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Abstract 

Learning from reward feedback in a changing environment requires a high degree of 

adaptability, yet the precise estimation of reward information demands slow updates. We show 

that this tradeoff between adaptability and precision, which is present in standard reinforcement-

learning models, can be substantially overcome via reward-dependent metaplasticity (reward-

dependent synaptic changes that do not always alter synaptic efficacy). Metaplastic synapses 

achieve both adaptability and precision by forming two separate sets of meta-states: reservoirs 

and buffers. Synapses in reservoir meta-states do not change their efficacy upon reward 

feedback, whereas those in buffer meta-states can change their efficacy. Rapid changes in 

efficacy are limited to synapses occupying buffers, creating a bottleneck that reduces noise 

without significantly decreasing adaptability. In contrast, more-populated reservoirs can generate 

a strong signal without manifesting any observable plasticity. We suggest that ubiquitous 

unreliability of synaptic changes evinces metaplasticity that can provide a robust mechanism for 

adaptive learning. 
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Introduction  

To successfully learn from reward feedback, the brain must adjust how it responds to and 

integrates reward outcomes, since reward contingencies can unpredictably change over time 

(Behrens et al., 2007; Rushworth and Behrens, 2008). At the heart of this learning problem is a 

tradeoff between adaptability and precision. On one hand, the brain must rapidly update reward 

values in response to changes in the environment, and on the other hand, in the absence of any 

such changes, it must obtain accurate estimates of those values. This tradeoff, which we refer to 

as the adaptability–precision tradeoff (Farashahi et al., 2017a,b; Khorsand, Farashahi, and 

Soltani, 2016, Society for Neuroscience abstract), can be easily demonstrated in the framework 

of reinforcement learning (Sutton and Barto, 1998). According to this framework, larger learning 

rates result in higher adaptability but lower precision, and smaller learning rates give rise to 

lower adaptability but higher precision (Supplementary Note 1 and Supplementary Figure 1). In 

recent years, the failure of conventional reinforcement learning (RL) models to capture the level 

of adaptability and precision demonstrated by humans and animals has led to alternative 

explanations for how we deal with uncertainty and volatility in the environment (Behrens et al., 

2007; Krugel et al., 2009; Payzan-LeNesture et al., 2011; Costa et al., 2015). However, most of 

these solutions for adjusting learning require complicated calculations, and their underlying 

neural substrates are unknown. 

Given the central role of synapses in learning, we asked whether there are synaptic mechanisms 

that can adjust the brain’s level of plasticity according to reward statistics and, therefore, allow 

the learning process to be adaptable. A candidate mechanism for such adjustment is 

metaplasticity, defined as changes in the synaptic state that shape the direction, magnitude, and 

duration of future synaptic changes without any observable change in the efficacy of synaptic 

transmission (Abraham and Bear, 1996; Abraham 2008; Fusi et al., 2005; Muller-Dahlhaus and 

Ziemann, 2015; Yger and Gilson, 2015). Extending our recent heuristic model of reward-

dependent metaplasticity, which exhibits the adjustment of learning to reward uncertainty 

(Farashahi et al., 2017a), here we examined a general class of metaplastic models to identify 

features that are beneficial for adaptive learning and for mitigating the adaptability–precision 

tradeoff (APT). 
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We found that the APT can be substantially overcome in superior metaplastic models. These 

models achieve both adaptability and precision by forming two separate sets of meta-states: 

reservoirs and buffers. Synapses in reservoir meta-states do not change their efficacy upon 

reward feedback whereas those in buffer meta-states can change their efficacy. In superior 

models, rapid changes in efficacy are limited to synapses occupying buffers, creating a 

bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-

populated reservoirs can generate a strong signal without manifesting any observable plasticity. 

Finally, we showed that metaplastic transitions are crucial for adaptive learning since replacing 

these transitions with plastic ones reduce the ability of the model in mitigating the APT. 

Altogether, our results illustrate how metaplasticity can mitigate one of the most fundamental 

tradeoff in learning and moreover, reveal the critical features of metaplasticity that contribute to 

adaptive learning.    

 

Results 

To study the relationship between adaptability and precision, we considered a general problem of 

estimating reward probability (𝑝!) from a stream of binary outcomes (reward, no reward). Our 

general model of metaplasticity consisted of multiple meta-states associated with one of the two 

values of synaptic efficacy (weak and strong), and all possible transitions between these meta-

states (Fig. 1a; see Methods). The difference between the fractions of synapses that are in the 

strong and weak meta-states determines the signal (𝑆) stored in these synapses. Importantly, we 

assumed that metaplastic transitions have a consistent order, and thus, within the set of weak and 

strong meta-states, there are multiple meta-states with different levels of depth (Fig. 1a).  

