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Abstract 
Background: Variation in chromatin organization across single cells can help shed 
important light on the mechanisms controlling gene expression, but scale, noise, and 
sparsity pose significant challenges for interpretation of single cell chromatin data. Here, 
we develop BROCKMAN (Brockman Representation Of Chromatin by K-mers in Mark-
Associated Nucleotides), an approach to infer variation in transcription factor (TF) 
activity across samples through unsupervised analysis of the variation in DNA sequences 
associated with an epigenomic mark. 
Results: BROCKMAN represents each sample as a vector of epigenomic-mark-
associated DNA word frequencies, and decomposes the resulting matrix to find hidden 
structure in the data, followed by unsupervised grouping of samples and identification of 
the TFs that distinguish groups. Applied to single cell ATAC-seq, BROCKMAN readily 
distinguished cell types, treatments, batch effects, experimental artifacts, and cycling 
cells. We show that each variable component in the k-mer landscape reflects a set of co-
varying TFs, which are often known to physically interact. For example, in K562 cells, 
AP-1 TFs were central determinant of variability in chromatin accessibility through their 
variable expression levels and diverse interactions with other TFs. We provide a 
theoretical basis for why cooperative TF binding – and any associated epigenomic mark – 
is inherently more variable than non-cooperative binding.  

Conclusions: BROCKMAN and related approaches will help gain a mechanistic 
understanding of the trans determinants of chromatin variability between cells, 
treatments, and individuals. 
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Background 
Understanding how the dynamic interaction of transcription factors (TFs) and chromatin 
governs cell types, differentiation, and responses in a fundamental challenge. TFs 
recognize and bind to specific DNA sequences and can potentially affect chromatin 
structure and gene expression through various means, including recruiting histone 
modifiers, chromatin remodelers, and the mediator complex. In particular, “pioneer” TFs 
may be able to open chromatin and, in so doing, allow other factors to bind to the now-
accessible DNA [1]. Measurements of chromatin state, including features such as DNA 
accessibility, histone modifications, and TF occupancy, have shed important light on the 
mechanisms governing gene expression.  
Epigenomic data has recently increased dramatically in scale and complexity, with 
studies profiling either large numbers of individuals (e.g. [2-7]), or using single-cell 
epigenomics to profile chromatin traits in individual cells. Single cell epigenomics can 
help discover and understand the variation in chromatin organization and gene regulation 
within a single cell type or in a complex cell population [8-12]. In particular, single-cell 
ATAC-seq (scATAC-seq) allows measurement of DNA accessibility in single cells, 
including at high throughput [9, 10].  

However, single cell epigenomics data is inherently sparse, since every locus is present at 
only two copies per diploid cell [9], such that ascertaining the state of an individual cell is 
challenging. One solution is to pool signals – either across cells (e.g., of the same known 
type or a discovered cluster) [8] or across loci sharing a known trait (e.g., binding by a 
TF) [8-10]. Unfortunately, rare cell states may be overlooked when common or bulk-
based peaks are used as the basis for clustering or grouping [8-10], whereas clustering 
cells directly from sparse single cell epigenomic data is difficult [8, 10]. Grouping loci by 
TF motifs [9] reduces this sparsity by averaging sparse signals across multiple loci that 
share a common feature (e.g., motif) and, furthermore, may represent the nature of TFs 
interacting with chromatin. However, it requires that motifs for all relevant TFs be known 
a priori, and that these motifs faithfully represent the specificities of the TFs.  
Conversely, the representation of regulatory DNA as a set of DNA words (k-mers) has 
been used extensively in the past (e.g., [13-15]), and can even capture uncharacterized TF 
specificities. In particular, studies using chromatin profiles from bulk populations show a 
differential frequency of the k-mers associated with these marks in different cell types 
[16, 17]. This, in turn, captures the differential activity of TFs and the chromatin marks 
they relate to, such that a cell type with a higher level of an active TF has more of the k-
mers it recognizes associated with the chromatin mark (Fig. 1a - top). This principle has 
been used to identify differential TF binding between samples [18]. However, existing 
approaches are unsuitable for exploratory analysis, where the identities of the samples are 
unknown, as may be the case for new cell subtypes or states in a population of single 
cells.  
Here, we present BROCKMAN, a method for representing epigenomic data by the k-mer 
words associated with the epigenomic mark, using matrix factorization and 
dimensionality reduction to: (1) analyze variation in k-mer occupancy across single cells 
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as a basis for distinguishing different cell types, states, and treatments; (2) identify 
differentially active TFs; and (3) decipher TF-TF interactions. Applying BROCKMAN to 
scATAC-seq profiles, we show that cell-cell variation in k-mers associated with open 
chromatin provides a robust and information-rich representation that can readily 
distinguish different cell types, drug treatments, biological artifacts, and cycling cells 
without any knowledge of TFs and without requiring peak calling on bulk or pooled 
single cell profiles. Leveraging known TF specificities, we demonstrate that the 
individual components of our reduced-dimensionality k-mer space correspond to 
individual TFs or groups of TFs that tend to be more lowly expressed, consistent with 
transcriptional bursting causing noisy TF expression. The TFs that co-vary within a k-mer 
component are more likely to physically interact, consistent with biochemical 
cooperativity between TFs, which we show is expected to be especially variable. 
BROCKMAN thus provides a highly effective tool for exploratory data analysis for high-
dimensional or single cell epigenomics. 

