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Abstract 

Self-control and the ability to resist temptation are critical for successful completion of long-term goals. 

Contemporary models in cognitive neuroscience emphasize the primary role of prefrontal cognitive 

control networks in aligning behavior with such goals. Here we use gaze pattern analysis and dynamic 

functional connectivity fMRI data to explore how individual differences in the ability to resist temptation 

are related to intrinsic brain dynamics of the cognitive control and salience networks. Behaviorally, 

individuals exhibit greater gaze distance from target location (e.g. higher distractibility) during 

presentation of tempting erotic images compared with neutral images. Individuals whose intrinsic dynamic 

functional connectivity patterns gravitate towards configurations in which salience detection systems are 

less strongly coupled with visual systems resist tempting distractors more effectively. The ability to resist 

tempting distractors was not significantly related to intrinsic dynamics of the cognitive control network. 

These results suggest that susceptibility to temptation is governed in part by individual differences in 

salience network dynamics, and provide novel evidence for involvement of brain systems outside 

canonical cognitive control networks in contributing to individual differences in self-control. 
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Introduction  

In our daily lives we constantly encounter situations that evoke conflicting response tendencies: 

on the one hand impulsive reactions towards tempting stimuli and on the other hand actions that serve 

the realization of previously set goals (Hofmann et al., 2012). Self-control is correlated with well being 

(Hofmann et al., 2014), and self-control failure has been related to addiction, obesity, posttraumatic stress 

disorder, depression, and attention-deficit hyperactivity disorder (Bechara, 2005; Konttinen et al., 2009; 

Özdemir et al., 2014; Schweitzer & Sulzerazaroff, 1995; Walter et al., 2010). This is why it is of great 

scientific interest to understand why some individuals are able to resist when faced with temptation, while 

others fail.   

Erotic and sensual images are powerful visual temptations. The advertisement industry frequently 

makes use of erotic images (Reichert & Carpenter, 2004) because they are very salient, and trigger us to 

involuntarily look towards them (Sennwald et al., 2016). This might be the case because they trigger 

evolutionarily meaningful attention allocation and approach behaviors (Fromberger et al., 2012). Here we 

investigate the neural basis for individual differences in self-control in the face of temptation using a 

combination of eyetracking and dynamic functional connectivity fMRI.  

The most prominent model of self-control is the dual-systems approach, which assumes that a 

reflective system serving higher-level goal representations can exert control over an impulsive system 

that reacts to stimuli in a direct automatic manner (e.g., Hofmann et al., 2009; Metcalfe & Mischel, 1999; 

Strack & Deutsch, 2004). The reflective system has been mainly associated with fronto-parietal cognitive 

control networks, while the impulsive system has been linked with visceral and sensory regions (McClure 

& Bickel, 2014). Prefrontal cortical regions have been associated with self-control (e.g. Hare et al., 2009; 

Hayashi et al., 2013). Based on this model, the cognitive control network is a prime candidate for studying 

individual differences in self-control.  

Another potential candidate for explaining individual differences in self-control is the salience 

network. The salience network is comprised of bilateral insula, dorsal anterior cingulate cortex (dACC) 

and other subcortical and limbic structures (Seeley et al., 2007), and is implicated in the direction of 

attention towards important stimuli and integration of top down appraisal and bottom up visceral and 

sensory information (see Uddin, 2015, for review). This central role in integrating information is reflected 
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in its unique functional and structural connectivity profile. For example, the different insular nodes within 

the salience network are associated with distinct functional connectivity profiles; the dorsal anterior insular 

cortex coactivates with areas associated with cognitive processing, the ventral anterior insular coactivates 

with areas associated with affective processing and the posterior insular coactivates with sensorimotor 

processing areas (Chang et al., 2013; Uddin et al., 2014).  

In the task presented here, attention allocation towards task relevant information is in conflict with 

attention allocation towards task irrelevant, yet intrinsically relevant, information (erotic distractors). As the 

salience network has been implicated in the allocation of attention processes towards task relevant 

information by interacting with other networks and the coordination of resources (Uddin, 2015), individual 

differences in salience network functioning might play an important role in explaining why some 

participants stay on task while others yield to the erotic distraction.  