For a given value of reward probability, 𝑝!, the steady state of the model can be used to calculate 

the signal, and the weighted average change in signal due to single potentiation and depression 

events (‘one-step’ noise) provides a good proxy for noise (see Methods). To quantify how 

unambiguously the signal in a model differentiates between adjacent reward probabilities, we 

defined a quantity, termed the ‘precision’ (ℙ), equal to the sensitivity of the model’s signal to 

changes in reward probabilities (‘sensitivity’), divided by noise in the signal. Finally, the 

‘adaptability’ (𝔸) of a model in estimating reward probability was defined as the rate at which 
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the signal approaches its final value (see Methods). Since we were interested in conditions under 

which metaplasticity can improve the APT, we examined ‘superior’ metaplastic models (i.e. 

those which optimized 𝔸×ℙ for a given value of ℙ).  

 

Figure 1. A general model of metaplasticity with ordered meta-states, and its behavior. (a) A schematic 

of the model. Synapses can transition between different meta-states with either weak or strong synaptic 

efficacies. (b) The APT in the plastic model (𝑁 = 2), and superior metaplastic models with different 

numbers of meta-states. Plotted is the average adaptability (over different values of 𝑝!) as a function of 

the average precision in different models. For the plastic model, each dot corresponds to a specific set of 

parameter values. For metaplastic models (𝑁 = 4, 6, 8), each outline connects models with optimized 

adaptability for a given value of average precision. (c) Matching of the sensitivity to noise in the 

metaplastic models. Plotted are the normalized sensitivity (∆𝑆) and one-step noise (𝜂) as a function of 𝑝!  

for three examples of superior metaplastic models with different numbers of meta-states. The sensitivity 

profile better matches the noise profile as 𝑁 increases. (d) Adjustment of learning to reward probability in 

metaplastic models. Plotted are the effective learning rates for potentiation (𝑡!, solid curves) and 

depression (𝑡!, dashed curves) events as a function of 𝑝!. The effective learning rate on potentiation 

(depression) events increases (decreases) as reward probability increases, with a crossover at 𝑝! = 0.5. 
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We found that for many model parameters, the APT can be mitigated by superior metaplastic 

models that consist of as few as four meta-states (Fig. 1b; Supplementary Figure 2). These 

superior models overcame the APT by exhibiting two important characteristics, matching the 

sensitivity to noise and optimal adaptability. Firstly, the sensitivity of the signal to the reward 

probability matched the level of noise (sensitivity-to-noise matching), and this matching was 

improved with larger numbers of meta-states (Fig. 1c). Secondly, the adaptability of the models 

was optimized for a given level of noise (see below). 

The first characteristic of superior models, the match between the sensitivity and the noise level, 

occurred because learning was naturally adjusted according to reward probability without any 

changes in the model’s parameters. To show this adjustment, we computed the ‘effective’ 

learning rates for potentiation and depression events for a given value of 𝑝!  (see Methods). The 

effective learning rate assigned a single rate to transitions between the weak and strong meta-

states or vice versa (plastic transitions, Fig. 1a), which are the only transitions that can change 

synaptic efficacy and thus the signal. We found that the effective learning rate on rewarded trials 

(𝑡!) was very small for small values of 𝑝!  but monotonically increased as 𝑝! increased (Fig. 1d). 

At the same time, the effective learning rate on unrewarded trials (𝑡!) was large when 𝑝!  was 

close to zero and decreased as 𝑝!  increased. The effective learning rates on rewarded and 

unrewarded trials crossed over at 0.5. 

These complementary adjustments in learning resulted in a sigmoid-shape signal for superior, 

metaplastic models (Fig. 1c inset). Therefore, the maximum sensitivity (∆𝑆/∆𝑝!) for superior 

models occurred at 𝑝! = 0.5, such that the steepest part of the signal matched the maximum 

level of noise. Importantly, the slope of the signal (i.e. sensitivity) at 𝑝! = 0.5 was linearly 

proportional to the ratio of effective learning rates around 𝑝! = 0.5 (results not shown), 

indicative of a direct relationship between the sensitivity-to-noise matching and adjustment of 

learning to reward probability. This outcome occurs in metaplastic models, without any changes 

in parameters, because as reward probability deviates from 0.5 (say when 𝑝! > 0.5), more 

synapses move to shallower weak meta-states, increasing the effective potentiation rate above 

the effective depression rate (Fig. 1d). As the ratio of effective potentiation to depression rates 

increases, however, the fraction of synapses in weak meta-states decreases. Consequently, 

sensitivity to reward probability decreases as 𝑝!  becomes larger or smaller than 0.5. Finally, for a 
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given level of precision, the signal became a steeper function of reward probability (maximum 

sensitivity increased) as the number of meta-states increased (Fig. 1c inset). 