 
Figure 1: BROCKMAN.  (A) The relation between the differential activity of TFs that open chromatin and the 
numbers of their cognate motifs associated with open chromatin. Shown is a cartoon example of the impact of TFs 
(circles) on chromatin accessibility when the TF’s concentration is low (left) or high (right), for different scenarios of 
TFs that can (top and bottom rows) or cannot (middle row) open chromatin. If the TF can open chromatin either alone 
(top) or cooperatively (bottom), a change in the concentration or activity of TFs will affect the number of accessible 
binding sites in the cell (colored bars). If a TF has no effect on accessibility (middle), there will be no relationship 
between accessible motifs (bars) and the TF’s concentration. (B) BROCKMAN method. From left: genomic sequences 
associated with open chromatin or another feature of interest are used as input (left), and the frequency of each k-mer in 
open chromatin/feature (row) is counted in each sample (column) (middle), the resulting k-mer frequency matrix is then 
decomposed by PCA (right) into the k-mers contributing to each PC (left matrix) and the projection of the samples into 
the new (PC) space (right matrix). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/129247doi: bioRxiv preprint 

https://doi.org/10.1101/129247
http://creativecommons.org/licenses/by-nd/4.0/


 
 

5 
 
 
 

Results 
BROCKMAN captures variations in k-mer frequency in open chromatin 
Since some TFs can modify chromatin where they bind, the differential activity of TFs 
should be reflected in differential chromatin states at locations containing the TF’s 
binding motif. For example, if the levels of a given active TF in a cell are too low for it to 
bind its motif and modify chromatin, then the chromatin modification will be not be 
associated with this TF’s motifs. As the level of an active TF rises, it will bind its motif in 
the DNA and modify chromatin, leaving signature motifs next to the chromatin 
modification it elicited. Thus, by capturing motifs (represented by k-mers) associated 
with the chromatin mark, we can infer the activity of its cognate TF. In the context of 
chromatin accessibility (Fig. 1a), as the level of an active TF that opens chromatin rises, 
it should bind more, opening chromatin around its binding sites in the process (Fig. 1a - 
top). Meanwhile, changes in the concentration of an active TF that cannot open 
chromatin has no impact on the accessibility around its binding sites (Fig. 1a – middle). 
Finally, if two TFs bind together (either because they work cooperatively, or because one 
potentiates the binding of the other), we expect that the accessibility of their binding sites 
should co-vary (Fig. 1a – bottom). Although we may not know a priori what TFs are 
variable in a system, nor what sequences each TF recognizes, following the frequency of 
gapped k-mers (DNA words of length k, containing gaps) in different chromatin regions 
should allow us to uncover such dependencies. In particular, because a TF may recognize 
multiple related k-mers, these related k-mers should co-vary with each other, reflecting on 
the (hidden) activity of their joint, cognate TF.  

To capture these dependencies in k-mer space we devised BROCKMAN, a procedure 
that combines matrix factorization with dimensionality reduction of chromatin mark-
associated k-mer frequencies (Fig. 1b; Supplementary Fig. 1). BROCKMAN (1) takes 
as input profiles of chromatin marks or accessibility across a set of cells or samples; and 
(2) counts, for each cell or sample, the frequencies of gapped k-mers (length 1-8, all 
possible gaps) at loci associated with a chromatin mark of interest, yielding a matrix of k-
mer frequencies by samples. It then (3) decomposes this matrix of k-mer frequencies to 
identify groups of k-mers that co-vary across the samples and reduces the dimensionality 
of the data. Finally, (4) we can explore the relationships between cells/samples in this 
reduced-dimension space, and identify the k-mers (and associated TFs) that underlie 
differences between cells or samples. 

BROCKMAN identifies cell types, treatments, and outliers 
We applied BROCKMAN to scATAC-seq data from 1,440 single human cells, spanning 
drug treated and untreated cells from the chronic myelogenous leukaemia cell line K562, 
as well as lymphoblastoid cell lines (LCLs; GM12878 (GM)), human embryonic stem 
cells (H1ESC), fibroblasts (BJ), erythroblasts (TF-1), and promyeloblasts (HL-60), 
sometimes including multiple replicates [9] (Fig. 2a). We scored k-mers within 50 bp of 
each transposon integration site (open chromatin locus; Methods), decomposed the 
resulting k-mer frequency matrix using principal component analysis (PCA), and applied 
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t-stochastic neighborhood embedding (t-SNE) to the resulting significant principal 
components (PCs; Methods) to facilitate visual inspection (Fig. 2a).  

 

 
Figure 2: BROCKMAN identifies cell types, drug treatments, cycling cells, and experimental artifacts in 
scATAC-seq data. (A) Identification of cell types. t-SNE two dimensional projection of the 131 significant PCs for all 
cells. Cells are colored by pre-annotated type (legend) and major cell type clusters are encircled. GM=GM12878 
(LCLs), rep=replicate, Imat=Imatinib (BCR-ABL inhibition), CDKi=CDK4/6 inhibition, JNKi=JNK inhibition, 
TNFa=TNFa treatment. (B) Detection of outliers. Shown are the cell indices (position on C1 chip) for cells from K562-
replicate 3, with outlier K562 cells (as in A) marked in black. The outlier cells have consecutive indices suggesting a 
shared location on the chip. White: cells filtered out prior to analysis. (C) Cell cycle phases. t-SNE projection as in A, 
but with color indicating cell cycle stage as determined by the ATAC reads falling within replication domains, showing 
that the “mixed” population from A are comprised primarily of replicating cells. 

