international standards. 

 The majority of variants reported in neuropathology patients in previous studies were identified 

by targeted sequencing. In addition, detailed filtering parameters and full lists of identified variants 

are reported in the minority of studies. Accordingly, previous neuropathology studies reporting the 

identification of new disease-associated genes and variants were a priori hypotheses based and not 

unbiased. 

 Five of the 12 tested genes have yet insufficient support for classification as disease gene 

when investigating the evolutionary gene constraints. For example, dominant acting LoF variants in 

NPRL2 and NPRL3 have been reported in neuropathology patients [16] and, correspondingly, 

haploinsufficiency as pathomechanism has been proposed. The hallmark of haploinsuffient genes is 

the absence of LoF variants in healthy individuals [10]. However, NPRL2 and NPRL3-affecting LoF 

variants have been reported in unaffected individuals and for both genes no statistically significant 

depletion of variants has been observed in large-scale database of healthy individuals from the 

general population. In addition, at least two papers reported germline missense, splicing and LoF 

variants in NPRL3 in patients with FCDs and even showed nonsense-mediated decay for one variant 

present in a patient. Proof for the association of these genes with the disease will require, however, 

further statistical enrichment and in vivo modeling.  

 The prediction of pathogenicity missense variants is challenging and relies on next generation 

sequencing data and functional evidence [7]. For the 1/3 of evaluated variants, however, well-

established in vitro or in vivo functional tests were not performed in patient tissue. Following the 

ACMG guidelines, such variants have to be classified as VUS if not compensated by other strong 

evidences. We did not find reliable evidence for 35 variants to be classified as likely pathogenic by 

working through all 31 ACMG classification criteria. However, our bioinfomatic prediction analysis 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2017. ; https://doi.org/10.1101/130203doi: bioRxiv preprint 

https://doi.org/10.1101/130203
http://creativecommons.org/licenses/by/4.0/


showed that variant scores for VUS significantly deviate from those of rare variants from the general 

population, indicating that probably at least a fraction of these variants is truly associated with 

disease. In total, 6 of the VUS variants and 4 of the LPII variants were present in gnomAD and 50% 

of these occurred more than once in the general population whereas all 4 LPII variants were only 

singletons in gnomAD. Expecting that the identified patient variants act dominantly with large effect, 

their presence in general-population germline-variant databases like gnomAD suggested that these 

variants are unlikely to be associated with severe brain lesions occurring usually in early childhood 

[10].  

 Tremendous advances in sequencing technologies foster variant discovery at accelerating 

pace whereas translation into clinical variant classification remains in its infancy. This is particularly 

true in the neurosciences and for many brain diseases since variability of somatic mosaicism critically 

results from the diversity and admixture of neuroepithelial cell types and their developmental stage in 

a given brain tissue across humans. Based on our presented data, diagnostically relevant 

interpretation for novel missense variants is feasible only for a part of variants at this point. Results 

from large-scale projects, e.g. the human cell atlas and high throughput mutagenesis screening, will 

improve variant interpretation in the near future with consensus standards for assessment and 

interpretation widely implemented and used. 
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SUPPLEMENTARY MATERIAL 
Supplementary information is available at the Genetics in Medicine website.   
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Figure 1 ACMG criteria classify neuropathology-associated and non-brain tumor-associated 

variants as being VUS or as being LPII variants.  (a) Amounts of non-brain tumor-associated likely 

pathogenic variants (LPIIC), neuropathology-associated likely pathogenic variants (LPII), and 

neuropathology-associated variants of uncertain significance (VUS). The different colors indicate 

different neuropathology-associated genes. (b) Distribution of CADD, GERP and PolyPhen-2 

missense variant predictions scores of groups VUS, LPIIC and LPII in comparison with rare variants 

from gnomAD (GP).  P-values ≤ 0.017, Bonferroni corrected, were considered to be significant. CIs 

are indicated.  
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Gene LoF intolerance in controls Functional support 

PTEN 

TSC1 

✔ (0.98) 

✔ (1) 

Yes 

Yes 

Missense intolerance in controls 

AKT3 

BRAF 

MTOR 

PIK3CA 

IDH1* 

✔ (3.95) 

✔ (3.99) 

✔ (7.89) 

✔ (5.42) 

X (0.1) 

Yes 

Yes 

Yes 

Yes 

No 

LoF/ Missense intolerance in controls 

DEPDC5* 

FGFR1 

TSC2 

NPRL2 

NPRL3 

✔/✔ (1/3.29) 

✔/ X (0.99/2.8) 

✔/ X (1/0.89) 

X/X (0.35/1.86) 

X/X (0.47/0.37) 

Yes 

Yes 

Yes 

No 

No 

 

Table 1  Evolutionary constraint for genes under investigation 

Depletion score analysis of 12 neuropathology-associated genes according to the reported 

pathomechanism in the literature. ✔ = intolerant for reported mutations (pLI ≥ 0.9; z ≥ 3.0); X = 

tolerant for reported mutation (pLI<0.9, z<3.); “Yes” = reported pathomechanism with functional 

support; “No” = reported pathomechanism without functional support; *genes were excluded from the 

following evaluation of the variant pathogenicity.  
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