 

 

Figure 2. (a) Schematic of the reservoirs, buffers, and transient meta-states in metaplastic models. (b) 

Fractions of synapses in the weak reservoir (dashed lines), buffer (solid lines), and transient (inset) meta-

states as a function of reward probability. Fractions in the strong reservoir, buffer, and transient meta-

states are the mirror image (along 𝑝! = 0.5) of their weak counterparts. As reward probability approaches 

0.5, more synapses occupy transient and buffer meta-states, making the model more adaptable. As 𝑝!  

deviates from 0.5, more synapses transition to reservoirs, enabling the model to protect the signal. (c) The 

subset of meta-states with the fastest and slowest effective transition rates for different values of reward 

probability for 𝑁 = 6 model. Overall, there are 62 subsets of meta-states for 𝑁 = 6 model. For superior 

models, the bottleneck subset (blue) is always across the plastic boundary to minimize noise for a given 

level of adaptability, whereas the rapidly mixing subsets (red) consist of only transient meta-states and 

thus build a quick connection between reservoir and buffer meta-states. (d) The APT in the plastic model 

and superior metaplastic models with different numbers of meta-states using Monte Carlo simulations. 
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As noted above, another characteristic of superior models, in addition to the sensitivity-to-noise 

matching, was that their adaptability was optimized for a given level of noise. This optimization 

occurred because metaplasticity enabled superior models to form two separate sets of meta-

states: reservoirs and buffers. Reservoirs, which are unique to metaplastic models, are the 

deepest sets of meta-states that cannot change their efficacy upon potentiation or depression 

events; they can only undergo metaplastic transitions (Fig. 2a). Buffers, on the other hand, are 

the shallowest meta-states, and are able to undergo plastic transitions that change their synaptic 

efficacy. The remainder of the meta-states provide transient meta-states. Because the superior 

models had reservoirs and buffers, they were able to keep a large proportion of their synapses in 

the weak or strong reservoirs (Fig. 2b). Synapses within reservoirs were protected against 

changes in efficacy upon potentiation or depression events, and as a result, the signal could 

increase without increasing the level of noise. 

The adaptability in the model depends on the rates of transitions among all subsets of meta-

states, whereas noise (in reward estimation) depends on the flow across the plastic boundary (i.e. 

transitions between weak and strong meta-states and vice versa). Therefore, to understand how 

the model’s adaptability is optimized for a given level of noise, we computed the ‘effective 

transition rate’ for all subsets of meta-states. The effective transition rate was defined as the 

outward flow of synapses out of that subset, divided by the fraction of synapses in that subset, 

and is closely related to the concept of conductance in Markov chains (Sinclair and Jerrum, 

1989) (Fig. 3a; see Methods). Importantly, the model’s adaptability is constrained by its slowest 

effective transition rate. In superior models, to reduce noise with a minimum cost to the 

adaptability, the slowest transition rates should be at the plastic boundary. We found that this 

was the case for all superior models (Fig. 2c). Interestingly, having the minimum effective 

transition rates at plastic transitions created a ‘bottleneck’ for the flow between weak and strong 

meta-states. This bottleneck helped reduce noise without significantly reducing the adaptability. 

The superior models with 𝑁 >  4 also contained transient meta-states, with the fastest effective 

transition rates between buffers and reservoirs, resulting in improved adaptability (Fig. 2b-c and 

Fig. 3). 
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Figure 3. (a) Schematic of possible subsets of meta-states for 𝑁 =  4 model. Overall, there are (2! –  2) 

subsets of meta-states for a given metaplastic model. (b-d) Plotted is a subset of meta-states with the 

fastest and slowest effective transition rates for different values of reward probability for the metaplastic 

models with 𝑁 = 4, 6, 8. For superior models, the bottleneck subset (blue) is always across the plastic 

boundary to minimize noise for a given level of adaptability, whereas the rapidly mixing subsets (red) 

consist of only transient meta-states in order to a build a quick connection between reservoir to buffer 

meta-states. Insets show the corresponding subset of meta-states. 

 

This specific arrangement of meta-states and transitions between them, as well as the adjustment 

of the metaplastic model to reward probability, enabled metaplastic models to be more adaptable 

than corresponding plastic models. To demonstrate this superior adaptability, we used the 

effective learning rates for a given value of 𝑝!  to define an equivalent 𝑁 =  2 for any metaplastic 

model. We found that metaplastic models showed larger sensitivity to reward probability than 

equivalent plastic models (Fig. 4). Moreover, metaplastic models were more adaptable and more 

precise than their equivalent plastic models. These results demonstrate that the dynamic 

adjustment of learning in metaplastic models is crucial for improving the APT, and that this 

adjustment cannot be achieved by simply exchanging the learning rates in corresponding plastic 

models for similar learning rates. 
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Figure 4. Comparisons between the behavior of the metaplastic models and equivalent plastic models 

with the effective learning rates for a given value of 𝑝!. (a) Plotted is sensitivity in three superior 

metaplastic models (solid curves) and their equivalent plastic models (dashed curves) as a function of 𝑝!. 

The equivalent plastic models are constructed using the effective learning rates for a given value of 𝑝!  and 

a metaplastic model. (b-c) Plotted is the adaptability and precision as a function of 𝑝! for the same models 

presented in (a). The metaplastic models outperform equivalent plastic models in terms of sensitivity, 

precision, and adaptability for all values of reward probability. 