Note that while there are many factorization approaches, PCA proved highly appropriate 
because it has been repeatedly successful at capturing biological signals in diverse 
datasets, allows projection of new samples onto learned components, yields k-mer 
loadings for interpretation, and is appropriate for our relatively non-sparse data (most 8-
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mers (our maximum k) are observed at least 9 times per cell in our analysis). Indeed, 
performing PCA on a subset of cells yields similar PCs to the entire set and projecting 
held-out cells onto the learned PCs, results in co-clustering of related cells (data not 
shown). Factorization by Independent Component Analysis and Sparse Minibatch PCA 
yielded similar results (data not shown). 
Cells from the different cell types readily partitioned into distinct clusters, as did cells of 
the same type (K562) between treatments (Fig. 2a). We also observed separation between 
different untreated replicates, suggesting possible batch effects with biological 
implications. In particular, a subset of K562 cells from one replicate formed a separate 
cluster (Fig. 2a “K562-rep3 outliers”), distinct from the other K562 cells. These outlier 
cells had consecutive cell indices (Fig. 2b), representing adjacent cells on the C1 chip 
used to collect the data, suggesting an experimental artifact. 

One grouping (Fig. 2a, “Mixed”) was comprised of multiple distinct cell types, including 
some of every cell type except fibroblast (BJ) cells, and we hypothesized these may 
represent cycling cells sharing a common cell cycle signature. To test this hypothesis, we 
counted the number of ATAC-seq reads in the different replication timing domains 
previously defined by Repli-seq in K562 cells [19] and calculated, for each cell, the ratio 
of reads from (G2+S) replication timing domains to those from G1 domains (Fig. 2c). 
Cells with a high (G2+S)/G1 ATAC-read ratio either fall into the “mixed” grouping, or 
form a separate sub-region of a single cell type grouping, alongside the non-replicating 
cells of the same type (e.g., HL60 cells – right side; Fig. 2a,c). Thus, BROCKMAN was 
able to group cells by cell type, treatment, batch, and cell cycle without ever calling peaks 
or directly considering TFs.  

Chromatin accessibility in repetitive DNA and outside peaks impacts cell grouping 
Current analyses are typically performed for only a sub-set of reads, often those that 
reside within peaks and can be uniquely mapped. However, this could lead to loss of key 
biological information. For example, although reads outside of ATAC-peaks may reflect 
assay noise, they could also include cell-specific chromatin signatures, especially from 
regions open only in rare cell types, which may not be evident from bulk ATAC-seq or 
even from aggregate scATAC-seq data, and would be excluded if only reads within peaks 
are considered. In another example, although repeat regions may be important loci of 
gene regulation [20], challenges in correct mapping and genetic variability between cells 
may make it difficult to include them in analyses. 
We thus next determined how such variables affect our ability to group cells, considering 
only the different K562 samples. We quantified how well cells were grouped within the 
PC space (of only significant PCs), using the sample label for treatment and replicate as 
the “ground truth”. First, as a local measure, we assessed the number of cells from the 
same sample among each cell’s k-nearest neighbors (k=20, by Euclidean distance in 
significant PC space) (Fig. 3a-c); Second, as a global measure, we compared how well 
Euclidean distance in the PC space discriminates between cells from the same sample and 
cells from all other samples (Fig. 3d-f).  
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Figure 3: scATAC-seq reads outside of peaks or within repeat regions improve cell grouping. (A-D) Local 
grouping. The distribution for all K562 cells of the number of cells among each cell’s 20 nearest neighbors that share 
its sample label (x axis). P-values: Wilcoxon rank sum test. (E-H) Global grouping. ROC curves for how well cells 
within the same sample are distinguished from those in different samples by their distance in significant PC space. P-
values calculated by bootstrapping (Methods). (A,E) reads in (red) vs. outside (blue) of peaks called on pooled 
scATAC data for K562s; (B,F) reads in (red) vs. outside (blue) of peaks called on high-coverage K562 DNaseI-seq, 
considering only untreated K562 cells; (C,G) all reads (red) vs. only reads outside repeat elements (blue); or (D,H) 
using gapped (red) or ungapped (blue) k-mers.  

Surprisingly, reads outside of peak regions improved cell grouping. To show this, we 
partitioned reads into two groups, and performed BROCKMAN on each set separately: 
reads within 250 bp of any of the 46,145 called peaks, and reads outside this window. 
(Peaks were called by Homer [21] after pooling the single cell profiles of all K562 cells; 
Methods). Remarkably, using only the set of reads outside of peaks performed better 
than using only reads within peaks (Fig. 3a,e), particularly when considering the local 
neighborhood (Fig. 3a). We considered that this surprising observation could result from 
a decreased power to detect peaks using pooled scATAC profiles, and so we performed 
the same analysis again, but this time considering only untreated K562 scATAC samples 
and using peaks from high-coverage K562 DNaseI-seq data from ENCODE [19], which 
included 360,648 distinct hypersensitive sites. Here too, we found reads outside of peaks 
(comprising, on average, 55% of reads), could better distinguish replicates than reads 
within peaks (Fig. 3b,f). Although we are looking for biological variation between 
batches, this difference could be partly driven by technical batch issues (e.g. library 
preparation, transposition) that also distinguish the samples. However, this is unlikely to 
be a complete explanation since: (1) BROCKMAN operates on sequence features alone, 
and (2) there are more significant PCs for reads outside of peaks (47 vs. 31), so it is not 
driven entirely by simple sequence features (e.g. G/C-bias). 

In considering repeat elements,  including reads that lie within repetitive DNA is superior 
at grouping cells from the same sample both locally (Fig. 3c) and globally (Fig. 3g). 
Since this comparison is performed by BROCKMAN analysis of only K562 cells, any 
differences in grouping are unlikely to be driven by genetic polymorphisms.  

Using the same approach to assess the impact of gapped k-mers (vs. ungapped ones), 
indicated that gapped k-mers only improved cell grouping globally (Fig, 3h), but not 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 3, 2018. ; https://doi.org/10.1101/129247doi: bioRxiv preprint 

https://doi.org/10.1101/129247
http://creativecommons.org/licenses/by-nd/4.0/


 
 

9 
 
 
 

locally (Fig. 3d). Although gapped k-mers should better capture TF motifs with internal 
uninformative bases, including gaps increases computation time. Notably, there were 
fewer significant PCs (57 vs. 88) when using gapped k-mers, indicating that gaps may 
allow for more complex relationships to be captured in fewer PCs. 