Most self-control research has focused on the down-regulation of impulses by cognitive control 

networks when examining individual differences in self-control, while studies of bottom-up processes that 

influence self-control are underrepresented (but see Steimke et al., 2016; Ludwig et al, 2013). Task 

based fMRI studies have indicated that self-control involves dorsolateral prefrontal cortex modulation of a 

value signal in the ventromedial prefrontal cortex (Hare et al., 2009). Recently, spontaneous fluctuations 

in resting state brain activity have been shown to demonstrate reproducible correlations across brain 

regions organized into networks (Shehzad et al., 2009). Because resting state networks are thought to 

represent individual differences in the brain’s functional organization, resting state fMRI has become a 

leading approach for understanding individual differences in behavior (Dubois & Adolphs, 2016).  

Dynamic functional connectivity of resting state fMRI data is a new approach that accounts for the 

non-stationarity of brain signals and enables the study of brain dynamics underlying behavior. Whereas 

the static functional connectivity approach assumes that the connectivity pattern of the brain remains 

stable over time, the dynamic functional connectivity approach accounts for moment-to-moment variability 

in connectivity profiles. Within this framework the brain engages in reoccurring time-varying functional 

relations that can be referred to as functional connectivity “states” (Calhoun et al., 2014; Hutchison et al., 

2013). By taking time variation into account, the dynamic approach can give a more nuanced 

understanding of brain connectivity, which is vital for understanding the source of individual differences. 
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Our previous work examining the dynamic functional connectivity profile of different insular subregions 

found partially distinct and partially overlapping dynamic state profiles of the anterior, ventral and 

posterior insular subdivisions, highlighting aspects of salience network dynamics that have been 

previously overlooked (Nomi et al., 2016). Whole brain dynamic state characteristics are related to 

individual differences in executive function (Jia et al., 2014; Nomi et al., 2017; Yang et al., 2014) as well 

as mental illnesses including schizophrenia and bipolar affective disorder (Damaraju et al., 2014; Rashid 

et al., 2014). No previous studies have considered the relationship between salience network dynamics 

and self-control.  

Here we present results of a study examining the relationship between brain network dynamics 

and self-control in the face of temptation. Broadly, we expected that susceptibility to interference from 

visual distraction would be reflected in brain network dynamics. We predicted that individual differences in 

self-control would be related to cognitive control network dynamics, salience network dynamics, or both. 

We explored these potential mechanisms underlying individual differences in self-control in a relatively 

large sample of 94 adults.  

 

Methods 

Participants 

Ninety-four current or former university or college students (Mean age = 25.93, SD = 3.84; 54 

females) were included in the analysis. These data were part of a larger data set of 126 participants who 

also participated in additional fMRI tasks, self-control and cognitive control paradigms (Paschke et al., 

2016; Sekutowicz et al., 2016). Of all participants, 109 had valid behavioral and eyetracking data 

(Steimke et al., 2016). Fifteen participants were excluded because either the fMRI registration process 

was not successful, or because the fMRI scans did not cover the whole brain.   

Self-Control Task 

In a task designed to assess self-control, participants were instructed to attend to a cued target 

location (left or right side of the screen) while facing the challenge to sustain attention despite neutral and 

erotic pictures presented as distractors on the other side of the screen (Figure 1 and 2; see Steimke et 
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al., 2016 for behavioral and eyetracking results of the task). Eyetracking data were acquired using a 

video-based eyetracker (sampling rate: 250 Hz. spatial resolution: 0.05°, Cambridge Research Systems, 

UK). Participants were seated 36 cm from the screen. In order to reduce movement, participants were 

instructed to rest their chin and forehead on a chin rest. The distracting images were presented for a 

variable duration and elicited participants’ eye gaze to shift away from the cued target location, resulting 

in poorer performance on the task, which was to identify by button press whether a white target letter was 

an “E” or an “F”. Variable distractor durations were introduced to prevent participants from anticipating 

when the target letter would be presented. Motivation of participants to perform accurately on the task 

was enhanced by offering the chance of a 10 Euro reward for accurate performance on one trial, which 

was randomly selected after completion of the task. Target letters were presented for 10 ms against a 

dark grey background, and participants were instructed to respond as quickly and accurately as possible. 

