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Abstract:  15 

There is widespread interest in finding therapeutic vulnerabilities by analyzing the somatic 16 
mutations in cancers. Most analyses have focused on identifying driver oncogenes mutated in 17 
patient tumors, but this approach is incapable of discovering genes essential for tumor growth 18 
yet not activated through mutation.  We show that such genes can be systematically 19 
discovered by mining cancer sequencing data for evidence of purifying selection.  We show 20 
that purifying selection reduces substitution rates in coding regions of cancer genomes, 21 
depleting up to 90% of mutations for some genes. Moreover, mutations resulting in non-22 
conservative amino acid substitutions are under strong negative selection in tumors, whereas 23 
conservative substitutions are more tolerated. Genes under purifying selection include 24 
members of the EGFR and FGFR pathways in lung adenocarcinomas, and DNA repair pathways 25 
in melanomas. A systematic assessment of purifying selection in tumors would identify 26 
hundreds of tumor-specific enablers and thus novel targets for therapy.  27 
 28 

Introduction 29 
 30 

Tumor formation is an evolutionary process driven by positive selection for somatic 31 

mutations that provide a competitive advantage to cancer cells (Nordling 1953; Nowell 1976; 32 

Greaves and Maley 2012). While positive selection drives phenotypic change, it only enriches for 33 

a miniscule fraction of the mutations in tumor genomes (Lawrence et al. 2013; Lawrence et al. 34 

2014). During species evolution, most newly arising mutations are deleterious, and are 35 

eliminated by negative (or purifying) selection before they can become substitutions fixed in the 36 

population of individuals (Kimura and Ohta 1974; Kimura 1991; Zollner et al. 2004; Kiezun et al. 37 

2013). In principle, negative selection could also impact cancer evolution (McFarland et al. 2013; 38 

McFarland et al. 2014), and there is evidence of purifying selection in hemizygous regions of 39 

cancer genomes (Van den Eynden et al. 2016).  However, the extent to which this force shapes 40 

the pattern of somatic mutations in tumors is not known. In this study, we provide evidence that 41 

purifying selection is widespread in cancer genomes and acts to remove mutations from genes 42 

that contribute to the survival or growth of cancer cells.  In this way, the pattern of mutations in 43 

patient tumors reveals the vulnerabilities of human cancers in vivo.   44 

 45 
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Results 46 

Genes that are expressed or essential have fewer missense mutations (substitutions) 47 

If purifying selection were significant during tumor evolution, it would reduce overall 48 

substitution rates by preventing the fixation of deleterious somatic mutations in genes 49 

contributing to tumor growth. To examine this possibility, we analyzed the mutational profiles 50 

of 5057 tumors of diverse cancer types sequenced by The Cancer Genome Atlas (TCGA) 51 

(Weinstein et al. 2013). Since genes can only impact tumor growth if they are expressed, our 52 

first analysis was to compare substitution rates between expressed and non-expressed genes 53 

(Figure 1A). Each gene’s exon mutation rate was normalized relative to its intron mutation rate; 54 

this controlled for gene-to-gene variations in mutation rates arising from differences in 55 

chromatin accessibility and early-vs-late replication times, among other position factors 56 

(Lawrence et al. 2013) (Figure 1B). After controlling for all of these effects, expressed genes had 57 

significantly fewer substitutions than non-expressed genes across three tumor types— with a 58 

57% reduction in melanomas (p<10-20), a 51% reduction in lung adenocarcinomas (p<10-20), and 59 

a 14% reduction in colorectal adenocarcinomas (p<10-20) (Figure 1A). Absent this reduction, we 60 

estimate there would have been 167–416 additional mutations in the exons of expressed genes 61 

per tumor, depending on the cancer type.  This depletion of missense mutations is similar to the 62 