Principal components of accessible k-mer space represent differential TF activity 
In identifying significant PCs [22] in the space of accessible k-mers amongst all cells, we 
found 131 significant PCs, suggesting variation in the activities of individual or 
combinations of TFs between or within cell types. Specifically, we hypothesized that 
each PC may represent the differential activity of one or more correlated TFs or sets of 
TFs, captured by the relevant k-mers (e.g., Fig. 1a), across cells.   

To identify PC-defining k-mers, we examined the loadings of the k-mers for each 
significant PC (Fig. 1b), reflecting the relative contribution of each k-mer to that PC 
(specifically: these are the k-mer weights that are multiplied by standardized k-mer 
frequencies to obtain the cell’s projection onto that PC). Next, we relate the different PCs 
to differential TF activity by classifying each k-mer into “cognate” and “non-cognate” for 
each TF using both the in vitro preference of each TF to individual 8-mers as measured 
by Protein Binding Microarrays (PBMs) and position weight matrix (PWM) motifs 
derived from these same experiments and others (e.g., SELEX, ChIP-seq, etc.) [23]. 
Finally, we calculated the enrichment or depletion of “cognate” k-mers among k-mer 
weights for each PC using the minimum hypergeometric statistic (Methods).   

We applied this approach to determine differential TF activity across treated and 
untreated K562 cells. We performed BROCKMAN analysis of only the K562 treated and 
untreated cells in the two main K562 clusters (Fig. 2a; “K562-treated” + “K562-
untreated”), recomputing the PCs using only these cells. We found 53 significant PCs, 
some of which located differences between treated and untreated cells (Methods). Both 
in the full initial analysis and here, the three different K562 treatments (JNK inhibition, 
BCR-ABL kinase inhibition [Imatinib; which is upstream of JNK [24, 25]], and CDK4/6 
inhibition) yield similar partitioning of cells in accessible k-mer space (Fig. 2a and 4a). 
Since PC3 and PC5 best distinguished treated from untreated cells (Fig. 4a), we 
examined the loadings of the k-mers for these PCs, reflecting the relative contribution of 
each k-mer to each PC (Fig. 4b). Whereas some k-mers have high loadings in both PC3 
and 5 (Fig. 4b – top right quadrant of scatter plot), others are distinctly highly or lowly 
loaded in one PC but not the other (Fig. 4b – e.g., k-mers recognized by both JUND and 
JUNB have high loadings in PC3 and low weightings in PC5).  
Relating the PCs to known specificities of human TFs, we found a large number of 
enriched/depleted TFs for PC3 and PC5 (107 and 37 motifs enriched or depleted in PCs 3 
and 5, respectively). Two interesting examples are the AP-1 family TFs JUNB and 
JUND, which were enriched in PC3 and 5, respectively (Fig. 4b). Even though the two 
PWM motifs derived from the PBM data are remarkably similar for these two factors 
(Fig. 4b, bottom right), the PBM Z-scores on which these enrichments are based clearly 
distinguish these two PCs. Interestingly, these two motifs are enriched in open chromatin 
in cells treated with JNK inhibitors that prevent the activation of JUN by JNK (Fig. 4a, 
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lower left). AP-1 factors are known to play important roles in the cell cycle [26], 
consistent with our observation that CDK4/6 inhibition (CDKi) and JNK inhibition result 
in a very similar chromatin phenotype. However, CDKi appears to be distinguished 
mostly by PC5 (Fig. 4a, bottom), whereas Imatinib and JNK inhibition are differentiated 
primarily by PC3 (Fig. 4a, left), where JUNB, thought to act as a negative regulator of 
the cell cycle [26, 27], is enriched (Fig. 4b, PC3-left). Since JUNB and JUND 
homodimers (which these PBM Z-scores represent) are not substrates for JNK [28], the 
decreased stability of JUN resulting from JNK inhibition may yield more JUNB and 
JUND homodimers, resulting in more of these homodimer binding sites in open 
chromatin and inhibition of the cell cycle through increased JUNB/JUND activity [27]. 

 
Figure 4: PCs represent TF variation. (A) Partitioning cells by treatment. Shown is a projection of treated (shades of 
blue) and untreated (shades of pink) K562 cells onto PC 3 and 5 from BROCKMAN analysis of only K562 cells. (B) 
Identification of TFs associated with specific PCs. Scatter plot shows the PC weights for each 8-mer (dot) for PC 3 (x 
axis) and PC5 (y axis). Colored dots: k-mers recognized by JUNB (red), JUND (blue), and both (green), with consensus 
JUN 7-mer shown as a pink star, as defined using PBM 8-mer Z-scores [23]; the legend (bottom right) shows PWMs 
derived from the same PBM 8-mer Z-scores. Side graphs show the Log2 fold enrichment of JUNB- and JUND-bound 
k-mers amongst lowly-weighted PC k-mer weights for PC 3 (bottom) and PC 5 (right). 