The distractors consisted of neutral pictures (eg. neutrally rated objects or scenes) and erotic pictures 

(pictures of couples in erotic situations) displayed on the contralateral side of the screen relative to the 

target location. Note that the task also included other conditions not reported here. Pictures were selected 

on the basis of valence, arousal, and attraction ratings from 96 independent participants and erotic and 

neutral pictures were matched for brightness and complexity. Eye gaze distance from target location was 

used as a dependent variable. Specifically, the gaze distance difference score between trials with erotic 

and trials with neutral distraction was used. Gaze distance was used, as it is the most direct measure 

distractibility. Additionally, it was found that gaze distance, not reaction time, was related to delay of 

gratification in this task: participants who couldn't resist to eat one sweet immediately instead of waiting 

for two sweets after 45 minutes also showed greater gaze distance from target when erotic pictures were 

presented than participants who chose to wait (Steimke et al., 2016). A short test of fluid intelligence 

(LPS, Leistungsprüfsystem Unterteil 3, Horn, 1983) was performed in order to be able to control for 

individual differences in intelligence. 

 

FMRI data acquisition and preprocessing 

Each participant underwent resting-state fMRI scans during which they kept their eyes open and 

fixated on a fixation cross. Whole-brain fMRI data were collected with a 3 Tesla Siemens Tim Trio MRI 
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scanner (Siemens, Erlangen, Germany) on a separate day from the behavioral testing. Using a 12-

channel head coil, 32 slices were acquired in descending order with a T2*-sensitive one-shot gradient-

echo echo-planar sequence. To minimize motion, the head was fixated with cushions. The following 

parameters were used: repetition time of 2 s, echo time of 25 ms, flip angle of 78, data acquisition matrix 

of 64x64, field of view of 24 cm, voxel size of 3x3x3mm and an inter-slice gap of 0.75 mm, 180 volumes. 

Preprocessing was performed with the Data Processing Assistant for Resting-state fMRI 

(http://restfmri.net). In order to ensure data were at signal equilibrium, the first 10 volumes were removed. 

Slice time correction was performed, the data were realigned, normalized to an EPI template, and 

smoothed with a 8mm Gaussian kernel. 

 

Independent Component Analysis 

The first step in the dynamic functional network connectivity (dFNC) analysis was to parcellate 

the brain into regions of interest using a high-model order group independent component analysis (ICA) 

implemented with the GIFT toolbox (http://mialab.mrn.org/software/gift/) using the infomax algorithm 

(Calhoun, Adali, Pearlson, & Pekar, 2001; Calhoun & Adalı, 2012). A high-model order of 100 

independent components was chosen based on previous work demonstrating that this number of 

components sufficiently parcellates major brain networks (default mode network: DMN; cognitive control 

network: CCN; salience network: SN) into individual brain areas that allows for more fine grained 

examination of network node interactions (Damaraju et al., 2014; Nomi et al., 2016, 2017). Additional 

research demonstrates that model orders of 100 and below have better reproducibility than model orders 

higher than 100 (Abou�Elseoud et al., 2010). Stability of ICs were ensured by repeating the infomax 

algorithm 10 times using ICASSO and selecting the central run for further analysis. Subject specific 

spatial maps and time courses were back-reconstructed using the GICA1 method (Erhardt et al., 2011).  

The ICA produced 100 ICs that were then subjected to visual inspection in order to eliminate 

components containing white matter, cerebral spinal fluid, movement, or large amounts of high-frequency 

information (Allen et al., 2011; Damoiseaux et al., 2006; Nomi et al., 2016, 2017). This resulted in 44 ICs 

of interest that were grouped into functional networks by visual inspection following previous work: SN, 

CCN, visual network, components of the temporal lobes, DMN, components of the cerebellum, and a 
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subcortical network (see Figure 3a). The correlation matrix representing overall strength of coupling 

between these ICs can be seen in Figure 3b.  

