
 
1 

 

Title: “Late Bayesian inference in sensorimotor behavior” 1 

  2 

Evan Remington1, Mehrdad Jazayeri1 3 

  4 
1Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts 5 

Institute of Technology, Cambridge, Massachusetts 02139, USA 6 

 7 
  8 

Correspondence 9 

 10 

Mehrdad Jazayeri, Ph.D. 11 

 12 

Robert A. Swanson Career Development Professor 13 

Assistant Professor, Department of Brain and Cognitive Sciences 14 

Investigator, McGovern Institute for Brain Research 15 

Investigator, Center for Sensorimotor Neural Engineering 16 

MIT 46-6041 17 

43 Vassar Street 18 

Cambridge, MA 02139, USA 19 

Phone: 617-715-5418 20 

Fax: 617-253-5659 21 

Email: mjaz@mit.edu 22 

 23 

Acknowledgements 24 

We would like to thank Josh McDermott, Seth Egger, and Devika Narain for valuable comments 25 

regarding the manuscript. M.J. is supported by NIH (NINDS-NS078127), the Sloan Foundation, the 26 

Klingenstein Foundation, the Simons Foundation, the Center for Sensorimotor Neural Engineering, and 27 

the McGovern Institute.  28 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2017. ; https://doi.org/10.1101/130062doi: bioRxiv preprint 

https://doi.org/10.1101/130062
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
2 

 

Abstract 29 

 30 

Sensorimotor skills rely on performing noisy sensorimotor computations on noisy sensory 31 

measurements. Bayesian models suggest that humans compensate for measurement noise and 32 

reduce behavioral variability by biasing perception toward prior expectations. Whether the same holds 33 

for noise in sensorimotor computations is not known. Testing human subjects in tasks with different 34 

levels of sensorimotor complexity, we found a similar bias-variance tradeoff associated with increased 35 

sensorimotor noise. This result was accurately captured by a model which implements Bayesian 36 

inference after – not before – sensorimotor transformation. These results indicate that humans perform 37 

“late inference” downstream of sensorimotor computations rather than, or in addition to, “early 38 

inference” in the perceptual domain. The brain thus possesses internal models of noise in both sensory 39 

measurements and sensorimotor computations. 40 

Introduction 41 

 42 
Consider the challenging task of returning a tennis serve. Not only must one accurately infer the path of 43 

the ball but also quickly transform that information into a motor plan that would yield a desirable 44 

outcome. The ability to apply such transformations is central to our behavioral repertoire and to the 45 

performance of athletes, musicians, and professionals such as surgeons and airplane pilots. It has 46 

been demonstrated that sensorimotor transformations are noisy (Soechting and Flanders 1989b; Pine 47 

et al. 1996; Gordon, Ghilardi, and Ghez 1994; McIntyre et al. 2000; Sober and Sabes 2005; 48 

Churchland, Afshar, and Shenoy 2006; Schlicht and Schrater 2007). The ubiquitous nature of 49 

sensorimotor transformations in behavior raises an important and unresolved question: does the brain 50 

have an internal model of sensorimotor noise (SMN), and do humans adopt strategies to mitigate its 51 

effects? 52 

 53 

Research in the past several decades has tackled a similar question in the domain of sensory and 54 

motor systems, asking whether the brain is optimized to handle sensory and motor noise. Bayesian 55 

models have shown that humans adopt a number of strategies to minimize the effect of sensory and 56 

motor noise on behavior. For instance, when multiple sensory cues are available, humans rely more 57 

heavily on cues that are more reliable (R. J. van Beers, Sittig, and Gon 1999; Ernst and Banks 2002; 58 

Alais and Burr 2004; Bresciani, Dammeier, and Ernst 2008). Similarly, humans use their prior 59 

knowledge of statistics of sensory inputs to improve sensory estimates (Weiss, Simoncelli, and Adelson 60 

2002; Körding and Wolpert 2004; Tassinari, Hudson, and Landy 2006; Jazayeri and Shadlen 2010). 61 

Optimal strategies in the presence of motor noise have also been reported, for example, when some 62 

movements are made more costly than others (Trommershäuser et al. 2005; Landy, Trommershäuser, 63 

and Daw 2012). These and related observations in multiple modalities (Battaglia, Jacobs, and Aslin 64 
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2003; Körding, Ku, and Wolpert 2004; Schlicht and Schrater 2007; Burge, Ernst, and Banks 2008; 65 

Butler et al. 2010) have provided strong evidence that the brain has an internal model of noisy 66 

representations in the sensory and motor systems and implements strategies to reduce their degrading 67 

effect on behavior. 68 

 69 

Motivated by the success of normative models showing that the brain seeks to optimize behavior in the 70 

presence of sensory and motor noise, we hypothesized that the brain might additionally be equipped 71 

with mechanisms to minimize the effects of additional noise introduced by the transformation of sensory 72 

inputs to motor outputs (i.e., SMN). This question is particularly important as it bears on where in the 73 

brain Bayesian inferences are made (Figure 1). Since existing evidence supports perceptual Bayesian 74 

inference in the sensory domain (Weiss, Simoncelli, and Adelson 2002; Kersten, Mamassian, and 75 

Yuille 2004; Girshick, Landy, and Simoncelli 2011), an observation that Bayesian estimation does not 76 

take SMN into account would support the notion that observers employ an “early inference” strategy in 77 

which the inference is made within the sensory system before a sensorimotor transformation is applied. 78 

If, on the other hand, the brain takes SMN into account, we would conclude that the inference is made 79 

downstream after the sensorimotor transformation stage, thus providing evidence for a “late inference” 80 

strategy in the association and/or premotor brain areas. Critically, the early and late inference strategies 81 

make distinct predictions about the effect of SMN on behavior. With an early inference strategy, any 82 

increases in SMN would lead to comparable increases in behavioral variability. In contrast, in the late 83 

inference model, the brain would counter this variance by using knowledge about the distribution of 84 

responses (i.e., prior distribution). This strategy would introduce additional biases toward the mean of 85 

the prior distribution and lead to an overall improvement in performance. 86 

 87 

To distinguish between the early and late inference strategies, we exploited the observation that more 88 

complex sensorimotor transformations engender more noise (Soechting and Flanders 1989b; Pine et 89 

al. 1996; McIntyre et al. 2000; Sober and Sabes 2005; Schlicht and Schrater 2007). We devised two 90 

experiments: (1) a time interval estimation and production task, and (2) a length estimation and 91 

production task. In each task, we compared subject’s performance across two sensorimotor contexts. 92 

In one context, which we refer to as the “identity context”, the produced quantity (time interval or length) 93 

had to match a previously measured quantity. This was compared to a more complex “remapped 94 

context” in which subjects had to produce a quantity by applying a non-identity transformation to the 95 

sensory quantity. For example, subjects had to produce a length that was 50% longer than the 96 

stimulus. 97 

 98 

As expected, the remapped context negatively impacted performance in both tasks, revealing the 99 

degrading effect of SMN. Importantly, increases in SMN in the remapped context led to increased 100 

biases toward the mean of the sensorimotor prior, an indication of the late Bayesian inference that 101 
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takes SMN into account. These results reveal that the brain has an internal model of the noise 102 

associated with sensorimotor transformations and integrates this information with prior knowledge to 103 

optimize inferences in terms of produced quantities.  104 
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 105 
 106 

Figure 1. Bayesian inference in the presence of sensorimotor noise (SMN). A. A schematic of a 107 

sensorimotor task comprising sensory measurement, sensorimotor transformation, and motor 108 

production, all subject to internal noise. In sensorimotor tasks which don’t explicitly model SMN, 109 

subjects’ behavior is consistent with a strategy in which the effect of sensory noise (“noisy 110 

measurement”) on behavior is mitigated by Bayesian inference which biases perceptual estimates 111 

towards the mean of a sensory prior, reducing behavioral variability. We refer to this strategy as “early 112 

inference.” An alternate strategy, which we term “late inference” incorporates a prior on behavioral 113 

responses to mitigate the effects of both sensory and sensorimotor noise (“noisy transformation”). 114 