 

PCs capture variation in TF activity across individual cells  
Next, we explored TFs for variation in their inferred activity within a cell type, by 
performing BROCKMAN analysis of only the untreated K562 cells (Fig. 2a – “K562-
untreated”; Methods). Of the 27 significant PCs, 13 distinguished different replicates 
(Supplementary Fig. 2), indicating that at least some of the variability captured on these 
PCs represents differences between batches. We excluded these PCs from subsequent 
analyses, and tested for enriched TFs the remaining 14 PCs that showed primarily cell-
cell variability (Methods). Overall, 40.5% (167/412) of expressed TFs with known 
motifs were associated with at least one PC, but this number may be inflated because 
many TF binding sites are so similar.  
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We considered some of the possible causes for the cell-cell variation in the (inferred) 
activity of TFs. In particular, TFs with variable activity may be more variably expressed 
at the RNA level, leading to cell-cell variation at the protein level, or generally lowly 
expressed, such that the protein level is significantly impacted by bursts of transcription. 
(There are, of course, other options, independent of RNA or expression levels, such as 
variation in upstream signaling molecules that affect the TF’s activity.) To consider the 
first two options, we used scRNA-seq of untreated K562 cells [29] to compare the 
average expression levels and variability (mean corrected coefficient of variation [CV]) 
in expression across single cells for our k-mer-based “variable” and “constant” TFs.  
We found that the TFs that were most enriched among the PCs, and hence inferred to 
have the most variable activity, were expressed on average at lower levels than the least 
enriched TFs (Wilcoxon rank sum test P=0.08; Supplementary Fig. 3a), but the two 
groups had a similar mean-corrected CV (Wilcoxon rank sum test P=0.54; 
Supplementary Fig. 3b; Methods). Most TFs tend to have a low mean-corrected CV, 
with notable exceptions including the AP-1 proteins JUN, FOSL1, BATF, and ATF3 
(Supplementary Fig. 3c). 

PCs help identify TF-TF interactions  
Finally, we hypothesized that different TFs that are co-enriched (or co-depleted) on the 
same PC could reflect dependencies or interactions between the activity of those TFs, 
such as cooperative binding in a complex or through one TF rendering the sites of the 
other accessible (Fig. 1a – bottom). However, because many TFs have very similar 
specificities and are difficult to distinguish from their cognate motifs alone, we first 
eliminated any motifs that closely match another more highly enriched motif (Methods). 
This was particularly important for TFs in the AP-1 family, which share very similar 
motifs and were often enriched together (e.g. JUN, JUNB, JUND, FOS, FOSL1, FOSB, 
BATF, BACH1, ATF3, SMARCC1), and are associated with five of the 13 cell-variable 
PCs, often in combination with other TFs.   
Such analysis of individual PCs highlights putative interactions. For example, in PC13, 
AP-1 + SNAI3 + MAFF + SMAD3 are co-enriched (one putative interaction), whereas 
CTCF + NFYA are co-depleted (an opposite interaction), while PC7 represents AP-1 + 
IRF2/9/STAT1 (enriched) vs. HIC2 + other TFs (depleted) (Supplementary Table 1). 
Some of the TFs co-enriched in the same PC are known to interact with each other 
physically.  For instance, the AP-1 transcription factors (e.g. JUN and JUNB) are known 
to interact with both RUNX2 (CBFA1) [30] and SMAD3 [31] (PCs 3 and 13, 
respectively).  In another example, interactions are also known between IRF9 and STAT1 
[32] (PC7), ATF3 and JUN [33] (PC6; AP-1 motif represented by BATF motif), and the 
JUN factors and SPI1 (PU.1) [34, 35]; (PC7; AP-1 factors represented by SMARCC1 
motif). Overall, there are 2.5 times more high-confidence protein-protein interactions 
[36] amongst TFs that are enriched together in a PC than expected by chance 
(hypergeometric test P=0.03, considering all possible pairs for TFs enriched/depleted in 
any PC). 
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Discussion 
BROCKMAN provides a new approach to leverage scATAC-seq data, to partition cells 
by distinct epigenomic landscapes, and to understand their regulatory underpinning. 
Since BROCKMAN does not require that peaks be called, it can potentially detect cell 
types that are too rare to result in a peak call. By comparing to known TF specificities, 
we can identify the transcriptional regulators that mediate underlying differences in 
chromatin. Here, we found that BROCKMAN distinguishes cell types, cycling cells, and 
experimental artifacts, and discovered a large number of significant PCs in all datasets 
analyzed, each appearing to represent one or more TFs.  

One possible explanation for the variation in inferred TF activity across single cells is 
variation in the expression of the TF between the cells, as has been previously shown by 
scRNA-seq, RNA-FISH, and single cell protein staining (e.g. [37-39]; reviewed in [40]). 
However, we found that TFs associated with cell-cell epigenomic variability across 
untreated K562 cells are relatively lowly expressed in all cells, but not particularly 
variable across cells, as reflected by scRNA-seq. One possible explanation is that 
variation would be more apparent post-transcriptionally, such as in protein translation, 
modification, or stability, either because of direct regulation of these steps or because of 
separation of time scales. Consistent with this possibility, low mRNA expression levels 
generally result in more variable (noisier) protein levels [41] since transcription or decay 
of a single mRNA results in greater fold differences in low-abundance genes. An 
alternative explanation is that a TF would show variable binding dependent on a variable 
co-factor, while itself not being variable (e.g. Fig. 1a - bottom).  
We found that reads lying outside of called peaks actually contain more information than 
those within peaks, in terms of defining cell clusters. This may be partly explained by the 
fact that the open chromatin at promoters is easily identified and comparatively stable 
across cells [42], leading to the motifs present in these regions having less discriminatory 
power. However, this is likely to be only a partial explanation since the called peaks also 
included many enhancers. We consider two possible further explanations: (1) dynamic 
enhancers are both more difficult to identify and more informative of cell state, and (2) 
pioneer TFs stochastically sample the genome, transiently opening potentially non-
functional loci that contain their motif, similar to the previously proposed “hit and run” 
model, where TFs can cause transient disruption of nucleosome integrity [43].  
The primary axes of variation in the K562 scATAC-seq data, as reflected by the PCs, 
appear to represent the combined actions of multiple TFs, often known to interact 
physically. This may reflect cooperative binding by these TFs. Cooperative binding 
mediated by physical interaction between TFs (Supplementary Fig. 4) or by mutual 
competition with nucleosomes [44] results in a steeper binding curve, such that small 
changes in concentration around the critical point result in larger changes in occupancy 
than in a non-cooperative setting. Thus, cell-cell variability in TF concentration around 
this point will result in higher occupancy/accessibility variability than would be expected 
in the non-cooperative case.  
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Cooperativity may also provide some insight into the prevalence of AP-1 factors in our 
analysis, whose binding sites were enriched in many PCs for both treatment-associated 
and cell-variable PCs. AP-1 TFs are bZIP TFs and can form a large number of 
heterodimers with other bZIP TFs [35], some of whose motifs were also found to be 
enriched on the same PCs as the AP-1 factors. The strong enrichment of AP-1 motifs in 
variable k-mer axes associated with scATAC-seq indicates that AP-1 factors may 
themselves be associated with mediating chromatin accessibility. Indeed, it has been 
suggested previously that AP-1 factors have pioneer activity [45, 46]. 