66-83% of missense mutations observed to impact a protein’s functionality, based on 63 

experimental mutagenesis (Rockah-Shmuel et al. 2015). 64 

Transcription-coupled repair (TCR) (Hanawalt and Spivak 2008) has been previously 65 

reported as a mechanism through which mutations are eliminated from expressed genes. To 66 

quantify TCR’s effects, we compared substitution rates between transcribed (template) and 67 

non-transcribed (coding) strands in melanomas and lung adenocarcinomas. As expected, TCR 68 

lowered overall substitution rates in expressed genes. However, there was a 31-45% additional 69 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129205doi: bioRxiv preprint 

https://doi.org/10.1101/129205
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129205doi: bioRxiv preprint 

https://doi.org/10.1101/129205
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

reduction that could not be accounted for by TCR (Supplemental Figure S1). These findings were 70 

consistent with a model in which mutations were being eliminated by purifying selection prior to 71 

their fixation.  72 

 73 

Amino acid substitutions with similar physicochemical traits are more acceptable during both 74 

tumor microevolution and species macroevolution 75 

Mutations resulting in the substitution of amino acids with similar physicochemical 76 

properties (conservative substitutions) are less likely to be deleterious to protein function, 77 

relative to non-conservative substitutions (Grantham 1974; Kimura and Ohta 1974). If this were 78 

the case in tumors, purifying selection should act less strongly on mutations resulting in 79 

conservative amino acid substitutions. To test this prediction, we segregated mutations into 80 

classes based on the amino acid substitutions that they generated. In total, there were 81 

mutations in all of the 150 substitution classes that are possible by mutating a single base pair in 82 

codons. We quantified the strength of negative selection on each mutation-substitution class to 83 

identify pairs of amino acids (A1 , A2) that were most readily substituted in either direction (A1 -> 84 

A2 and A2 -> A1) in tumors (Figure 2A,B, Supplemental Table S1). This analysis identified several 85 

subsets of amino acids with similar physicochemical properties that were interchangeable in 86 

tumors: the hydrophobic amino acids isoleucine, leucine, valine, and methionine; the positively 87 

charged amino acids arginine, histidine, and lysine; and the positively charged and positive-polar 88 

amino acids arginine and glutamine. The analysis also identified several amino acids with similar 89 

structures but differing charges that were interchangeable (GlnGlu and AspAsn), suggesting 90 

that such substitutions might minimize steric hindrances and be frequently tolerated. We 91 

conclude that mutations resulting in conservative substitutions were less often eliminated by 92 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129205doi: bioRxiv preprint 

https://doi.org/10.1101/129205
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129205doi: bioRxiv preprint 

https://doi.org/10.1101/129205
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

purifying selection in tumors— presumably because they were less likely to disrupt protein 93 

folding or function.  94 

The constraints imposed on protein folding and function during tumor microevolution might 95 

in principle be comparable to those imposed during the macroevolution of species. We 96 

therefore compared the amino acid substitutions that were tolerated in tumors with those that 97 

were most commonly tolerated across macro-evolutionary time scales. Surprisingly, we found 98 

that interchangeable amino acids identified using BLOcks of Amino Acid SUbstitution Matrix 99 

(BLOSUM; (Henikoff and Henikoff 1992)) analysis— which quantifies substitutions within highly 100 

conserved protein domains across millions of years of species evolution— were nearly identical 101 

to those identified in the tumor analysis (p < 7*10-6) (Figure 2C). However, this concordance was 102 

only observed if: (1) the macro-evolutionary analysis was performed for closely related proteins 103 

(BLOSUM90, but not BLOSUM45/62), and (2) the BLOSUM90 amino acid substitutions were 104 

limited to those that are possible by mutating a single DNA base in codons; both of these 105 

constraints reflect the fact that the substitution rates in tumors are much lower than those 106 

observed in comparisons across species. Moreover, this analysis revealed that several 107 

substitutions that were well tolerated in tumors, which could not be understood on the basis of 108 

their physicochemical traits (e.g. GluLys, SerAla, AlaThr), were also more tolerated 109 

across the macro-evolutionary time scales associated with speciation, suggesting that they are 110 

in fact more permissible than others (Figure 2B, C). After considering these findings together 111 

with the functional observations above, we concluded that purifying selection has a significant 112 

role in shaping the global constellation of substitutions (fixed mutations) found in tumors.  113 

 114 

Purifying selection targets genes that are important for tumor growth 115 
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Since these findings established that negative selection occurred at a genome-wide scale in 116 

tumors, we next asked whether we could identify individual genes that were substrates of 117 

purifying selection.  We found genes associated with essential processes, such as transcription 118 