Motor noise (“noisy production”), such as that inherent in motor neurons and muscles, cannot be 115 

mitigated by relying on prior information. (B) An illustration of relationship between overall variability 116 

(√VAR), overall bias (BIAS), and RMSE for the early Inference and late Inference strategies in the 117 

presence of SMN. The equation shows the mathematical relationship between (√VAR), BIAS, and 118 

RMSE. This relationship can be depicted on a quarter circle (dashed lines) with the radius representing 119 

RMSE. The gray circle represents (√VAR) and BIAS values for hypothetical observer with sensory and 120 

motor noise only, and no sensorimotor noise (“no SMN observer”). For this case, early inference and 121 

late inference strategies produce identical behavior (gray). Introducing SMN will cause RMSE to 122 

increase. For an observer that uses an early inference strategy, the increase in RMSE will manifest 123 

primarily as increased √VAR (bright red). In contrast, the effect of SMN in an observer using a late 124 

inference strategy (dark red) would be primarily an increase in BIAS. Crucially, the late inference 125 

strategy would lead to a smaller increase in RMSE, as represented by the smaller radius of the dark 126 

circle compared to the bright one.  127 
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Results 128 

 129 
We conducted two psychophysical experiments, one involving measurement and production time 130 

intervals, and another involving measurement and production of lengths. Each trial in each task 131 

consisted of two epochs: a measurement epoch during which a sensory quantity (time interval or 132 

length) was measured, and a subsequent production epoch during which subjects had to produce a 133 

quantity based on the preceding measurement. For each task, performance was quantified in two 134 

sensorimotor contexts: an identity context in which the produced quantity had to match the sensory 135 

quantity, and a remapped context in which the produced quantity had to match the sensory quantity 136 

multiplied by a fixed scale factor.  137 

 138 

Time measurement and production task: Ready, Set, Go 139 

Eight human subjects performed a time interval measurement and production task (figure 2A), also 140 

known as the “Ready, Set, Go” task, similar to a previous study (Jazayeri and Shadlen 2010). During 141 

the measurement epoch, subjects were presented with a sample interval (ts; see Table 1 for all 142 

variables and abbreviations) demarcated by two visual flashes, “Ready” and “Set” (figure 2A). Subjects 143 

had to measure ts and produce an interval (tp) afterwards by a key press (“Go” - no flash). The interval 144 

tp was measured from the start of the Set flash until the key press. In both identity and remapped 145 

contexts, ts was drawn from the same discrete uniform prior distribution with 11 values ranging from 146 

600 and 1000 ms. In the identity context, the correct interval (tc) was the same as ts, and in the 147 

remapped context, tc was 1.5 times ts. In other words, the two contexts were identical during the 148 

measurement epochs but differed with respect to the production epoch. We denote these two contexts 149 

in terms of a gain factors relating tc to ts: gain = 1 for the identity context, and gain = 1.5 for the 150 

remapped context. Subjects received trial-by-trial feedback about their performance (see Methods). 151 

 152 

We quantified performance with three statistics (Jazayeri and Shadlen 2010): BIAS, which summarizes 153 

the deviation of average responses from the correct interval, √VAR, which summarizes the variability of 154 

responses across ts, and RMSE, which summarizes the total root mean square error. The three 155 

quantities are related through a sum of squares: RMSE2 = (√VAR)2 + BIAS2 (Figure 1B). To ensure 156 

that the results were not influenced by overall tendencies to be late or early for all intervals, we 157 

calculated these statistics after removing an offset term that accounted for subjects’ overall bias (see 158 

Methods). For most subjects, the offset term was relatively small (see Supplementary Table 1). 159 

 160 

Figure 2B illustrates the behavior of a typical subject in the identity (gray) and remapped (red) contexts 161 

of the timing task. Subjects’ behavior in the identity context exhibited prior-dependent bias, consistent 162 

with Bayesian integration as was shown previously (Jazayeri and Shadlen 2010; Acerbi, Wolpert, and 163 

Vijayakumar 2012; Cicchini et al. 2012) (figure 2B, in gray). In the remapped context, subjects had to 164 

perform the same task but with a gain of 1.5. We hypothesized that this more challenging sensorimotor 165 
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transformation would cause an increase in SMN, and would thus increase the total RMSE. Additionally, 166 

we hypothesized that the increase in RMSE would be predominantly due to an increase in bias, 167 

consistent with the late inference hypothesis. 168 

 169 

We tested the first hypothesis (increased SMN in the remapped context) by comparing behavior in the 170 

remapped context to that predicted under the assumption of no additional SMN. This null hypothesis 171 

can be formulated straightforwardly by applying the gain factor of 1.5 to the estimates of ts and taking 172 

into account the additional variability in tp due to the linear scaling of production noise (Rakitin et al. 173 

1998; Gallistel and Gibbon 2000). This leads to a simple prediction: without additional SMN, RMSE, 174 

BIAS, and √VAR in the remapped context should be 1.5 times their values in the identity context (figure 175 

2B,C). As shown by the example subject (figure 2C) as well as results across all eight subjects (figure 176 

3A, top), the observed RMSE in the remapped context was consistently and significantly higher than 177 

expected under the assumption of no additional SMN (RMSE median = 130 ms, interquartile range = 178 

20 ms vs. median = 180 ms, IQR = 40 ms, p = 0.016, Wilcoxon signed-rank test). This provides direct 179 

evidence that SMN increased in the remapped context and validates the success of our experimental 180 

design in manipulating SMN independently of sensory noise.  181 

 182 

Having established an increase in SMN in the remapped context, we tackled the second hypothesis of 183 

whether the RMSE increase was due to an increased bias, as would be predicted if subjects optimized 184 

their behavior to mitigate the effect of SMN with the late inference strategy. The null hypothesis, which 185 

states that subjects do not optimize their behavior in the presence of SMN, can be formulated by an 186 

early inference strategy. In this strategy, subjects take the sensory noise into account but ignore SMN. 187 

This early inference strategy predicts that the increase in RMSE in the remapped context should be 188 

explained by an increase in √VAR and not BIAS. This is because, in the early inference strategy, SMN 189 

is introduced after the inference stage and thus can only lead to increased variance (see Figure 1B). 190 

As shown in Figure 2C for one example subject, the increase in RMSE was largely due to an increase 191 

in BIAS, which can be readily seen as an excess bias compared to the no additional SMN prediction 192 

(Figure 2B, Excess bias). The results for all subjects, summarized in Figure 3A, indicate a clear 193 

increase in the BIAS for the remapped context relative to the null prediction (BIAS median = 73 ms, 194 

interquartile range (IQR) = 30 ms vs. median = 130 ms, p = 0.023). Across subjects, there was also a 195 

small but consistent effect on √VAR (median = 106 ms, IQR= 15 ms vs. median = 113 ms, IQR= 28 ms, 196 

p = 0.008). RMSE, BIAS, and √VAR for individual subjects are summarized in Supplementary Table 1. 197 

The substantial increase in BIAS across subjects rejects the null hypothesis and provides evidence for 198 

the late Bayesian inference, and indicates that humans take SMN into account to optimize their 199 

responses. 200 

 201 

Next, we compared the behavior of subjects in the two contexts using a Bayesian observer model 202 
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(Supplementary Figure 1; Equation 4). This model comprises a noisy measurement stage (with scalar 203 

noise parameterized by wm), followed by a Bayesian estimation stage (Bayes-Least Squares), followed 204 

by a noisy production stage (with scalar noise parameter wp) (Jazayeri and Shadlen 2010). The model 205 

established Bayes-optimal behavior in the identity context (Figure 2B, “model fit,” bottom). We then fit 206 

the same model to subjects’ data in the remapped context allowing the parameters (wm and wp) to take 207 

different values (Figure 2B, “model fit,” bottom). Without a mechanism to take SMN into account 208 

explicitly, the fits of this model to the remapped context would misattribute the drop in performance as 209 

being due to higher noise levels in the measurement (wm) and/or production (wp) relative to the identity 210 
context. As such, increases in BIAS would result in larger wm, and increases in √VAR, in larger wp  211 