 

To further study the characteristics of superior metaplastic models, we next examined the 

transition probabilities in these models. We found that most transition probabilities were very 

close to zero, allowing for the creation of reservoirs and buffers, while non-zero transition 

probabilities varied proportionally to create models with different levels of adaptability and 

precision. For example, in metaplastic models with four meta-states (𝑁 =  4), three of six 

transition probabilities for potentiation were zero, two others were equal, and the last one was 

very close to those two other non-zero probabilities (Supplementary Figure 3). Based on these 

observations, we constructed a simple family of metaplastic models using a single parameter. 

Even such simple metaplastic models can overcome the APT, and this ability was improved with 

additional meta-states (Fig. 5). Overall, these results show that metaplastic models outperform 

plastic models, not because they have more parameters, but because they have a structure that 

allows for adjustment of learning. 

The results from one-parameter models also illustrate that having more meta-states can improve 

the ability of metaplasticity to overcome the APT. Nevertheless, the basic mechanism for this 
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improvement is the existence of reservoirs, buffers, and a bottleneck for changing synaptic 

efficacy. Additional meta-states provide intermediate transitions between reservoirs and buffers 

that could increase signal and reduce noise without significantly decreasing the adaptability (Fig. 

5). As a result, models with larger numbers of intermediate meta-states show better matching of 

sensitivity to noise as well as more optimized adaptability for a given level of noise. Essentially, 

the specific structure for changing synaptic efficacy allows the models with a large number of 

meta-states to collect evidence (by transitioning synapses to shallower meta-states) before 

making a change. 

 

 

Figure 5. The APT in a special family of metaplastic models with only one parameter. (a) The structure 

of the special family of metaplastic models with only one parameter (for 𝑁 = 4, 6, 8 meta-states). (b) The 

adaptability as a function of the precision for the simple metaplastic models using the mean-field 

approach. (c) The 𝔸 × ℙ as a function of the precision using the mean-field approach. (d) The same as in 

(c) but using Monte Carlo simulations. Increasing the number of meta-states improves the APT. 
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Even though the results above were obtained using a mean-field (MF) approach, our findings 

also hold using Monte Carlo (MC) simulations (Fig. 2d). The only difference between this 

approach and MC simulations was the estimation of noise, since the MF approach provides an 

accurate estimate of the signal and adaptability. Using MF, the estimated noise was set to one-

step noise, which is equal to the weighted average of changes in the steady state of synaptic 

strength due to a potentiation and depression event. The one-step noise converges to the actual 

noise if the adaptability is equal to 1. When the adaptability is different from 1, one-step noise 

underestimates the actual level of noise measured by real simulations (Supplementary Figure 4a). 

Intuitively, this underestimation occurs because for MC simulations, fractions of synapses in 

different meta-states fluctuate around their steady-state values and thus add extra noise. While 

underestimation of noise increases with the number of meta-states, this effect is not strong 

enough to change the order of models in their ability to overcome the APT (compare Figures 2d 

with 1b) or the sensitivity-to-noise matching (Supplementary Figure 4b). 

The ultimate test for whether metaplastic transitions are crucial for mitigating the APT is to 

replace these transitions with plastic ones (transitions that change synaptic efficacy) while 

keeping the same number of states and transitions. Therefore, we examined the APT in the 

simple family of metaplastic models, but with different values of synaptic efficacy assigned to 

different meta-states (Fig. 6a; see Methods). This ‘graded-plasticity’ model could be reduced to 

the metaplastic model by setting equal values of synaptic efficacy for different weak or strong 

states. We found that 𝔸×ℙ monotonically increased as the graded-plasticity model became more 

similar to the metaplastic model (Fig. 6b-d). These results demonstrate that metaplastic 

transitions are crucial for mitigating the APT. 
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Figure 6. Graded-plasticity reduces the ability to overcome the APT, indicating that metaplasticity is 

crucial for adaptive learning. (a) Schematic of the simple-family graded-plasticity model. This model has 

an equal number of states and transitions as the metaplastic model, but with different values of synaptic 

efficacy assigned to different states. (b) Plotted is the average 𝔸 × ℙ in the graded-plasticity model with 

four states (𝑁 = 4), as a function of the single transition rate and the efficacy of the least weak state 

(efficacy = 1 is equivalent to the 𝑁 = 4 meta-plastic model). (c) Plotted is the average 𝔸 × ℙ in the 

graded-plasticity model with six states (𝑁 = 6), as a function of the efficacy of the weaker states when 

the single transition rate was set to 0.2 (efficacy1 = efficacy2 = 1 is equivalent to the 𝑁 = 6 meta-plastic 

model). (d) The same as in (c) but for the transition rate equal to 0.7. Overall, 𝔸 × ℙ monotonically 

increased as the graded-plasticity model became similar to the metaplastic model. 

 

Discussion  

The demands of learning in a changing world require a high degree of adaptability, which comes 

at the cost of low precision (Farashahi et al., 2017b). Here we show how metaplasticity, which is 

reflected in the unreliability of synaptic plasticity, can provide a solution for substantially 

overcoming the APT. More specifically, by optimizing the APT for a given level of precision, 
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we identify non-trivial characteristics of superior metaplastic models. The superior models 

contain reservoir and buffer meta-states; synapses in reservoir meta-states do not change their 

efficacy upon reward feedback, whereas those in buffer meta-states can change their efficacy. 