 

Independent Component Post-processing 

Post-processing of non-noise ICs in GIFT consisted of despiking, detrending (linear, cubic, 

quadratic), regression of the Friston 24 motion parameters, and a low pass filter (0.15 Hz). Despiking 

replaces outliers in IC time courses larger than the absolute median deviation with a third-order spline fit 

to clean portions of the data using AFNI’s 3dDespike algorithm. Despiking decreases the temporal 

derivative (DVARS) (Power et al., 2011) over IC time courses and eliminates artifacts in dFNC analyses 

(Damaraju et al., 2014). 

 

Sliding Window Analysis 

Post-processed IC time courses were analyzed by using a sliding window dFNC algorithm in 

GIFT using window sizes of 22 TRs (44 seconds) slid in 1 TR. A window size of 44 seconds was chosen 

as previous dFNC work utilized window sizes of 44 (Yang et al., 2014) and 45 seconds (Damaraju et al., 

2014; Nomi et al., 2016). Furthermore, previous dFNC research has demonstrated that window sizes of 

30-60 seconds capture distinct dynamic functional connections not found in larger window sizes 

(Damaraju et al., 2014; Hutchison et al., 2013), methodological dFNC work has shown that such window 

sizes represent real fluctuations in functional connectivity (Leonardi & Van De Ville, 2015; Sakoglu et al., 

2010). Additional empirical research demonstrates that these window sizes are able to capture cognitive 

states (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012; Wilson et al., 2015).   

A tapered window consisting of a rectangle convolved with a Gaussian (σ = 3) was utilized in 

order to account for the limited number of time points in each sliding window. This produced a covariance 

matrix with the dimensions of 946 (sliding windows) x 148 (paired connections) per subject. In order to 

further account for noise that may arise from a limited number of time points, each covariance matrix was 

regularized using the graphical LASSO method (L1 norm) (Friedman, Hastie, & Tibshirani, 2008) of the 

inverse covariance matrix resulting in a correlation matrix (Damaraju et al., 2014).  
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Cognitive Control Network and Salience Network Dynamic States 

Windowed correlation matrices for components within the cognitive control network and salience 

network were extracted and subjected to k-means clustering independently. The salience network 

consisted of the bilateral insular, the dorsal anterior cingulate cortex and the orbitofrontal cortex; the 

cognitive control network consisted of bilateral dorsolateral prefrontal and parietal regions (see Figure 3a 

for salience and cognitive control network nodes and Figure 3b for the extracted matrices). In order to be 

able to perform k-means clustering, the sliding windows of all participants were concatenated for the 

cognitive control and salience network separately. Using these concatenated salience and concatenated 

cognitive control networks, the number of optimal number of clusters was determined by using the elbow 

criterion applied to the cluster validity index derived from k-means clustering using “city block” distance 

function (Allen et al., 2014) performed for clustering values between 2-20. This analysis revealed that 5 is 

the optimal number of clusters for the salience network as well as for the cognitive control network, 

therefore the 5 cluster solutions for all results are presented.  

 For each of the 5 cognitive and the 5 salience network states, frequency and dwell time were 

calculated. Frequency was calculated as the percent that a brain state prevailed throughout the duration 

of the scan. Dwell time was calculated as the average length, measured in number of sliding windows, 

that a participant stayed in a given brain state. Pearson correlations were calculated to relate frequency 

and dwell time of cognitive and salience network states to distractibility by erotic temptation.  

 

Results 

Dynamic Salience Network States 

We identified 5 different salience network states (see Figure 4a). Note that the states are sorted 

by the average percent of time participants spent in each of the five states. On average, participants 

spent 39.53 percent of their time in state 1 (SD = 27.54), 16.55 percent of their time in state 2 (SD = 

16.59), 16.02 percent of their time in state 3 (SD = 15.72),15.53 of their time in state 4 (SD = 17.06), and 