(Supplementary Figure 2). Since the early and late inference strategies are associated with increases 212 

in BIAS and √VAR respectively, we predicted that fitting this model to the data in the remapped context 213 

would result in a systematic increase in wm and not wp . Model fits supported this prediction: wm were 214 

substantially higher in the remapped context compared to the identity context (Figure 3B, also see 215 

Supplementary Table 1). This result further substantiates the hypothesis that increased SMN in the 216 

remapped context led to additional bias consistent with a late Bayesian inference strategy (Figure 1A). 217 

 218 

To further validate this conclusion, we formulated a “Late-Inference” model in which we held wm and wp 219 

constant across contexts and added an additional scalar SMN parameterized by wt in the remapped 220 

context. This model made late inference by virtue of the fact that inference was made after the 221 

introduction of wt. This Late-Inference model accurately captured the tradeoff between bias and 222 

variance in both contexts (Figure 4A), consistent with our hypothesis that additional bias in the 223 

remapped context was driven by increased SMN. We contrasted this model with two alternatives. First, 224 

we tested for the necessity of the additional scalar SMN by constructing an “Equal-SMN” model which 225 

omitted wt. This model was unable to simultaneously capture RMSE, BIAS, and √VAR in both contexts. 226 

Importantly, it systematically underestimated the bias in the remapped context (Figure 4B), validating 227 

the need for additional wt in the remapped context. The second alternative model contrasted the Late-228 

Inference model with an “Early-Inference” model in which the inference was made prior to the SMN. 229 
Similar to the Equal-SMN model, the Early-Inference model failed to capture behavior (Figure 4B), 230 

highlighting the importance of late inference in explaining subjects’ behavior. The superiority of the Late-231 

Inference model was further supported by a model comparison using a Bayesian information criterion 232 

(BIC; Supplementary Table 2). 233 

 234 

We considered a number of other models, but were unable to create any model that could account for 235 

the increased BIAS as accurately as the Late-Inference model. Here, we describe two alternative 236 

models that predicted some additional bias in the presence of higher SMN but were nonetheless 237 

inferior to the Late-Inference model. The first model, which we refer to as “Late-Ignore-SMN”, is a 238 

variant of the Late-Inference model in which the observers makes the inference after the addition of 239 
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SMN (through wt), but does not take SMN into account. In other words, this is a model of an observer 240 

that uses a Late-Inference strategy but does not have an internal model of SMN. The second, which is 241 

referred to as the “Observer-Actor” model (Jazayeri and Shadlen 2010; Acerbi, Wolpert, and 242 

Vijayakumar 2012), is a variant of the Early-Inference model, which is additionally optimized for scalar 243 

variability in the production stages, but not for SMN. Both of these models predicted some degree of 244 

increased bias and a substantial (and suboptimal) increase in variability that failed to capture subjects’ 245 

behavior in the remapped context (Supplemental Figure 3, Supplementary Table 2). 246 

 247 

Another explanation that might account for the increased bias in the remapped context is that subjects 248 

did not learn the transformation correctly, and instead of applying a gain, simply added a fixed delay to 249 

their responses irrespective of the sample interval. Such an offset-adjustment strategy would result in 250 

an effective increase in bias and could thus masquerade as a late Bayesian inference strategy. To 251 

investigate this possibility, we designed a control experiment with a gain factor of 0.75 instead of 1.5. 252 

For a gain of 0.75, a similar offset-adjustment strategy would require subjects to subtract a fixed delay 253 

from their responses. This would predict that responses would exhibit less bias than predicted from 254 

scaling responses by a factor of 0.75 (i.e., the prediction from the equal SMN hypothesis). However, for 255 

the gain of 0.75, similar to the case for a gain of 1.5, subjects’ RMSE, BIAS, and fits to wm were higher 256 

than predicted by the identity context (Supplementary Figure 4). Therefore, the increased bias could 257 

not be explained by an offset-adjustment strategy.  258 
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 259 
Figure 2. Time measurement and production task. A. Trial structure. Each trial began with the 260 

presentation of a red fixation spot. Subjects had to measure a sample time interval ts demarcated by 261 

two flashes (“Ready” and “Set”) to the left of and above the fixation point, respectively. After Set, 262 

subjects pressed a key (“Go”) to produce an interval as close as possible to the correct interval tc = 263 

gain x ts, where gain changed across two contexts. In the “identity” context, the correct interval was the 264 

same as ts (gain = 1), whereas in the “remapped” context, the gain was 1.5. The position of a stimulus 265 

to the right of the fixation point served as a gain instruction cue. The distance of this stimulus to the 266 

fixation point is equal to or 1.5 times the distance of Ready to the fixation point for the gain of 1 and 1.5, 267 

respectively. After the response, subjects received scaled and signed feedback via the position of a 268 

colored circle (see Methods). B. Performance of an example subject in the identity (gray) and 269 

remapped (red) contexts. Filled circles and shaded regions indicate mean response times ± one 270 

standard deviation; dashed lines represent correct intervals. Solid lines represent the mean responses 271 

of a Bayesian observer model (see Methods) fit to the subject’s data separately for the two contexts; 272 

the dash-dot line in the gain = 1.5 condition corresponds to the prediction for the remapped context 273 

under the null hypothesis, using parameters of the model fit to the identity context (H0: no additional 274 
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SMN). The subject’s behavior shows excess bias beyond what was predicted assuming no additional 275 

SMN. C. √VAR vs. BIAS for the two contexts (gray for identity, and dark red for remapped), as well as 276 

the prediction for the remapped context assuming no additional SMN (empty circle). This prediction 277 

underestimates RMSE indicating larger SMN for the remapped context. The increased RMSE was 278 

predominantly due to an increase in BIAS (“excess bias”). Dashed quarter circles illustrate 279 

combinations of BIAS vs. √VAR giving rise to equal RMSE; error bars are computed from the standard 280 

deviation of bootstrapped estimates (n = 1000).  281 
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 282 
Figure 3. Summary of subjects’ behavior in the time measurement and production task. (A). 283 

Comparison of RMSE (top), BIAS (middle), and √VAR (bottom) for all subjects. The lines connect 284 

values predicted in the remapped context assuming no additional SMN (predicted, H0; left) based on 285 

the identity context (i.e. multiplied by the gain of 1.5) to actual values observed from behavior (gain = 286 

1.5; right). Almost every subject had higher RMSE and BIAS than was predicted assuming no 287 

additional SMN. There was also a small increase in √VAR compared to predictions (*: p < 0.05, **: p < 288 

0.01). (B) Parameters of observer model fits. We fit an observer model (see methods) to each subject's 289 

data independently for the two contexts. This model did not explicitly account for SMN, and so any 290 

differences in SMN across contexts were reflected in the measurement and production Weber 291 

parameters (wm and wp). Most subjects were fit with much higher values of wm (top) in the remapped 292 

context, reflecting additional reliance on prior information consistent with a late inference strategy. 293 

There was also a more modest increase in wp for the remapped context (bottom). Error bars represent 294 

95% confidence intervals estimated using a bootstrap procedure (n = 1000).  295 
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 296 
Figure 4. Model comparison for the time measurement and production task. (A) Comparison of BIAS 297 

and √VAR of a typical subject to simulations generated from fits to behavior using the Late-Inference 298 

model. The model uses the same measurement and production Weber parameters (wm and wp) across 299 

the identity (gray) and remapped contexts (red) and introduces additional scalar SMN in the remapped 300 

context parameterized by wt. Large solid circles represent the subject’s behavior and small dots 301 

represent individual simulations (n = 100). (B) Same as A for the Equal-SMN model. This model was 302 

identical to the previously described Bayesian observer model (Supplementary Figure 1; Figure 3) 303 

with wm and wp but no wt. The failure of this model to capture subjects’ behavior rejects the null 304 

hypothesis that the remapped context can be explained without additional SMN. (C) Same as A for the 305 

Early-Inference model. This model includes wm, wp, and wt, but the additional scalar SMN is introduced 306 

after the inference stage. The Early-Inference model failed to capture the disparity in BIAS between the 307 
two contexts when compared with the Late-Inference model, further supporting the late inference 308 

hypothesis.  309 
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Length measurement and production task 310 