(MED15, MED19) and cell division (ANAPC2, CEP72), Supplemental Table S2) to be under 119 

purifying selection in tumors.  However, we could not detect evidence of purifying selection in 120 

genes with too few mutations across the sequenced tumors.  To work around this, we looked for 121 

purifying selection in sets of genes with known biological functions (Liberzon et al. 2011). We 122 

found that genes which function in essential cellular processes— e.g. RNA metabolism and DNA 123 

replication— are under the strongest purifying selection across all tumor types (Figure 3A, B; 124 

Supplemental Table S3).  In addition to these gene sets showing a depletion of mutations, we 125 

found that in each set under purifying selection, the majority of genes showed fewer mutations 126 

than expected (Figure 3C).     127 

To support our observation that genes under purifying selection were enriched in essential 128 

cellular processes, we examined if these genes were known to be essential when perturbed.  129 

Assembling the results of three pooled CRISPR screens (Hart et al. 2015; Wang et al. 2015; 130 

Tzelepis et al. 2016), we found that genes under purifying selection are more often essential in 131 

most tested cell lines, compared to genes not under selection (Figure 3D).  We also found that 132 

purifying selection has a strong power to find essential genes (Figure 3E).  This showed that 133 

genes under purifying selection in tumors are functionally essential, suggesting it reveals genes 134 

important for tumor growth or survival.   135 

Although many genes under purifying selection across tumors are essential, such genes are 136 

not likely to be good targets for treating cancer, as they likely also have essential functions in 137 

normal cells. To get around this, we aimed to identify genes under increased selection in 138 

particular tumor types, relative to other tumors. To identify genes under increased purifying 139 
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selection in specific tumor types, we developed a statistical approach that controlled for 140 

differences in the stage of tumor evolution, gene-specific variations in mutation rate within 141 

tumors, and genome-wide variations in mutation rates across tumors. Using this method, we 142 

could identify genes under purifying selection in specific tumor types— e.g. in lung tumors 143 

versus all other tumor types. 144 

In lung adenocarcinomas, we identified 508 genes as strong substrates for purifying 145 

selection, enriched in 11 of the pathways in the network data exchange database (NDEx) 146 

(Supplemental Figure S2, Supplemental Table S4, Supplemental Table S5) (Pratt et al. 2015). 147 

These included: 11 genes in pathways related to EGFR signaling (ERBB2/ERBB3, EGFR 148 

internalization, ERBB1 receptor proximal pathway, p<3x10-3, Supplemental Figure S2), and the 149 

AXL kinase. These pathways are both targeted by approved therapies for lung cancers: 150 

erlotinib/gefitinib (EGFR) and crizotinib (MET/AXL).   Our analysis also identified FGFR3, a key 151 

driver of non-small cell lung cancer (NSCLC), which is activated by mutation in 6-8% of NSCLCs 152 

and is currently being explored as a therapy target (Semrad and Mack 2012; Liao et al. 2013; Yin 153 

et al. 2013; Wang et al. 2014; Tiseo et al. 2015). 154 

In cutaneous melanomas, we identified 848 genes that were targets of purifying selection. 155 

Consistent with the established role of UV-induced damage in this cancer type, these included 156 

27 genes in key pyrimidine dimer repair pathways: nucleotide-excision (ERCC2, ERCC5), base 157 

excision (APEX2, POLE), mismatch repair (RFC1, RFC4), and trans-lesion replication (REV1, REV3L) 158 

(Figure 4A,C, Supplemental Table S6, Supplemental Table S7). While UV does not directly cause 159 

double-stranded breaks (DSBs), such breaks arise indirectly during NER and are the primary 160 

cause of cell death (Wakasugi et al. 2014). Consistent with this, we identified a number of genes 161 

that repair DSBs in the ATM and Fanconi Anemia pathways (ATM & FANCONI pathways, p <4x10-162 

5; Table S7)— including two members of the core Fanconi Anemia complex (FANCC, FANCL), 163 
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ATM and its phosphorylation target CHK2, and 2/3 proteins in the MRN complex (NBN and 164 

RAD50) (Figure 4C). We also identified all four components of the cohesin complex (SMC1A, 165 

SMC3, STAG2, RAD21), which, independently of its role in mediating sister chromatid cohesion, 166 

is phosphorylated by ATM and required for repairing DNA DSBs by homologous recombination 167 