12.37 percent of the time is state 5 (SD = 16.15). Repeating of k-means clustering to a total of 5 

estimates revealed stability of the results (see Table 1). Considering the frequency spent in each state, 

there is a floor effect for some participants, meaning they did not spend any time in that state at all. Five 
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participants did not enter into state 1, 21 participants did not enter into state 2, 22 participants did not 

enter into state 3, 19 did not enter into state 4, and 33 did not enter into state 5. Not all participants enter 

into each state because k-means clustering of the concatenated data matrix including all subjects allows 

for the possibility that individual subjects will not contribute to each state (Damaraju et al., 2015; Nomi et 

al., 2016, 2017) The dwell time on average was 22.56 (SD = 26.00) for state 1, 10.87 (SD = 8.97 for state 

2, 9.50 (SD = 8.25) for state 3, 9.70 (SD = 9.53) for state 4, and 9.98 (SD = 12.45) for state 5.  

 

Dynamic Cognitive Control Network States 

We identified 5 different cognitive control network states (see Figure 4b). The states are sorted by 

the average percent of time participants spent in each of the five states. On average, the participants 

spent 34.74 percent in state 1 (SD = 26.21), 17.98 percent of their time in state 2 (SD = 17.52), 17.92 

percent in state 3 (SD = 17.67), 17.14 percent in state 4 (SD = 17.97), and 12.22 percent of their time in 

state 5 (SD = 13.84). Repeating of k-means clustering to a total of 5 estimates revealed stability of the 

results (see Table 2). Concerning the frequency, 3 participants did not adopt state 1, 20 participants did 

not adopt state 2, 18 participants did not adopt state 3, 18 did not adopt state 4, and 28 did not adopt 

state 5. The dwell time on average was 20.65 (SD = 26.37) for state 1, 10.96 (SD = 10.52) for state 2, 

10.93 (SD =8.35) for state 3, 11.90 (SD =11.37) for state 4, and 10.76 (SD =11.19) for state 5.  

 

Correlations with Eye Gaze Behavior 

As reported in the behavioral paper (Steimke et al., 2016) distracting images elicited participants’ 

eye gaze to shift away from the target location, resulting in poorer performance on the task (Figure 2). 

Difficulty resisting temptations as indicated by gaze distance difference between erotic and neutral 

distractors was negatively correlated with the time spent in salience network state 4, r(92) = -0.26, p = 

0.012. This correlation remained significant when excluding participants who did not spend any time in 

state 4, r(73) = -0.25, p = 0.031. Comparing participants who did not adopt state 4 at all with those who 

did ever adopt state 4, using between group t-testing, revealed marginally significant higher distraction by 

temptation for participants who adopted state 4, t(91) = 1.98, p = .051. State 4 represents a dynamic 

functional connectivity state wherein the salience network was negatively correlated with the visual 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 23, 2017. ; https://doi.org/10.1101/129676doi: bioRxiv preprint 

https://doi.org/10.1101/129676


Salience Network and Self-control 

 

 

 

10

network. All other states were not significantly correlated with performance on the temptation task (see 

Figure 5a). Posthoc analysis revealed that time spent in state 4 was negatively correlated with time spent 

in state 1 (r(92) = -0.36, p < 0.001). Further posthoc testing revealed that the significant negative 

correlation between time spent in state 4 and ability to resist temptation remained significant when 

controlling for age, gender and fluid intelligence as measured by LPS ( r = -0.276, p = 0.008, df = 89). 

Correlating dwell time of the 5 salience network states with the ability to resist temptations revealed the 

same pattern as for frequency: state 4 showed a significant negative correlation, while the others did not 

(Figure 5b).  There was no correlation between frequency or dwell time of any of the five cognitive control 

network states with self-control in the face of temptation (see Figure 6a and 6b).  

 

Discussion 

Self-control is critical for successful long-term goal attainment. Here we use gaze pattern analysis 

in a self-control task and dFNC analysis of resting state fMRI data to explore how individual differences in 

the ability to resist tempting distractors are related to intrinsic brain dynamics. We show that participants 

whose intrinsic connectivity patterns gravitate towards configurations in which salience detection systems 

are less strongly coupled with visual systems could resist tempting distractors more effectively. 