Moreover, rapid changes in efficacy are limited to synapses occupying buffers, which provides a 

bottleneck that reduces noise without significantly decreasing adaptability. In contrast, more-

populated reservoirs can generate a strong signal without manifesting any observable plasticity. 

The generation of reservoirs and buffers by metaplastic synapses results in the adjustments of 

learning, or the degree of plasticity, according to recent reward history. For example, when 

synapses occupy reservoir meta-states, which occurs with consecutive rewarded or unrewarded 

trials in a stable environment, the behavior should become less adaptable. However, when 

reward history changes over time, synapses mainly occupy buffer meta-states, causing more 

adaptable behavior. Overall, the model predicts that learning should be more sensitive to the 

reward sequence than what has previously been assumed. 

Importantly, the results of one-parameter models and MC simulations show that having more 

meta-states can improve the metaplasticity for overcoming the APT and, in addition, gives rise to 

more robust models for adaptive learning. The basic mechanism for this improvement is the 

generation of reservoirs and buffers that create a bottleneck for changing synaptic efficacy; 

additional meta-states provide intermediate transitions between reservoirs and buffers that could 

reduce noise without compromising adaptability. Interestingly, it has been shown that in the 

framework of Markov chains, the eigenvalues and eigenvectors of models with bigger spectral 

gaps (i.e. more adaptable) are less sensitive to perturbation of transition probabilities (Funderlic 

and Meyer 1986; Seneta 1993; Meyer 1994; Cho and Meyer 2001). In other words, more-

adaptable models can produce signals without fine-tuning. Superior metaplastic models require 

only a few parameters, and their behavior is not very sensitive to these parameters. 

As a higher-order form of plasticity, metaplasticity has been successfully used to explain 

paradoxical observations regarding synaptic plasticity by considering prior synaptic activity 

(Yger and Gilson 2015). The computational power of metaplastic synapses has only recently 

been explored to address memory retention (Fusi et al., 2005; Fusi and Abbott, 2008; Barrett and 

van Rossum, 2009; Lahiri and Ganguli, 2013; Farashahi et al., 2017a), but its benefit for reward-

dependent learning remains unknown. Our results can be applied to estimating signals other than 
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reward probability and can be generalized to other domains of learning. For example, it has been 

shown that a tradeoff between adaptation speed and accuracy is limited by the power dissipation 

because adaptation processes are necessarily dissipative (Lan et al., 2012). We found that in 

superior models, many transitions can occur between meta-states without any changes in 

efficacy. Considering that changing efficacy is energetically costly, this finding may suggest the 

importance of energy constraint for neural computations underlying learning (Laughlin et al., 

1998; Lennie, 2003).  

Our results could also explain why plasticity protocols are unreliable. As we showed, superior 

metaplastic models create bottlenecks for changing synaptic efficacy since such a property can 

reduce noise without sacrificing adaptability. However, having plastic transitions to be limited to 

those that occur from buffers would make many transitions invisible to measurement of change 

in synaptic efficacy. Therefore, until such a structure is specifically tested, plasticity protocols 

will be perceived as noisy and unreliable. 

Our proposal provides a new approach for studying synaptic plasticity and its contribution to 

brain computations. Our model predicts that a previous reward outcome (learning experience) 

not only contributes to learning and behavioral changes, but also affects subsequent induction of 

such changes within a specific time window. On the one hand, certain sequences of reward 

feedback cause the nervous system to become more receptive to subsequent similar feedback. On 

the other hand, consecutive feedback can shape future learning such that it is not responsive to 

feedback in the opposite direction. Understanding such propensity and unresponsiveness to 

reward feedback could provide new insights into habit and addiction, respectively. Therefore, 

further investigations into metaplasticity, both at the behavioral and synaptic levels, could help 

researchers find tools for improving learning, especially as regards habits and addiction 

(Moussawi et al 2009; Hulme et al., 2013). 

 

Methods 

Metaplastic model. Our general model of metaplasticity consisted of multiple meta-states 

associated with two values of synaptic efficacy (weak and strong), and all possible transitions 
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between these meta-states (Fig. 1a). The metaplastic models have N distinct meta-states, half of 

which are associated with strong synaptic efficacy and half with weak. The model is completely 

specified with two transition matrices, one for a potentiation event (𝑇!"!) and one for a depression 

event (𝑇!"!), corresponding to rewarded and unrewarded trials, respectively. Here, we assumed 

that metaplastic transitions have a consistent order such that potentiation and depression events 

(on rewarded and unrewarded trials, respectively) create flows in opposite directions. This 

assumption also establishes weak and strong meta-states with different ‘depths’ such that deeper 

states are further from the plastic boundary (Fig. 1a). Moreover, we assumed symmetry between 

information by reward and no-reward feedback, and thus only focused on mirror-symmetric 

flows. This assumption put another constraint on the potentiation and depression matrices: 

𝑇!,!!  = 𝑇!!!,!!!!       (Eq. 1) 

Based on these assumptions, transition matrices for potentiation and depression events can be 

represented by lower-triangular and upper-triangular matrices: 

𝑇! =

𝑡!! 0
𝑡!" 𝑡!!