In a second experiment, we asked whether SMN degrades performance in a length production task, 311 

and whether humans use a late inference strategy to optimize performance in the presence of SMN. To 312 

answer this question, we tested the behavior of seven subjects in a task that involved drawing a line 313 

whose length was either matched to (identity context) or 1.5 times (remapped context) the length of a 314 

visually presented bar (Figure 5A). The length of the bar was sampled from a discrete uniform 315 

distribution with 11 values ranging between 10 and 15 visual degrees and was presented on a 316 

horizontally oriented monitor. After presentation of the visual bar, subjects had to draw a bar by moving 317 

a handle that controlled the position of a cursor on the monitor (Figure 5A).  318 

 319 

Figure 5B shows the behavior of one subject in the length measurement and production task. Similar 320 

to the timing task, RMSE was higher in the remapped context compared to the identity context 321 

suggesting that SMN was larger for the transformation associated with gain = 1.5. Moreover, the 322 

increase in RMSE was associated with an excess bias beyond what was expected from multiplying the 323 

observed bias in the identity context by the gain. The higher RMSE and BIAS was a general finding 324 

across subjects (Figure 6A) indicating that the length task was also associated with a late Bayesian 325 

strategy to compensate for the larger SMN. 326 

 327 

To further validate these results using model comparisons, we first sought to develop an ideal observer 328 

model of the length task. In the timing task, the Bayesian observer model we used was based on 329 

previous work using a time reproduction task (Jazayeri and Shadlen 2010) and included two 330 

parameters: one scaling factor for the measurement noise (wm), and another for the production noise 331 

(wp). For the length task, we considered the possibility that the production stage might be subject to 332 

additional execution noise due to hand movements, as previous work has suggested (Wolpert, 333 

Ghahramani, and Jordan 1995; Robert J. van Beers, Haggard, and Wolpert 2004). We compared a 334 

model similar to the timing task with scalar measurement and production noise to another model that 335 
included an additional signal independent production noise term σp. The model with the additional 336 

nonscalar production noise provided a better description of behavior despite having an additional 337 

parameter (relative BIC of 64, compared to 49 in favor of pure scalar model for the timing task). We 338 

therefore proceeded with this scalar-nonscalar model to compare the identity and remapped contexts. 339 

 340 

Similar to the timing task, observer model fits in the remapped context were associated with higher 341 
values for wm and no systematic relationship to wp and σp (Figure 6B). These results indicate that the 342 

higher SMN in the remapped context is accompanied by higher reliance on prior information, as 343 

expected from the late Bayesian inference strategy. This result was further substantiated by a direct 344 

model comparison based on BIC showing that the Late-Inference model was best at capturing the data 345 

in the remapped context (see Supplementary Tables 3 & 4 for individual subjects’ results and 346 
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 348 
Figure 5. Length measurement and production task. A. Trial structure. Each trial began with the 349 

presentation of a red fixation spot. Subjects first measured the length ls of a gray sample bar presented 350 

briefly on an upwards facing monitor. After the sample bar was extinguished, subjects moved a 351 

manipulandum containing a digitizing pen located under the monitor in order to draw a bar which was 352 

as close in length as possible to the correct length lc = g x ls. As in the timing task, there were two 353 

contexts: in the identity context, gain = 1, whereas in the remapped context, gain = 1.5. After the 354 

response, subjects received scaled and signed feedback via the presentation of a gray bar of the 355 

proper length while the subjects’ produced bar changed color to red (for an inaccurate response) or 356 

green (for an accurate response; see Methods). B. Performance of an example subject in the identity 357 

(gray) and remapped (red) contexts (same format as Figure 2). Filled circles and shaded regions 358 

indicate mean response times ± one standard deviation; dashed lines represent correct intervals. Solid 359 

lines represent the mean responses of a Bayesian observer model (see Methods) fit to the subject’s 360 

data separately for the two contexts; the dash-dot line in the gain = 1.5 condition corresponds to the 361 

prediction for the remapped context using parameters of the model fit to the identity context (H0: no 362 

additional SMN). Comparing the model fit for the remapped context to the no additional SMN prediction, 363 
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the excess bias towards the mean in the remapped relative to the identity context can be seen. C. 364 

√VAR vs. BIAS for the two contexts (gray for identity, and dark red for remapped), as well as the 365 

prediction for the remapped context assuming no additional SMN (empty circle). This prediction 366 

underestimates RMSE indicating larger SMN for the remapped context. The increased RMSE was 367 

predominantly due to an increase in BIAS (“excess bias”). Dashed quarter circles illustrate 368 

combinations of BIAS vs. √VAR giving rise to equal RMSE; error bars are computed from the standard 369 

deviation of bootstrapped estimates (n = 1000).  370 
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 371 
Figure 6. Summary of subjects’ performance in the length production task. (A) Comparison of RMSE, 372 

BIAS, and √VAR for all subjects. The lines connect values predicted in the remapped context based on 373 

simulated data from the observer model fit to individual subjects’ behavior for gain of 1 and assuming 374 

no additional SMN (predicted, H0; left) to actual values observed from behavior (gain = 1.5; right). 375 

Similar to the timing task, subjects had higher error and were more biased towards the mean than was 376 

predicted assuming no additional SMN in the remapped context. Variability also increased in most 377 

subjects (*: p < 0.05). (B) Fitting the observer model independently across the two contexts resulted in 378 

higher values of wm in the remapped context, reflecting additional reliance on prior information 379 

consistent with a late inference strategy. Values for wp and the non-scalar motor noise parameter σp 380 

were not systematically affected by the gain. Error bars represent 95% confidence intervals estimated 381 

using a bootstrap procedure (n = 1000).  382 
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Discussion 383 

 384 
Noise in sensorimotor transformations directly impacts performance. To optimize behavior in the 385 

presence of sensorimotor noise, the brain must adopt a late inference strategy that takes sensorimotor 386 

noise into account and adjusts motor plans according to the statistics of the outcomes. Our results 387 

indicate that subjects compensate for noise in sensorimotor transformations by biasing responses 388 

towards the mean of a sensorimotor prior, supporting the hypothesis that humans seek to optimize 389 

behavior in the presence of sensorimotor noise by adopting a late inference strategy. This finding 390 

extends previous work on Bayesian models of sensory and motor systems, and indicates that the brain 391 

circuits are additionally optimized for noise arising from sensorimotor transformations. 392 

 393 

The vast majority of experiments on the application of Bayesian theory to behavior involve some sort of 394 

sensorimotor transformation. As we found in our work, and others found in other behavioral settings 395 

(Soechting and Flanders 1989b; Gordon, Ghilardi, and Ghez 1994; Pine et al. 1996; McIntyre et al. 396 

2000; Sober and Sabes 2005; Churchland, Afshar, and Shenoy 2006; Schlicht and Schrater 2007), 397 

sensorimotor transformations are often noisy. Surprisingly however, most Bayesian models do not take 398 

SMN into account and formulate Bayesian calculations in terms of sensory inference (Weiss, 399 

Simoncelli, and Adelson 2002; Tassinari, Hudson, and Landy 2006; Jazayeri and Shadlen 2010; 400 

Ganguli and Simoncelli 2014). This approach may be adequate when the sensory noise is the dominant 401 

source of uncertainty (Osborne, Lisberger, and Bialek 2005). However, sensorimotor transformations 402 

may generate a substantial fraction of the total noise. Indeed, for the Late-Inference model, which 403 

captured behavior most accurately, the transformation noise (wt) associated with the remapped context 404 

was larger than measurement noise (wm; Supplementary Tables 2 & 4). This suggests that many 405 

previous experiments that ignored SMN and yet found the behavior to be optimal might have 406 

misattributed SMN to noise in sensory representations (see Figures 3B & 6B). This is not surprising as 407 

distinguishing between sensory and sensorimotor noise is not straightforward when the two are not 408 

independently manipulated. Our experiment was designed to overcome this challenge by comparing 409 

identity and remapped sensorimotor contexts and thus manipulating SMN without changing the sensory 410 

noise. Finally, it is important to note that our own work is not fully immune to the misattribution of SMN 411 

to sensory noise. While we were able to reveal the excess bias due to larger SMN in the remapped 412 

context, it is conceivable that SMN was a significant factor in the identity context as well. This might 413 

explain why a previous study found time measurement and reproduction task to be more biased than 414 

predicted by noise levels in a temporal bisection task (Cicchini et al. 2012). As such, we might have 415 

underestimated the importance of SMN by misattributing some portion to SMN to measurement noise 416 

in both contexts. 417 

 418 

Our proposal of a late inference strategy unifies various observations in a wide range of sensorimotor 419 
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tasks. For example, it has been shown that when both visual and proprioceptive information are 420 

available, subjects rely more strongly on the modality that had the least transformational complexity 421 