Our results suggest that individuals whose brains spend more time in a state where salience and visual 

networks are decoupled were less distractible by erotic pictures. Most models of self-control posit a key 

role for prefrontal cognitive control networks in regulatory processes involved in overcoming the impulse 

to engage with salient distracting stimuli (Hare et al., 2009; Hayashi et al., 2013). The current results, in 

contrast, demonstrate for the first time that salience network dynamic coupling tendencies may contribute 

to individual differences in the ability to resist temptation. 

The salience network, with key nodes in insular and anterior cingulate cortices, plays a central 

role in detection of behaviorally relevant stimuli and the coordination of neural resources.  In particular, 

the dorsal anterior insular node of the salience network is thought to causally influence task-positive and 

default mode networks (Uddin et al., 2011). Salience network dysfunction has been linked with host of 

psychiatric conditions, particular those involving self-regulation and executive function deficits (Uddin, 

2015). For these reasons, we predicted that individual differences in intrinsic salience network dynamics 
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may contribute to the ability to focus and maintain attention when faced with tempting distractors.  

Examination of salience network dynamics revealed the existence of 5 distinct connectivity states 

of this network (Figure 4). State 1, which was occupied nearly 40% of the time, was characterized by a 

large amount of correlations centered around zero. This is in line with previous studies (Damaraju et al., 

2014; Nomi et al., 2017) which consistently show that brain states with the highest frequency of 

occurrence show a greater amount of correlations centered around zero compared to less frequently 

occurring states. State 2 was characterized by positive correlations of the salience network with the 

sensory motor network. Both State 2 and State 3 showed positive intercorrelations within the salience 

network and negative correlation of the salience with the default mode network. State 4 also showed a 

negative correlation of salience network with default network and intercorrelation within salience network. 

The most pronounced characteristic by which state 4 differed from the other states was the negative 

correlation of the salience network and the visual network. The least frequent state 5 showed mixed 

positive and negative correlation with regions in the sensorimotor networks, within salience network 

correlations centered around zero and correlation of salience network with default mode centered around 

zero.  

Examination of cognitive control network dynamics revealed 5 cognitive control network states. 

The most frequent cognitive control network state (state 1) was occupied approximately 35 percent of the 

time and was characterized by a greater number of correlations centered around zero, in contrast to the 

other 4 states. This was the case for within cognitive control network intercorrelations and correlations of 

the cognitive control network with the rest of the brain.  

The only significant relationship between brain network dynamics and individual differences in 

behavior was observed for salience network state 4. Both frequency and dwell time were significantly 

correlated with distractibility by erotic images as measured by gaze distance from target presentation.  

In a recent whole brain dynamic functional connectivity study by Nomi et al. (2017), successful 

executive function was associated with spending more time in the most frequently occuring state, 

whereas in our study self-control was not associated with time spent in the most frequently occurring 

dynamic state. These results demonstrate for the first time how highly salient distractors can interfere with 

top-down control processes to a greater extent in individuals who exhibit specific patterns of intrinsic 
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functional connectivity dynamics.   

The current results provide more nuanced tests of the dual-systems model, which pits cognitive 

control systems against “impulsive” brain systems that react automatically to salient stimuli. Our separate 

analyses of cognitive control network dynamics and salience network dynamics indeed do not support the 

predictions of a traditional dual-systems approach. Instead, our findings suggest that when visual input 

has less access to salience detection systems, tempting erotic distractors are easier to ignore. These 

findings highlight the importance of considering “neural context” in studies of brain function; the idea that 

the functional relevance of a brain system depends on the status of other connected areas (McIntosh, 

2004). 

 

Limitations 

K-means is a powerful algorithm to identify a predefined number of clusters in a dataset. 

However, it has also been criticized as the starting point of the algorithm can influence the clustering. If 

the number of clusters is chosen that does not match the dataset, the clustering can become unstable 

and repetition of the analysis can yield significantly different results. To address this limitation, we 

repeated the analysis 5 times. In Table 1 the percent time spent in each state for the five analyses is 

presented. The divergence between analysis lies below 0.1 percent, suggesting that the divergence 

between analyses is minor and the k-means clustering yielded stable results in our dataset.  