A remaining challenge – present whenever motifs are used to infer TF binding – is the 
definitive identification of causal TFs when many TFs have similar motifs and the 
specificities of many TFs remains unknown [23]. One advantage of a k-mer-based 
approach is that much of the analysis can be done without ever knowing the identities or 
specificities of the TFs. In this way, our knowledge deficits regarding TF binding 
specificities are shifted from the analysis to the interpretation stage, knowing that the 
specificities themselves can be captured in k-mer space. Thus, k-mer space could 
distinguish two cell types that differ by an as-yet undescribed TF, while strictly using 
known TF specificities could not. As we learn more about how TFs function, our 
interpretation of the k-mer space will improve. 

Before we were able to publish BROCKMAN, a related approach, ChromVAR, was 
published [47]. ChromVAR depends on a set of previously defined peaks, and considers 
only reads occurring within these peaks [47], which, according to our analysis, may 
reduce its sensitivity to distinguish cell types, particularly if those are rare. It also uses 
ungapped 7-mers [47], which may make the detected PCs more difficult to interpret. 

Conclusions 
As the number of cells per experiment grows, BROCKMAN analysis may provide 
additional insights into chromatin regulation by allowing us to detect rare cell types, 
variable TFs, and TF interactions. We anticipate that BROCKMAN will also be useful in 
the study of other chromatin profiles collected across single cells (e.g., scChIP-seq [8]), 
and can also help understand variation in chromatin organization in the analysis of many 
bulk samples, for example, those collected across individuals in a population (e.g., [2-7]). 
Although other k-mer based methods have been applied to study of variation in cis [18], 
we anticipate that the unsupervised approach of BROCKMAN will be useful in 
dissecting variation in trans. With epigenomic data of ever increasing complexity, tools 
and approaches like these will continue to provide insight into the regulation of 
chromatin.  
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Methods 
Data processing 
A summary of the data processing steps and tools used is included in Supplementary 
Fig. 1, and a bash pipeline for processing samples as well as an R package to facilitate 
analysis are available on GitHub (https://carldeboer.github.io/brockman.html).  
Data was obtained from the Gene Expression Omnibus, accession GSE65360. Samples 
were demultiplexed, and reads trimmed for Nextera adaptors and mapped to the human 
genome (hg19) using Bowtie2 [48] using paired reads (-X 2000), as described previously 
[9]. Regions of interest were defined as windows of 50 bp to either side of the 5’ end of 
mapped reads, representing the integration sites of the Tn5 transposase, merging 
overlapping regions (which removes duplicate reads). DNA sequences were then 
extracted from these loci using twoBitToFa [49] and scanned for k-mer content using 
AMUSED (https://github.com/Carldeboer/AMUSED), considering both DNA strands, to 
yield a vector of k-mer frequencies for each cell that was used in subsequent analyses, 
including all gapped k-mers from length 1 to 8.  We stopped at a length of k=8 because 
for k>8 k-mer frequencies become very sparse when analyzing as few loci per cell as are 
present in scATAC-seq data, although larger k may be more suitable to analysis of bulk 
samples. Cells with fewer than 3,162 (103.5) distinct Tn5 integration loci were excluded 
from subsequent analyses to remove dead cells and cells with poor data quality.  
The individual cells’ k-mer frequency vectors were merged and scaled so that each k-mer 
had mean 0 and a standard deviation (SD) of 1, and this matrix was decomposed into its 
principal components. For all analyses, PCA was done with the prcomp R function and 
the number of significant PCs was estimated using the permutationPA function from the 
jackstraw R package [22], while the tsne R package was used for t-SNE, using the default 
parameters and including only the significant PCs. Because the frequencies of k-mers of 
varying G+C-content are so correlated to G+C content itself, the first PC often has a 
significant G+C-content component and should be analysed carefully (e.g., GG tends to 
occur more frequently with higher G+C-content, and so the two will be correlated and 
both will be anticorrelated with A+T-rich k-mers). 

Scoring cells for cell cycle signatures 
Using the ENCODE Repli-seq data for K562 cells [19], the genome was divided into 
replication domains using a percent signal cutoff of 25%, where any region with a signal 
greater than this cutoff was considered a domain for the respective stage of the cell cycle. 
ATAC-seq reads were then counted within each domain to yield a matrix of ATAC-seq 
read counts for each domain in each cell. This matrix was scaled by the total number of 
reads per cell, yielding a matrix of proportions of reads per domain per cell, and the ratio 
of (G2+S1+S2+S3+S4)/G1 (termed (G2+S)/G1 above) was used to distinguish cycling 
cells. 