(Sober and Sabes 2005). Schlicht and Schrater (Schlicht and Schrater 2007) showed that subjects 422 

account for the effects of eye position uncertainty in a grasping task by increasing grip aperture. 423 

Another study found that reach movements in 3-dimensional space were consistently biased towards 424 

the centroid of target distributions, particularly along the radial (distance) axis, and that this bias was 425 

not seen when subjects performed a simpler pointing task which only required wrist movements 426 

(Soechting and Flanders 1989b). The authors’ interpretation of these results was that the brain 427 

implemented linear approximations to the true nonlinear transformations between target location and 428 

motor commands (Soechting and Flanders 1989a). However, our results suggest that the bias might be 429 

due to a stronger influence of prior information when facing the more challenging sensorimotor task of 430 

reaching in 3D. Late inference may also explain response patterns in reaching tasks where biases exist 431 

in arm-centered, rather than eye-centered reference frames (Baud-Bovy and Viviani 1998), or in cases 432 

where target-dependent bias unexplained by sensory noise is attributed to suboptimal aiming strategies 433 

(Tassinari, Hudson, and Landy 2006). 434 

 435 

Moreover, the late inference model provides a natural explanation for why various post-sensory 436 

cognitive operations cause additional biases in behavior. Without a late inference strategy, one would 437 

expect sources of noise such as memory decay to lead to additional variability. However, a number of 438 

experiments have shown that post-sensory noisy computations can lead substantial increases in bias. 439 

Examples include mental operations in the presence of memory delays (Moyer et al. 1978; Ashourian 440 

and Loewenstein 2011), predictions of complex kinematics (Smith and Vul 2013; Battaglia, Hamrick, 441 

and Tenenbaum 2013), and pointing in 3D space under various memory loads (McIntyre et al. 2000). In 442 

all these cases, the additional biases can be straightforwardly accounted for by considering the 443 

possibility that the brain has an internal model of post-sensory noisy transformations and compensates 444 

for them by using its prior knowledge about the desired outcomes. 445 

 446 

Late inference may seem at odds with recent proposals that priors based of natural stimuli may already 447 

be applied at low-level sensory areas (Weiss, Simoncelli, and Adelson 2002; Girshick, Landy, and 448 

Simoncelli 2011). However, the late inference model is fully compatible with early integration of sensory 449 

inputs with priors as well as multiple stage of updating the posterior (Ma et al. 2006; Beck et al. 2008; 450 

Ganguli and Simoncelli 2014; Ma and Jazayeri 2014). The key constraint imposed by the late inference 451 

strategy is simply for the brain to delay extracting a point estimate from the posterior distribution to as 452 

late as possible (Simoncelli 2009). 453 

 454 

Finally, our results bear on the computational principles that govern brain function when information 455 

undergoes multiple processing stages. We found that the brain computations are optimized for 456 
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sensorimotor transformations suggesting that the inference is made after the addition of sensorimotor 457 

noise. However, late inference is not a special requirement that only applies to sensorimotor noise. The 458 

passage of information in the simplest visuomotor task from the primary visual cortex to downstream 459 

visual areas to sensorimotor cortex to movement control circuits undergoes many stages of processing. 460 

Each stage of processing is likely to have its own private noise and can thus add to the overall 461 

variability. Regardless of the task and where the noise is added, the optimal strategy is to delay 462 

inference until after the final stages of processing (Simoncelli 2009). This applies even when 463 

intermediate transformations are trivial, as must be the case when most of the error can be attributed to 464 

sensory processing (Osborne, Lisberger, and Bialek 2005). This optimality consideration coupled with 465 

evidence from our work that the brain does indeed delay inferences until after the introduction of 466 

sensorimotor noise suggest that brain circuits may employ Bayesian inference as an inherent 467 

computational principle.  468 
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Methods 469 

 470 

Subjects 471 

Human subjects aged 18-65 years participated in this study after giving informed consent. All 472 

experiments were approved by the Committee on the Use of Humans as Experimental Subjects at the 473 

Massachusetts Institute of Technology. The study consisted of two experiments: a time interval 474 

estimation and production task (Experiment 1), and a length estimation and production task 475 

(Experiment 2). A group of 9 subjects participated in Experiment 1 (8 for gain = 1.5 and 9 for gain = 476 

0.75), and a mostly different group of 7 subjects participated in Experiment 2 (1 subject participated in 477 

both experiments). All subjects had normal or corrected-to-normal vision.  478 

 479 

Procedures 480 

Experimental sessions lasted approximately 45-60 minutes. Each subject completed 1-2 sessions per 481 

week. Experiments were controlled by an open-source software (MWorks; http://mworks-project.org/). 482 

All stimuli were presented on a black background. Although eye movements were not monitored, all 483 

trials began with central fixation spot that subjects were asked to hold their gaze on throughout the trial. 484 

In Experiment 1, subjects viewed all stimuli binocularly from a distance of approximately 67 cm on 485 

either a 23-inch Apple A1082 LCD monitor at a resolution of 1900 x 1200 driven by an Intel Macintosh 486 

Mac Pro computer, or a 24-inch early 2009 Apple Mac Pro at a refresh rate of 60 Hz in a dark, quiet 487 

room. In this experiment, responses were registered on a standard Apple Keyboard connected to the 488 

experimental machine. In Experiment 2, subjects viewed stimuli from above on a 21.5-inch Samsung 489 

SyncMaster SA200 monitor, and responses were registered using a pen digitizer tablet (Wacom 490 

Intuos5 touch); the stylus was fixed at a vertical position inside a custom printed handle which subjects 491 

grasped. 492 

 493 

Behavioral tasks 494 

Our objective in both experiments was to investigate the effect of sensorimotor noise (SMN) on 495 

performance. To do so, each experiment consistent of two sensorimotor contexts, an “identity” context, 496 

and a more challenging “remapped” context that was expected to involve higher levels of SMN. In each 497 

experiment, human subjects measured a scalar sensory quantity (time interval in Experiment 1, and 498 

length in Experiment 2) drawn from a prior distribution. In the “identity” context, subjects had to 499 

reproduce the sensory quantity (the sample), and in the “remapped” context, they had to produce the 500 

same quantity multiplied by a gain factor. Subjects whose responses for the shortest and longest stimuli 501 

in the identity context were at least one d’ (d-prime) apart were invited to participate in the main 502 

experiment.  503 

 504 

Experiment 1: Time interval estimation and production task. The behavioral task used in 505 
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Experiment 1 was a variant of the Ready, Set, Go task used in a previous study (Jazayeri and Shadlen 506 

2010). Subjects had to measure a sample interval drawn from an 11-point discrete uniform distribution 507 

between 600 and 1000 ms, then immediately produce an interval that was equal to the sample interval 508 

multiplied by a gain factor. The sample interval was demarcated by two visual flashes (“Ready” and 509 

“Set”) located to the left and above a fixation point at the center of a computer monitor. The production 510 

interval was defined as the interval between the onset of the second flash and the response (key press) 511 

of the subject. In the identity context, the gain was 1, whereas in the remapped contexts the gain was 512 

either 1.5 or 0.75. The gain was fixed in each behavioral session and was communicated at the 513 

beginning of each session as either “same,” “shorter,” or “longer.” The gain was also evident on every 514 

trials: the ratio of the horizontal distance between the Ready flash to the left of the fixation point and a 515 

“Go” cue to the right fixation was set by the gain factor. Following each response, subjects were given 516 

feedback regarding their response via a round marker displayed a distance from the Go cue 517 

proportional to the error and regarding the trial outcome via the color of the marker. A green marker 518 

indicated a “hit” and a white marker indicated a “miss.” Subjects completed two consecutive sessions of 519 