With a p-value of 0.012, the results presented here do not survive the conservative Bonferroni 

correction for multiple comparisons. A corrected value would be marginally significant (p= .06). Therefore 

the results presented here should be regarded with caution and should be replicated in future studies. 

With a sample size of 94 we have a relatively large sample for a combined fMRI and eyetracking study. 

However, as was noted by Schönbrodt and Perugini (2013) a sample size of higher than 150-250 is even 

more reliable for examining correlations. Future work with larger sample sizes is needed to further support 

the results presented here.  

 

Conclusions 

Studying salience network dynamics might deliver valuable insight into the origin of individual 
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differences in self-control ability. We show that participants who spent more time in a brain network 

configuration in which salience detection systems are decoupled from visual systems could resist 

tempting distractors more effectively. This suggests that individual differences in self-control in the face of 

temptation might be driven in part by salience network functional connectivity context.  
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Figure Legends 
 
Figure 1. Display of the trial timing. A trial starts with a fixation cross. The fixation cross is followed by an 
arrow indicating the location of the next target letter “E“ or “F“ presented 5.9° of visual angle left or right 
from the center. After the arrow presentation the screen a cleared screen is presented for variable delay. 
Afterwards either a neutral or an erotic distractor is presented for a variable duration immediately followed 
by the target letter. Drawings are placeholders for photographs from the International Affective Picture 
System (Lang et al., 2008) and the internet. 
 
 
Figure 2. Display of behavioral and eyetracking data. Mean reaction times, percent errors, gaze distance 
and standard deviation oft he gaze distance (SD). Asterisks (�) indicate a significant difference at p < 
0.05. Error bars represent the 95% confidence interval for within-subjects comparisons (Loftus and 
Masson, 1994). 
 
 
Figure 3. Brain networks and Static Connectivity. a) Display of the nodes identified by the ICA grouped 
into functional networks; each color represents a node within the network. b) Static whole brain functional 
connectivity correlation matrix; cognitive and salience networks used in the dynamic resting state analysis 
are highlighted by red boxes. 
 
 
Figure 4. Display of the connectivity matrices of the five dynamic a) salience and b) cognitive control 
network states. States are order by the most frequent (state 1) to the least frequent (state 5). The 
frequency is indicated in percent time spent in each state.  
 
 
Figure 5. Correlations of a) frequency and b) dwell time of the 5 salience network states with the 
temptation gaze effect: the higher the temptation gaze effect, the more participants’ gaze drifted from the 
target location in the face of tempting distractors. The asterisk (�) indicates a significant difference at p < 
.05. 
 
 
Figure 6. Correlations of a) frequency and b) dwell time of the 5 cognitive control network states with the 
temptation gaze effect: the higher the temptation gaze effect, the higher the distractibility by erotic 
images. 
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Table 1. Percent of time spent in each salience network state. Repetition of k-means clustering reveals 

similar results, suggesting that the clustering is stable in this dataset. 

 

 State 1 State 2 State 3 State 4 State 5 

1st analysis 39.53% 16.55% 16.02% 15.53% 12.37% 

2nd analysis 39.50% 16.50% 16.04% 15.52% 12.44% 

3nd analysis 39.53% 16.54% 16.03% 15.53% 12.36% 

4th analysis 39.53% 16.54% 16.01% 15.53% 12.38% 

5th analysis 39.53% 16.55% 16.02% 15.53% 12.37% 

 

 

Table 2. Percent of time spent in each cognitive control network state. Repetition of k-means clustering 

reveals similar results, suggesting that the clustering is stable in this dataset. 

 

 State 1 State 2 State 3 State 4 State 5 

1st analysis 34.74% 17.98% 17.92% 17.14% 12.22% 

2nd analysis 34.74% 17.98% 17.92% 17.14% 12.22% 

3nd analysis 34.55% 17.97% 18.21% 17.13% 12.15% 

4th analysis 34.61% 17.75% 18.07% 17.10% 12.46% 

5th analysis 34.74% 17.98% 17.92% 17.14% 12.22% 
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