Comparing input data and analysis techniques 
To compare different analysis approaches (e.g., reads within or outside of peaks, reads 
in/outside of repetitive DNA, or gapped/ungapped k-mers), we took the following general 
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approach (with details for each comparison noted below). Using only K562 samples that 
passed quality control (see above), k-mer frequencies were calculated given the 
appropriate set of scATAC-seq reads, scaled, and PCA was performed, calculating the 
number of significant PCs for each approach set as described above. Considering only the 
set of significant PCs, cell-cell Euclidean distances were calculated for each pair of cells 
and each analysis approach. Using these distances, the proportion of the 20 nearest 
neighbors derived from the same biological samples was calculated (Fig. 3A-C). Using 
these same cell-cell distances, the ability for distance to distinguish between cells from 
the same sample (positives) from those from different samples (negatives) was calculated 
as the Area Under the ROC Curve (AUROC; Fig. 3D-F). Bootstrap P-values were 
calculated by sampling 80% of cells without replacement 2,001 times, considering the 
fraction of random samples where the AUROC was larger in one approach than the other, 
and correcting for a two-tailed test. 
For the analysis comparing the use of reads in peaks to those outside of peaks, the reads 
for all K562 samples were aggregated, duplicates removed using Picard Tools 
(MarkDuplicates) (http://broadinstitute.github.io/picard/), and only uniquely mapping 
read pairs were considered. Peaks were called using Homer [21] (version 4.7; using “-
style dnase”). DNaseI-seq hot spots from ENCODE [19] were downloaded from UCSC 
(wgEncodeUwDnaseK562HotspotsRep1.broadPeak.gz and 
wgEncodeUwDnaseK562HotspotsRep2.broadPeak.gz from 
http://hgdownload.soe.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeUwDnase/), and 
peaks combined between replicates. Both DNaseI and pooled scATAC peaks were 
expanded by 250 bp in either direction and any scATAC reads whose corresponding 
transposition site (the 5’ end of each read) landed within one of these regions were 
considered to be in a peak. All other scATAC reads were considered to be outside of 
peaks. When excluding repeat regions, DNA sequence for repeat-masked regions of the 
genome was excluded when counting k-mers. For comparing gapped vs. ungapped k-
mers, ungapped k-mer frequencies were derived as the subset of gapped k-mer 
frequencies without gaps. 

Identifying PCs that distinguish treated from untreated K562 cells 
Every cell was “scored” by its position as it is projected onto the respective PC axis. The 
area under the ROC curve (AUROC) statistic and rank sum P-value, representing how 
well the projected cell positions divide the cells into treated and untreated cells, were 
calculated, and the PCs with the AUROC furthest from 0.5 (i.e. those for which treated 
cells are either enriched or depleted by the PC) were considered those that segregated 
treated from untreated best.  

Identifying TF-specific PCs 
Ungapped 8-mer protein binding microarray Z-scores and position weight matrices 
(PWMs) for all human TFs (inferred or directly determined) were downloaded from CIS-
BP [23]. For PWMs, gapped k-mer scores were derived by finding the maximum log-
odds score for that k-mer in the PWM, considering every possible offset. These scores 
were then converted into Z-scores by centering them about the median and scaling them 
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to the median absolute deviation, taking a Z-score of >2 as “cognate” and leaving others 
as “non-cognate” k-mers. For PBM Z-scores, Z-scores between experiments for the same 
TF were combined using Stouffer’s method and those k-mers with a Z-score above 3 
were considered “cognate”, with others “non-cognate”. In total, we considered 638 PBM-
derived 8-mer motifs, and 1,882 PWM motifs representing a total of 870 TFs, which 
were further narrowed down to those TFs (and corresponding motifs) that were expressed 
in K562s [29], leaving 412 TFs. 
With this set of “bound” and “unbound” k-mers for each TF, the enrichment of each TF 
in each PC axis was calculated using the minimum hypergeometric test [50].  Briefly, the 
bound and unbound k-mers were ranked by their PC weights and, moving in increasing 
rank order, hypergeometric P-values were calculated representing the enrichment of 
cognate k-mers amongst the top N most highly (lowly) weighted k-mers. Exact P-values 
(considering the dependence between tests) were not calculated and instead multiple 
hypothesis testing correction using Bonferroni’s method was done as if the tests were 
independent, yielding a more conservative P-value (to minimize the number of non-
specific TF enrichments). For PBM Z-scores, only the top 3,000 k-mers were considered, 
while for PWM scores it was the top 15,000 k-mers (because these also included gapped 
k-mers and was approximately the same percent of all k-mers).  Only TFs expressed in 
K562s were considered [51].  
Because many TFs share similar k-mer binding profiles and the number of k-mers 
considered for PWM motifs was so high, these appeared to have a high false positive rate 
and so we set the threshold for significance much lower for PWM motifs (P<10-112) than 
for 8-mer Z-scores (P<10-2).  (log10(P-values) are “inflated” with PWMs as a result of 
common shared submotifs and a very large number of gapped k-mers; we chose these 
cutoffs based on the “elbow” of the log-P-value distributions, which are similar at these 
values.) To eliminate redundant motifs and select only the most enriched of each group of 
related motifs, the most enriched (or depleted) motif was retained and any redundant 
motifs (k-mer Pearson R > 0.5) were eliminated until all TFs were either eliminated due 
to redundancy or selected to represent the PC, the outcome of which is included in 
Supplementary Table 1. 