600 trials for each gain; the hit/miss threshold was on a staircase for the first session and fixed for the 520 

second session at the mean of the last 100 trials of the first session. Analyses were performed using 521 

data from the second sessions. All subjects completed the “identity” context sessions first, followed by 522 

either the gain of 1.5 or gain of 0.75, selected pseudorandomly for each subject. 523 

 524 

Experiment 2: Length estimation and production task. The behavioral task used in Experiment 2 525 

was conceptually similar to the first in that subjects produced a scalar quantity multiplied by a gain 526 

factor. However, instead of a time interval, subjects measured and produced visually presented lines 527 

drawn from an 11-point discrete uniform distribution between 10 and 15 degrees visual angle. To 528 

produce the length, subjects had to move a manipulandum underneath a horizontally positioned 529 

computer monitor. In each trial, after subjects positioned the manipulandum at the perimeter of the 530 

screen, a horizontal line flashed for 500 ms, after which subjects had 1200 ms to move the 531 

manipulandum inward to the final response position. Two small vertical bars, one positioned at the 532 

initial location of the manipulandum and one tracking the horizontal location of the bar, provided online 533 

visual feedback during the response. The produced length was measured as the distance between the 534 

two vertical bars at the end of the response period. The gain in the identity and remapped contexts was 535 

1 and 1.5, respectively. The gain was communicated by telling subjects to produce either “the same as” 536 

or “one and a half times” the length of the sample. Response feedback was similar to the interval 537 

production task: following each response, the produced length was shown as a line between the marker 538 

bars (green for hit and red for miss), and the correct length was displayed immediately beneath in gray. 539 

Subjects completed four sessions total with each session comprising two blocks of 150 trials of identity 540 

and remapped trials for a total of 600 trials per session. The error threshold for each gain was on a one-541 

up one-down staircase for the first two sessions and fixed for the final two sessions at the mean of the 542 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 24, 2017. ; https://doi.org/10.1101/130062doi: bioRxiv preprint 

https://paperpile.com/c/O34ZG8/MDS6A
https://paperpile.com/c/O34ZG8/MDS6A
https://doi.org/10.1101/130062
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
24 

 

last 100 trials for each gain. The order of blocks associated with the identity and remapped blocks was 543 

pseudorandomized across subjects. 544 

Data analysis 545 

Behavioral performance in all tasks was quantified with three statistics (Jazayeri and Shadlen 2010): 546 
BIAS, √VAR, and RMSE. BIAS summarizes the difference between average and correct responses and is 547 

defined as  548 

 549 

(1) 550 

where bias is the difference between the mean response and correct response for a given sample 551 

interval. √VAR summarizes the variability of responses: 552 

(2) 553 

where var is the variance of the responses for a particular sample interval. Because samples were 554 

drawn randomly, it was not the case that the number of trials for each sample was exactly the same. 555 

Therefore, averages of for BIAS and √VAR were normalized across samples according to the number 556 

of trials presented. Finally, RMSE was calculated as: 557 

(3) 558 

The three quantities are related through a sum of squares: RMSE2 = (√VAR)2 + BIAS2 (see Figure 1B). 559 

Prior to analyzing data, we identified and removed “lapse” trials for each subject. This involved finding 560 

and removing trials for which responses were greater than three standard deviations from the mean 561 

response for a particular sample quantity and context, and which was performed twice iteratively. 562 

 563 

Model descriptions and fitting procedure 564 

We employed a Bayesian model previously shown to capture the behavior of human subjects in the 565 

timing task (Jazayeri and Shadlen 2010). The model consists of three stages: a noisy measurement 566 

stage, a deterministic Bayesian inference stage, and a noisy production stage (Supplementary Figure 567 

1). The noisy measurement tm (t = time) is generated according to the noise model p(tm|ts), then used 568 

to generate an inference ti which minimizes the expected squared error between t i and ts given tm: 569 

 570 

 (4) 571 

 572 
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Where π(ts) represents the observer’s “prior” belief about ts. The inference, which can be thought of as 573 

a perceptual estimate, is the expected value of the sample interval given the measurement. The model 574 

then generates tp according to the production noise model p(tp|ti). p(tm|ts) and p(tp|ti) were formulated 575 

as Gaussian distributions with means ts and ti, respectively, and standard deviations that scaled with 576 

the respective means. This model has two free parameters, wm and wp, which represent the Weber 577 

fractions (i.e., ratio of standard deviation to mean) for p(tm|ts) and p(tp|ti), respectively. Generally, the 578 

model captures high response variability by increases in wp, and large response biases towards the 579 

mean of the prior by increases in wm.  As a corollary, increases in wp have a comparably larger effect 580 

on total error (Supplementary Figure 2). 581 

 582 

This model was used in three ways. First, we used it to predict responses in the remapped context from 583 

fits of the model to the identity context (without changing the model parameters). We used this 584 

approach to generate predictions for the null hypothesis that the remapped context did not engender 585 

additional SMN. Second, we fit this model to the behavior but allowed wm and wp to take on different 586 

values in the two contexts. We used this approach to distinguish between the early and late inference 587 

hypotheses. Based on the behavior of this model (Supplementary Figure 2) we expected a late 588 

inference strategy would cause an increase in response biases and lead to systematic increases in the 589 

fit to wm but not wp. Third, we used the model to fit the data combined across the two contexts. This 590 

approach would succeed under the null hypothesis that the two contexts have the same level of SMN. 591 

We refer to this model the “Equal-SMN” model.  592 

 593 

We also developed an “Early-Inference” and a “Late-Inference” model, which included an additional 594 

parameter, wt, to capture putative additional SMN in the remapped context. These models were fitted to 595 

the combined data in the two contexts. In the Early-Inference model, Bayesian inference was applied to 596 

the sensory measurement stage, and SMN was added to the production stage (after inference). To do 597 

so, we formulated the production stage such that p(tp|ti) was a scalar Gaussian distribution with mean 598 

of gain x ti and modified Weber fraction √(wp
2+wt

2). In contrast, for the Late-Inference model, the effect 599 

of SMN was applied prior to the inference stage by drawing samples of the “remapped” measurement 600 

from a Gaussian distribution p(tt|ts) with mean of gain x ts and Weber fraction √(wm
2+wt

2), where tt 601 

(transformed interval) represents tm multiplied by the remapping gain. 602 

 603 

In the Early-Inference model, the prior distribution corresponded to the sensory variable (i.e., prior to 604 

transformation), whereas in the Late-Inference mode it was formulated based on the transformed 605 

sensory variable (i.e., sensory variable multiplied by the gain). This modified prior represents the 606 

observer’s belief about the correct interval and can be viewed as a sensorimotor rather than sensory 607 

prior. 608 

 609 
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Model parameters were fit by maximizing the log-likelihood of subjects’ responses given the sample 610 

values and gain. The maximization was done using the fminsearch command in MATLAB (Mathworks). 611 

Model fitting and simulation involved numerical integration over the posterior distribution using 612 

Simpson’s rule. Parameter searches were repeated ten times each with different parameter 613 

initialization, and results were inspected for consistency.  614 
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BIAS Summary bias 

lc correct length interval 

ls sample length interval 

RMSE Root mean square error 

σp Production standard deviation 

SMN Sensorimotor noise 

tc Correct time interval 

ti Inferred time interval 

tm Measured time interval 

tp Produced time interval 

ts Sample time interval 

√VAR Summary standard deviation 

wm Measurement Weber fraction 

wp Production Weber fraction 

wt 

Sensorimotor transformation Weber 

fraction 

  

deg Visual degrees 

ms Milliseconds 

H0 Null hypothesis 

 615 

Table 1. Variables and abbreviations.  616 
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Manuscript Supplement 730 