⋯ 0
⋯ 0

⋮ ⋮
𝑡!! 𝑡!!

⋱ 0
⋯ 𝑡!!

,                  𝑇! =

𝑡!! ⋯
0 ⋱

𝑡!! 𝑡!!
⋮ ⋮

⋮ ⋯
0 ⋯

𝑡!! 𝑡!"
0 𝑡!!

    (Eq. 2) 

There are 𝑁(𝑁 − 1)/2 unique transition probabilities for models with N meta-states. The 

probability conservation was dictated by the transition flows out of any meta-state summing up 

to 1.  

𝑡!"!
!!! = 1,      ∀𝑖    (Eq. 3) 

Mean-Field approach. At any point in time, the signal (S) was defined as the difference 

between the fractions of synapses in the strong and weak meta-states, 

𝑆(𝑡)  =  𝛹!(𝑡)  −  𝛹!(𝑡), (Eq. 4) 

where 𝛹! =  𝛹!
!/!
!!!   and 𝛹! =  𝛹!!

!!!!!!
 are fractions of synapses in the weak and strong 

meta-states, respectively. In the mean-field (MF) approximation approach, the average system 
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dynamics is fully described by the average transition matrix for a given reward probability 

(𝑇!" = 𝑝!𝑇!"! + 1− 𝑝! 𝑇!"!). The eigenvector, 𝛹, with an eigenvalue 𝜆 =  1 (the largest 

eigenvalue according to Perron-Frobenius theorem) of average transition matrix, 𝑇!", provided 

the steady state of the model from which the average signal was calculated using Equation 4. 

As a proxy for signal fluctuations around its average value, we introduced the concept of ‘one-

step noise’ as the mean magnitude deviation from the average signal due to one potentiation or 

depression event: 

𝜂 ≡  𝑝!| 𝑆  −  𝑆!|  +  (1 −  𝑝!)| 𝑆  −  𝑆!|      (Eq. 5) 

where 𝑆  is the average signal based on the steady-state solution, and 𝑆! and 𝑆! are the signal 

values after the application of the potentiation or depression transition matrices on the steady-

state solution, respectively. In general, noise at time (𝑡 +  1) is a combination of several 

components: (1) the attenuated transferred noise from the state of the system at time 𝑡; (2) the 

amount of noise generated in one step, from 𝑡 to (𝑡 +  1); (3) the inherent noise involved in 

translating 𝑝(𝑡) to a binary representation with potentiation and depression events; and finally 

(4) a finite size effect when dealing with a limited number of identical synapses. The one-step 

noise measures the second component and always underestimates the level of the noise in our 

system. In contrast, the Monte Carlo simulation contains the sum of the first three components 

mentioned above.  

The Monte Carlo simulations were performed by running multiple trials starting from a given 

initial state in environments with identical reward statistics (reward probability was the same but 

the reward sequence varied across different simulations). Data from an initial relaxation period 

was thrown away in order to remove dependence on the initial state, and the relevant quantities 

were computed by averaging over the ensemble at a given time step or across time. Moreover, to 

further reduce the relaxation time, we started from the steady-state solution of the mean-field 

equation for the initial environment.    

We defined precision as the ratio of the signal sensitivity and the one-step noise: 

𝑃 =  (𝑑𝑆/𝑑𝑝!)/𝜂        (Eq. 6) 
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Therefore, precision measures the discriminability between two adjacent reward probabilities 

based on their resulting signals. We chose this measure instead of the difference between the 

estimated and actual reward probability because the firing rate of neurons, which represent 

reward values, can be differentially scaled by their input firing rates, and so this difference is 

irrelevant. 

Finally, the adaptability of the model was defined as the rate of the decaying mode in the system, 

and was estimated using the difference between the second-largest eigenvalues (slowest 

decaying mode) of the average transition matrix and 1 (𝔸 =  1 −  𝜆!), also known as the 

spectral gap in the Markov chains literature. Therefore, adaptability measures the lower bound 

for the speed of the system in converging to its final steady state. 

By focusing on the steady-state solution, the concept of learning rates in the plastic models 

(𝑁 = 2) can be generalized to higher 𝑁 as the effective learning rates, 𝑡±. The effective learning 

rates were defined as the relative change in the fraction of synapses in the weak or strong meta-

states after a potentiation or depression event: 

(𝑇± Ψ)± = Ψ± + 𝑡±Ψ∓      (Eq. 7) 

where ()± is the sum of the fraction of strong/weak meta-states. To examine transitions from a 

given subset of meta-states, we also defined the ‘effective transition rate’ as the outward flow of 

synapses from that subset, divided by the fraction of synapses in that subset (Fig. 3a). The 

effective transition rate (𝑇!") assigns a single rate for outward transition from a set of meta-states 

𝑎 to a set of meta-states 𝑏. There are (2!  −  2) non-trivial ways that N meta-states can be 

partitioned into two disjoint, complementary subsets.  