Comparison to K562 single-cell RNA-seq 
A matrix of single cell count data was downloaded from GEO (GSE90063) for wild type 
K562 cells [29] and a negative binomial distribution was fit to the gene-wise mean and 
variance, representing a theoretical minimum variance dependent on the mean, and this 
was used to calculate the theoretical minimum log coefficient of variation (CV). We then 
subtracted the theoretical minimum CV from the observed log CV per gene to get the 
excess CV over that expected from its dependence on the mean (“mean-corrected CV”).  
We then compared the distributions of the mean-corrected CV and expression mean for 
TFs that had a significant enrichment among the cell-variable PCs and those that did not, 
using the Wilcoxon rank sum test. Cell-variable PCs excluded any PCs that significantly 
distinguished any replicate from the other two (Bonferroni-corrected Wilcoxon rank sum 
test P < 0.1), and also excluded PC1 because of the association with G+C content. 
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TF cooperativity occupancy 
As described previously [52], a TF’s (x) fractional occupancy of a single binding site (Ox) 
depends on its concentration ([x]) and the dissociation constant (Kdx) of its binding site in 
the following relationship, which represents 1 minus the probability the binding site will 
not be bound: 

 
If TF x can also bind with a partner y, occupancy of x depends on x binding in isolation, 
as before, but also binding with y as a xy heterodimer, depending on the concentration 
[xy] and the Kdxy of the heterodimer. At equilibrium, [xy] = [x][y]Kaxy, where Kaxy is the 
association constant of x and y. Thus, for x binding to a single binding site with or 
without cooperative binding of y, we have: 

 
For simplicity, we can assume that [y] is constant since the same logic holds if x and y are 
interchanged and for arbitrary [y]. Thus, Kaxy[y] is a constant corresponding to the 
fraction of x that is in xy form. Assuming Kdxy < Kdx (since xy has both x and y binding 
DNA, and so is expected to bind more tightly), as [x] changes, this cooperative 
occupancy is always at least as steep as without cooperativity at concentrations yielding 
intermediate occupancy, regardless of choice of parameters, resulting in saturation of 
binding over a shorter range of [x] with cooperative binding. Intuitively, this is because 
increasing [x] increases cooperative and non-cooperative binding equally when Kdxy = 
Kdx, but when Kdxy < Kdx cooperative binding increases more rapidly until saturation. 
Supplementary Fig. 4 was made assuming 1% of x is in xy form, and Kdxy is 100x lower 
than Kdx. 

List of Abbreviations 
• BROCKMAN: Brockman Representation Of Chromatin by K-mers in Mark-

Associated Nucleotides 
• TF: transcription factor 
• scATAC-seq: single-cell ATAC-seq  
• t-SNE: t-stochastic neighborhood embedding 
• PCA: principal component analysis 
• SD: standard deviation  
• PCs: principal components 
• CV: mean corrected coefficient of variation 
• AUROC: Area Under the ROC Curve 
• PWMs: position weight matrices  
• PBMs: Protein Binding Microarrays 
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Supplementary Tables 
Supplementary Table 1: Summary of TFs associated with the different untreated 
K562 cell-variable PCs. TFs are listed in decreasing order of enrichment significance, 
with TFs filtered for redundancy between motifs as described in the Methods. Interacting 
TFs are not indicated and examples given in the text are for illustrative purposes. 

PC 
TFs enriched in highly 
weighted k-mers TFs enriched in lowly weighted k-mers 

PC3 
RUNX2, RREB1, TERF2, 
SMARCC1, ZNF524, KLF3, 
SREBF1, TBX15, TWIST1 

TBP, FOXD2, E2F2, POU4F1, NFATC1, IRF9, 
HOXD13, MEF2C, STAT5B, ZNF384, TEAD3, 
CDC5L, FOXP1, YY1, E2F4, LCOR, SOX12, 
FUBP1, SPI1, PRDM4, BBX, MLL, HES2, 
E2F1, HHEX, SP6, CIC 

PC5   

PC6 BATF, NFE2L2, TGIF1, 
ATF3  

PC7 IRF2, SPI1, SMARCC1, 
ELF1, SPIB, IRF9, STAT1 HIC2, ZNF740, KLF1, ZNF143, MZF1, HOXB4 

PC13 NFYA, CTCF JUNB, SNAI3, MAFF, SMAD3 

PC14 MZF1, ZNF740, GATA1, 
CREB1  

PC26 JUN, RUNX2  

PC27 ESRRA  
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Supplementary Figures 

 
Supplementary Figure 1: BROCKMAN computational pipeline. A bash pipeline and 
other computational resources are available on GitHub 
(https://carldeboer.github.io/brockman.html). Tools/functions used for each step are 
indicated in brackets. 
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Supplementary Figure 2: PCs that distinguish replicates. Shown are the Bonferroni-
corrected P-values (y axis) and AUROC values (x axis) for how well each PC separates 
each untreated K562 replicate from the other two replicates.  Colors indicate the replicate 
being compared to the other two. Red horizontal line: P-value cutoff (0.1) below which 
PCs were considered to separate batches. 
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Supplementary Figure 3: The TFs enriched in PCs have lower expression. A,B) ÇDF 
of the mean (population) expression (A, x axis) or mean-corrected CV (B, x axis; 
Methods) for the most (blue) and least (pink) significant TFs enriched in the PCs from a 
BROCKMAN analysis of untreated K562 cells. C) The relationship between the mean 
expression (x axis) and CV (y axis) for all genes in WT K562 data (dots). Names of TFs 
with the highest mean-corrected CV are labeled and AP-1 factors are bolded. Pink, blue: 
TFs with least and most significant PC enrichment. 
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Supplementary Figure 4: Cooperativity between TFs results in steeper binding 
curves. The predicted fractional TF occupancy (y axis) for a given concentration of the 
TF (x axis), when the concentration of the cooperatively-interacting TF is constant. The 
two binding curves are aligned at 50% occupancy to emphasize the differences in the 
slopes. Modeling was done as described in Methods. 
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