 731 
Additional models 732 

We considered two additional models: the Late-Ignore-SMN model and the Observer-Actor model, both 733 

of which predicted more bias than the Early-Inference and Equal-SMN models. However both models 734 

also predicted a substantial increase in variance (Supplemental Figure 3), which deviated from 735 

subjects’ behavior. 736 

 737 

The Late-Ignore-SMN model 738 

This model utilizes a late inference stage, but the additional noise from sensorimotor transformations is 739 

ignored. More concretely, the model assumes that variability prior to inference is determined by an 740 

effective Weber fraction of √(wm
2+wt

2) but that subjects compute the posterior based on the incorrect 741 

assumption that the Weber fraction was wm. In other words, the inference function f() ignores wt. The 742 

reason why ignored SMN causes an increase in bias in the Late-Ignore model may be somewhat 743 

counterintuitive. To understand this, let us examine the computations that underlie Bayesian inference 744 

in the presence and absence of SMN. In the absence of SMN, there would be a one-to-one 745 

correspondence between a measurement and its transformation. For measurements (and 746 

transformations thereof) that are farther away from the mean of the uniform prior, the nonlinear 747 

inference function (Supplementary Figure 1, middle panel) causes more bias in the inferred values. 748 

However, the magnitude of this bias would be the same for both early and late inference because of the 749 

one-to-one correspondence between a measurement and its transformation. This situation changes 750 

however in the presence of SMN. SMN makes the result of this transformation stochastic such that a 751 

single measured interval leads to a distribution of transformed measurements. Therefore, the 752 

magnitude of bias associated with a measurement has to be computed as an expectation across the 753 

distribution of transformed measurements. Since the inference function is nonlinear, it 754 

disproportionately biases transformed measurements that are farther away from the mean of the prior 755 

distribution (and in particular, outside the support of the uniform prior) leading to an overall increase in 756 

the magnitude of the bias. 757 

 758 

While the Late-Ignore-SMN model was able to accommodate more bias, it was not enough to capture 759 

the excess bias observed in the data. The model also predicted substantially increased variance, as 760 

well as a skewing of response distributions away from the correct response (see Supplementary 761 

Figure 3). We also examined the behavior of the Late-Ignore-SMN model under the assumption that 762 

observers approximate uniform priors as Gaussian-like functions as was suggested previously (Acerbi, 763 

Wolpert, and Vijayakumar 2012; Cicchini et al. 2012). This possibility reduces the amount of bias 764 

introduced by the Late-Ignore-SMN model (data not shown), and further diminishes its utility as a viable 765 

model for the observed biases in subjects’ behavior. 766 
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The Observer-Actor model 767 

This is a variant of the Early-Inference model for which inference is made after the sensory 768 

measurement stage and the production stage is modeled by a Gaussian with mean of gain x ti and 769 

Weber Fraction √(wp
2+wt

2). However, following previous work showing that humans account for 770 

response variability when planning actions (Trommershäuser et al. 2005; Landy, Trommershäuser, and 771 

Daw 2012) we augmented the inference stage so that the early inference would take into account the 772 

scalar post-inference variability due to the transformation and production (Acerbi, Wolpert, and 773 

Vijayakumar 2012). The optimal inference under the Observer-Actor model can be computed by 774 

marginalizing over the distribution of produced values, p(tp|ti):  775 

 776 

 777 
 778 

Here ti is the optimal value that the observer using early inference should aim to produce in order to 779 

mitigate the effects of post-inference transformation and production scalar variability. Like the Late-780 

Ignore-SMN model, this model was able to accommodate a slight increase in bias as it specified all 781 

aimed magnitudes to be smaller than dictated by the Early-Inference model. However, also similar to 782 

the Late-Ignore-SMN model, increasing SMN (wt) primarily affected variance rather than bias 783 

(Supplemental Figure 3).  784 
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 785 
Supplementary Figure 1. Illustration of the Bayesian observer model previously shown to capture the 786 

behavior of human subjects in the identity context of the timing task (Jazayeri and Shadlen 2010). The 787 

noisy measurement stage (left), takes a sample interval (ts) as input and produces a measurement (tm) 788 

corrupted by Gaussian noise with standard deviation equal to the measurement Weber fraction (wm) 789 

times the value of ts. A deterministic Bayesian inference stage (middle) then takes tm as input and 790 

produces an inference ti using knowledge of the prior distribution over ts as well as the value of wm 791 

such that the the root mean squared error (RMSE) of ti relative to ts is minimized. Finally the noisy 792 

production stage (right) takes ti as input and generates a produced time (tp) corrupted by Gaussian 793 

noise with standard deviation equal to the production Weber fraction (wp) times the value of ti. This 794 

model captures high response variability by increases in wp and large response biases towards the 795 

mean of the prior by increases in wm (Supplementary Figure 2).  796 
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 797 
Supplementary Figure 2. Illustration of the effects of increasing the amount of production and 798 

measurement noise. Using the Bayesian observer model (Jazayeri and Shadlen 2010), we simulated 799 

the effects of varying the amount of motor production noise (green; wp: production Weber fraction) and 800 

sensory measurement noise (blue: wm: measurement Weber fraction) on √VAR and BIAS. Increasing 801 

the value of wp substantially increased variability with almost no increase in bias, whereas increasing 802 

wm increased bias due to increased reliance on prior information, but had little effect on variability. 803 

Thus, we interpret increases in wm (Figures 3 & 6) for subjects in the remapped contexts as evidence 804 

for reliance on prior information in a late inference strategy to mitigate the effects of increased SMN 805 

relative to the identity contexts.  806 
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 807 
Supplementary Figure 3.  Behavior of different models as a result of increasing SMN. A. Bias 808 

variance curves for three models with increasing SMN (wt = 0.025 - 0.25) relative to a “no SMN” 809 

observer model (large gray circle; wm = 0.08; wp = 0.06). For each model (Late-Inference, red; Late-810 

Ignore-SMN, green; Observer-Actor, blue) increasing SMN (wt) causes RMSE to increase as evident 811 

by increasing distance of circles from the origin. The Late-Inference model compensates for increasing 812 

SMN by systematic increases in BIAS and has the best performance. The other models exhibit less 813 
BIAS and more √VAR leading to larger RMSE compared to the Late-Inference model. Quarter circles 814 

represent combinations of √VAR and BIAS with equal RMSE for wt = 0.14. B-D. Distribution of 815 

responses as a function of sample duration under various models for wt = 0.14. B. The no SMN 816 

observer model, which shows the lowest RMSE. C. The Late-Inference model (red). In this model, bias 817 

increases substantially while variability remains relatively stable (similar to the effect of increasing wm; 818 

Supplementary Figure 2). D. The Late-Ignore-SMN model also adds bias; however, it also leads to a 819 

comparable increase in variance. E. Increasing transformation noise in the Observer-Actor model 820 

primarily increases variance but also adds a small amount of bias towards earlier responses. Due to 821 

scalar variability, smaller response magnitudes result in lower production variability. This figure depicts 822 

data simulated for the identity context; although we could not measure SMN in the identity context 823 

directly, we presume that SMN exists for all behaviors involving a sensorimotor transformation (see 824 

Discussion).  825 
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 826 
Supplementary Figure 4. Time interval reproduction, gain = 0.75. An alternative explanation for 827 

increased bias in the remapped context (gain = 1.5) which does not involve late inference is that 828 

subjects did not follow task instructions, adding a constant duration to their responses rather than 829 

multiplying. To investigate this possibility, we designed a control experiment in which the gain factor 830 

was 0.75 rather than 1.5. In this case, if subjects added a constant (negative) offset, BIAS and fit wm 831 

values should decrease. A. Performance of an example subject in the identity (gray) and remapped 832 

(red) contexts. Filled circles and shaded regions indicate mean response times ± one standard 833 

deviation; dashed lines represent correct intervals. Solid lines represent the mean responses of a 834 

Bayesian observer model (see Methods) fit to the subject’s data separately for the two contexts; the 835 

dash-dot line in the g = 0.75 context represents the model’s behavior using parameters fit from the 836 

identity context. This simulation corresponds to the null prediction of no additional SMN in the 837 

remapped context. As was the case for g = 1.5, excess bias towards the mean in the remapped relative 838 

to the identity context is apparent. B. √VAR vs. BIAS for the two contexts (gray for identity, and dark red 839 

for remapped), as well as the prediction for the remapped context assuming no additional SMN (empty 840 

circle). This prediction underestimates RMSE indicating larger SMN for the remapped context. The 841 

increased RMSE was entirely due to an increase in BIAS (“excess bias”). Dashed quarter circles 842 

illustrate combinations of BIAS vs. √VAR giving rise to equal RMSE; error bars are computed from the 843 

standard deviation of bootstrapped estimates (n = 1000). C. Comparison of RMSE, BIAS, and √VAR for 844 

nine subjects. On the left are values predicted in the remapped context (i.e. multiplied by the gain of 845 