A closely related concept of conductance, 𝐶(𝑆), for a given subset 𝑆 in a Markov chain is 

defined as the outward flow from that subset divided by the minimum of occupancy in that 

subset, 𝜋(𝑆), and occupancy in its complementary set 𝜋(𝑆!). The magnitude of one-step noise is 

directly related to the effective transition rate when the two subsets are chosen based on their 

synaptic efficacy. The value of spectral gap (i.e. the difference between the second-largest 

eigenvalues of the average transition matrix and 1) is constrained by the minimum conductance 

among all possible subsets of states (Sinclair and Jerrum, 1989). 
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Finding the optimized solutions. Finding optimized solutions (i.e. upper-boundary in 

adaptability × precision vs. precision plot) was performed in two stages. An initial upper 

envelope in the 𝔸 × ℙ vs. ℙ (using discretization for ℙ) was constructed by random sampling of 

10! transition matrices. The transition matrices were divided into 𝑛 bins according to their 

precision, ℙ, and the transition matrix with the highest value of 𝔸 × ℙ in each bin was selected. 

These transition matrices were then used as the initial points for our optimization process. To 

avoid local minima, at the beginning of each iteration, a duplicated copy of the initial transition 

matrix with added small jitters was generated. All the resulting 2𝑛 transition matrices were used 

as the starting point of our optimization. At the end of each optimization iteration, the best 

solutions in each bin were selected out of all initial transition matrices and the final outcome of 

our optimization procedure and used for the initial samples of the next iteration. For high-

dimensional cases (𝑁 >  4), we went through multiple iterations of the optimization process. 

The higher dimensional solutions are more robust against fluctuations, and optimized solutions 

can be found by increasing the bin numbers (initial points) and the number of optimization 

iterations. The optimization was constrained by keeping the sum of every column in transition 

matrices with positive elements to one. We used MATLAB’s ‘fminsearch’ function for the basic 

optimization process. 

 

Supplemental Information 

Supplemental Information includes 1 note and 4 figures. 
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Supplementary Materials 

Supplementary Note 1: Adaptability–precision tradeoff in RL and model with 

plastic synapses 

Equivalence of the RL model to the model with plastic synapses. Here we show that 

stochastic synapses without metaplasticity are equivalent to the RL model based on reward 

prediction error (RPE). A standard RL model based on reward prediction error (the difference 

between expected and actual outcomes) and with equal learning rates for rewarded and 

unrewarded trials can estimate the reward probability (Sutton and Barto, 1998). This RL model is 

fully described by its value function, V. Its temporal dynamics in response to a feedback 

sequence is governed by a learning rate δ and the reward prediction error which is the difference 

between expected and actual reward. 

𝑉 →  𝑉 +  𝛿 × 𝑅𝑃𝐸 

where 𝑅𝑃𝐸 =  (1− 𝑉) or (−𝑉 ) on rewarded or unrewarded trials, respectively. The learning 

rates could be different on rewarded and unrewarded trials 𝛿!, 𝛿! , resulting in the following 

update rules: 

 𝑉 →  𝑉 +  𝛿! × (1 −  𝑉 ) on rewarded trials (Eq. S1) 

 𝑉 →  𝑉 −  𝛿! × 𝑉 on unrewarded trials 

The average of V approaches the reward probability pr in the environment when 𝛿! = 𝛿!.  

A model with binary synapses (‘weak’ and ’strong’ states) that undergo stochastic reward-

dependent plasticity can also provide an unbiased estimate of the reward probability (Soltani and 

Wang, 2006; Soltani et al., 2006). In this model, weak synapses can be potentiated on rewarded 

trials with a probability t+ (potentiation rate), whereas strong synapses can be depressed on 

unrewarded trials with a probability t− (depression rate). Therefore, the fraction of synapses in 

the strong state, Ψ+, is updated as the following: 

 𝛹!  →  𝛹!  +  𝑡!(1 −  𝛹!) on rewarded trials (Eq. S2)  
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𝛹!  →  𝛹! −  𝑡! 𝛹! on unrewarded trials 

The equivalence between the RL and plastic models (𝑁 =  2) can be seen by comparing the 

strong-state occupancy percentage with the value function and replacing 𝛿± with 𝑡± in Equations 

S1 and S2. 

In the model with plastic synapses (𝑁 =  2), we defined the signal as the difference between the 

fractions of synapses in the strong and weak states, 𝑆 =  𝛹! −  𝛹!. When the reward probability 

is equal to 𝑝!, the average signal is equal to 

𝑆 = !!!!!(!!!!)!!

!!!!!(!!!!)!!
                         (Eq. S3) 

Therefore, the signal ‘sensitivity’, defined as the derivative of the average signal with respect to 

𝑝!, is equal to 

! !
!!!

= !!!!!