0.75), and on the right are the actual values observed from behavior in the remapped context (*: p < 846 

0.05). D. Parameters of observer model fits. We fit the an observer model with data of individual 847 

subjects independently for the two contexts. Error bars represent 95% confidence intervals estimated 848 

using a bootstrap procedure (n = 1000). The results of this experiment suggest that response shifting 849 

strategy does not account for increased bias in the remapped contexts in the timing task. 850 

 851 
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 Identity context 
No additional SMN 

prediction Remapped context 

Subject RMSE BIAS √VAR wm wp offset RMSE BIAS √VAR RMSE BIAS √VAR wm wp offset 

CK 71 37 57 0.08 0.06 20 106 56 86 136 86 94 0.12 0.05 32 

JM 103 72 71 0.15 0.07 -22 154 108 106 140 78 108 0.11 0.07 -32 

MW 89 56 69 0.13 0.07 -1 134 84 104 171 128 112 0.21 0.07 -12 

RA 91 46 78 0.11 0.08 -8 136 69 116 212 151 130 0.30 0.11 -54 

SMP 83 25 77 0.06 0.08 -18 125 38 115 196 121 146 0.18 0.11 -31 

LZ 79 45 65 0.10 0.06 -6 119 67 98 178 137 112 0.24 0.08 -13 

DS 116 66 94 0.15 0.10 -16 173 98 140 202 136 147 0.23 0.11 -21 

BG 88 52 70 0.11 0.07 15 132 77 105 191 151 114 0.29 0.09 -25 
 869 
Supplementary Table 1. Subject performance and observer model parameters for the timing task in the identity and remapped contexts, 870 

along with performance predicted for the remapped context under the prediction of no additional SMN. All values are expressed in 871 

milliseconds, except for wm and wp, which are unitless. 872 

 873 

 874 
 Equal-SMN Early-Inference Late-Inference Late-Ignore-SMN Observer-Actor 

Subject wm wp BIC wm wp wt BIC wm wp wt BIC wm wp wt BIC wm wp wt BIC 

CK 0.10 0.06 -2673 0.10 0.05 0.02 -2667 0.08 0.05 0.09 -2705 0.10 0.06 0.00 -2666 0.10 0.05 0.02 -2669 

JM 0.13 0.07 -2317 0.13 0.07 0.03 -2312 0.13 0.07 0.00 -2310 0.13 0.07 0.00 -2310 0.13 0.07 0.03 -2312 

MW 0.16 0.07 -2265 0.16 0.07 0.00 -2258 0.13 0.07 0.16 -2308 0.16 0.07 0.00 -2258 0.16 0.07 0.00 -2259 

RA 0.17 0.09 -1850 0.16 0.08 0.06 -1852 0.10 0.09 0.25 -1958 0.16 0.09 0.10 -1847 0.16 0.08 0.06 -1855 

SMP 0.12 0.10 -1778 0.10 0.08 0.08 -1802 0.05 0.10 0.17 -1915 0.09 0.09 0.13 -1812 0.10 0.08 0.09 -1807 

LZ 0.15 0.07 -2237 0.15 0.07 0.05 -2237 0.10 0.07 0.20 -2362 0.15 0.07 0.02 -2230 0.15 0.07 0.05 -2240 

DS 0.18 0.11 -1655 0.18 0.10 0.04 -1649 0.15 0.11 0.16 -1663 0.18 0.10 0.09 -1649 0.18 0.10 0.04 -1650 

BG 0.17 0.08 -2094 0.16 0.08 0.04 -2089 0.11 0.08 0.24 -2206 0.17 0.08 0.00 -2087 0.16 0.08 0.04 -2092 

Total   -16803    -16783    -17344    -16776    -16800 
 875 
Supplementary Table 2. Fit parameters for the five models in the timing task. All values are unitless.  876 
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 Identity context 
No additional SMN 

prediction Remapped context 

Subject RMSE BIAS √VAR wm wp σp offset RMSE BIAS √VAR RMSE BIAS √VAR wm wp σp offset 

EG 0.94 0.13 0.93 0.00 0.07 0.00 0.17 1.38 0.15 1.38 1.60 0.52 1.51 0.06 0.06 0.66 -0.24 

IG 1.77 0.51 1.69 0.08 0.06 1.30 1.15 2.13 0.77 1.99 2.63 1.23 2.32 0.12 0.11 0.00 -0.44 

JK 1.38 0.35 1.33 0.06 0.06 0.89 0.90 1.77 0.52 1.69 1.84 0.86 1.62 0.09 0.01 1.28 -0.29 

RC 1.28 0.24 1.25 0.04 0.06 0.90 0.69 1.58 0.35 1.54 1.79 0.83 1.58 0.08 0.07 0.00 -0.27 

DS 1.43 0.49 1.35 0.07 0.06 0.91 0.56 1.88 0.72 1.73 2.34 0.76 2.21 0.08 0.10 0.56 -0.33 

SMP 1.75 0.57 1.65 0.07 0.01 1.55 0.59 1.97 0.75 1.82 2.33 0.99 2.11 0.09 0.00 1.85 -0.22 

TT 0.62 0.07 0.62 0.00 0.05 0.17 -0.10 0.92 0.10 0.91 1.62 0.31 1.59 0.03 0.08 0.00 -0.22 

 877 
Supplementary Table 3. Subject performance and observer model parameters for the length task in the identity and remapped contexts, 878 

along with performance predicted for the remapped context under the prediction of no additional SMN. All values are expressed in degrees 879 

visual angle, except for wm and wp, which are unitless. 880 

 881 
 882 
 Equal-SMN Early-Inference Late-Inference Late-Ignore-SMN Observer-Actor 

Subject wm wp σp BIC wm wp σp wt BIC wm wp σp wt BIC wm wp σp wt BIC wm wp σp wt BIC 

EG 0.03 0.07 0.00 5720 0.02 0.07 0.00 0.16 5905 0.00 0.07 0.32 0.06 5608 0.01 0.07 0.34 0.06 5695 0.02 0.06 0.39 0.21 5883 

IG 0.10 0.10 0.66 4988 0.09 0.10 0.83 0.15 5154 0.08 0.10 0.77 0.09 4983 0.09 0.09 1.00 0.09 4993 0.09 0.08 1.03 0.23 5152 

JK 0.07 0.04 1.08 6485 0.07 0.04 1.08 0.08 6728 0.06 0.03 1.15 0.06 6474 0.07 0.04 1.08 0.00 6492 0.06 0.02 1.18 0.17 6724 

RC 0.06 0.05 0.88 6287 0.06 0.06 0.85 0.00 6529 0.04 0.04 1.01 0.07 6253 0.06 0.05 0.88 0.00 6294 0.05 0.04 0.96 0.14 6527 

DS 0.08 0.10 0.00 6967 0.07 0.07 0.78 0.30 7199 0.07 0.10 0.00 0.03 6974 0.07 0.10 0.17 0.07 6968 0.06 0.08 0.73 0.29 7201 

SMP 0.09 0.07 1.33 4880 0.07 0.00 1.56 0.26 5036 0.07 0.06 1.37 0.06 4883 0.08 0.06 1.40 0.04 4887 0.07 0.00 1.56 0.28 5033 

TT 0.00 0.07 0.00 5163 0.02 0.05 0.00 0.29 5224 0.00 0.06 0.00 0.05 5077 0.01 0.05 0.01 0.07 5054 0.01 0.05 0.01 0.29 5204 

Total    40559     41857     40334     40466     41805 

 883 
Supplementary Table 4. Fit parameters the for five models in the length task. All values are unitless except σp, which is in units of visual 884 

degrees. 885 
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