!!!!!(!!!!)!! !   (Eq. S4) 

The ‘one-step noise’, defined as the mean magnitude deviation from the average signal in one 

time step, is equal to 

𝜂 ≡ 𝑝! 𝑆 − 𝑆! + 1 −  𝑝! 𝑆 − 𝑆! = !!! ! ! !! !!!!

!!!!!(!!!!)!!
   (Eq. S5) 

Hence, the precision is equal to 

ℙ ≡ ! ! /!!!
!

= !
!!! ! ! !! !!!!!(!!!!)!!

  (Eq. S6) 

The adaptability is defined as the rate of decaying mode in the system. In 𝑁 =  2 models, the 

rate of approach toward the average signal is fully governed by the weighted average of the 

learning rates: 

𝔸 =  𝑝!𝑡!  +  (1 −  𝑝!)𝑡! (Eq. S7) 

Finally, 𝑁 =  2 models show a strict APT since the product of adaptability and precision is 

independent of model parameters and only depends on reward probability: 
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𝔸 × ℙ =  !
!!!(!!!!)

  (Eq. S8) 

In general, adaptability and noise are related to each other in the model with plastic synapses and 

in the RL model. This is because an increase in transition probabilities between weak and strong 

states causes larger flows between the two states, which in turn increases noise. Importantly, 

adopting different transition probabilities (or learning rates in RL) for potentiation and 

depression events cannot improve the APT, rather affects the average values for adaptability and 

precision individually (Fig. 1b and Supplementary Figure 1). 

 

Supplemenatry References 

Soltani, A., Lee, D., and Wang, X.-J. (2006). Neural Mechanism for Stochastic Behavior During 
a Competitive Game. Neural Networks, 19, 1075–1090. 

Soltani, A., and Wang, X.-J. (2006). A biophysically based neural model of matching law 
behavior: melioration by stochastic synapses. The Journal of Neuroscience, 26(14), 3731–3744. 

 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 22, 2017. ; https://doi.org/10.1101/129619doi: bioRxiv preprint 

https://doi.org/10.1101/129619


26 

 

 

 

Supplementary Figure 1. The APT in the plastic model (𝑁 =  2). (a-b) Dynamic of the signal 

in the plastic model in response to a sudden change in reward probability. Decreasing the 

transition rates (from 𝑡!  =  𝑡!  =  0.07 in (a) to 𝑡!  =  𝑡!  =  0.03 in (b)) resulted in noise 

reduction in the asymptotic value of the signal, but at the expense of slower convergence to this 

asymptotic value. (c) The APT manifests itself for different learning rates for different reward 

probabilities. Plotted is the adaptability, as a function of the precision for different values of 𝑝!. 

Each dot corresponds to a specific set of parameter values. The APT is stronger as 𝑝!  becomes 

closer to 0.5 (see Equation S8 in the Supplementary Note 1). (d-i) Characteristics of the plastic 

model, measured using different quantities, as a function of reward probability for two sets of 

learning rates (𝑡! = 2 × 𝑡! = 0.4 and 𝑡! =  2 × 𝑡! = 0.3). Adopting different learning rates 

improves the adaptability for certain values of 𝑝!  and improves precision for complementary of 

values of 𝑝!, resulting in a strict tradeoff between adaptability and precision. A simple RL model 

based on RPE behaves similarly to the plastic model shown here. 
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Supplementary Figure 2. Example traces of the signal in response to a sudden change in reward 

probability in the plastic model (𝑁 =  2), and three superior metaplastic models with different 

numbers of meta-states. In each plot, the blue trace is an example estimate based on the shown 

reward sequence (tick marks on the top and bottom correspond to rewarded and unrewarded 

trials, respectively). The reward probability changed from 0.3 to 0.8 on trial 24. The black curve 

shows the average signal, and the green shade shows the signal plus/minus its s.e.m. Models in 

(a-d) are more adaptable, whereas models in (e-h) are more precise. For these simulations, 

example models were selected to have the same average precision. Overall, metaplastic models 

can improve the adaptability without increasing noise in the signal (thinner green lines). 
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Supplementary Figure 3. Transition probabilities in the superior metaplastic models with 

different numbers of meta-states (𝑁 = 4, 6, 8). (a-c) Plotted are the transition probabilities for 

superior models for a given value of average precision. Only a few transition probabilities are 

non-zero, and the rest vary together, revealing the specific structure of metaplasticity that is 

useful for overcoming the APT. For models with larger numbers of meta-states, finding superior 

models is more difficult because those models are more robust against fluctuations in the model 

parameters. 
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Supplementary Figure 4. Comparison of one-step noise and noise based on Monte Carlo 

simulations. (a) Plotted is the noise computed using Monte Carlo simulations as a function of 

one-step noise for the plastic model and superior metaplastic models with different numbers of 

meta-states. One-step noise sets a lower bound for simulation noise. The mean-field 

approximation for noise becomes more accurate for higher adaptability. (b) Comparison of 

sensitivity-to-noise matching based on one-step noise and Monte Carlo simulations. 
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