(Kim et al. 2002; Yazdi et al. 2002; Kong et al. 2014). Collectively, these findings indicate that 168 

purifying selection preserves the function of DNA repair pathways in melanomas. Because many 169 

of these pathways have established roles in promoting resistance to the DNA damage caused by 170 

radiation and chemotherapies (Reed 1998; Helleday 2010; Begg et al. 2011; Pennington et al. 171 

2014; Dai et al. 2015); this might explain why such therapies are almost completely ineffective 172 

when applied to melanomas.  173 

We were again able to use identify purifying selection on sets of genes with known 174 

biological function, this time looking for increased selection in a particular tumor type.  Gene 175 

sets under increased purifying selection in melanomas are related to a number of pathways 176 

active in processes known to be important in melanomas (Figure 4B, Supplemental Table S8).  177 

Describing 599/927 genes in these sets, we found many known pathways involved in melanoma 178 

growth and survival, such as the sonic hedgehog, WNT, NFκB, PI3K, EGFR, and INFγ pathways, 179 

and the proteasome (Rubinfeld et al. 1997; Ueda and Richmond 2006; Mirmohammadsadegh et 180 

al. 2010; Boone et al. 2011; Kumar et al. 2012; Yaguchi et al. 2012; Jalili et al. 2013; Selimovic et 181 

al. 2013; Webster and Weeraratna 2013; Gross et al. 2015).  We also found a pathway required 182 

for immune suppression in melanomas, TNFα (Wang et al. 2016).  183 

Importantly, genes under increased purifying selection in melanomas are less likely to be 184 

generally essential for cell viability when compared to genes under purifying selection in all 185 

tumors (Figure 4D).   186 
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When attempting to extend this analysis to other tumor types, we found that there were 187 

not enough passenger mutations identified to provide the statistical power needed for the 188 

analysis. How much more benefit would be obtained by sequencing additional tumors? Using 189 

numerical simulations, we estimated the number of new genes that would be discovered by 190 

sequencing 500 to 3000 additional tumors of each cancer type (Supplemental Figure S3). For all 191 

tumor types, sequencing no more than 500-3000 additional tumors would be sufficient to 192 

discover nearly all of the genes under purifying selection that have yet to be identified. In 193 

addition, we established the optimal combination of tumor types to sequence that would 194 

maximize the number of new genes discovered as substrates of purifying selection 195 

(Supplemental Figure S3).  196 

 197 

Discussion 198 

These findings show that purifying selection significantly influences the pattern of mutations 199 

in cancer genomes, reducing the rate at which substitutions accumulate in genes that are 200 

important for tumor growth. We propose calling genes under purifying selection in tumors 201 

‘enablers’, to distinguish them from recurrently mutated ‘drivers’ — i.e., tumor-suppressors and 202 

oncogenes. Our findings indicate that many enablers are tumor type-specific, and are therefore 203 

not likely to be generally required for the survival of all cell types; however, it may also be that 204 

there are tissue-specific differences in essential genes. Enablers that are tumor type-specific 205 

could arise through cell type-specific requirements or through synthetic interactions with 206 

genetic and metabolic alterations associated with tumor growth, as recently reported (Kryukov 207 

et al. 2016; Mavrakis et al. 2016). Using signatures of purifying selection to discover enablers 208 

provides an exciting opportunity to systematically identify hundreds of new vulnerabilities of 209 

cancer.  As the vulnerabilities of human tumors will remain opaque to direct experimentation, 210 
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and only approached by models, our observation of purifying selection in cancers allows an 211 

unprecedented view into the dependencies of human cancers in vivo.   212 

 213 

Methods 214 

Data Availability: 215 

All post-analysis data are included in this manuscript in supplemental tables.  All data analyzed 216 

were obtained from other sources as follows. 217 

 218 

Tumor mutation data  219 

Mutation Annotation Format files for 11 tumor types generated by The Cancer Genome Atlas 220 

(TCGA) were downloaded from the Broad Firehose (Broad Institute TCGA Genome Data Analysis 221 

Center (2015): Firehose stdata__2015_11_01 run. Broad Institute of MIT and Harvard. 222 

doi:10.7908/C1571BB1). Tumor types downloaded were lung adenocarcinoma (533 tumors), 223 

cutaneous melanoma (290 tumors), colorectal adenocarcinoma (489 tumors), bladder urothelial 224 

carcinoma (395 tumors), breast invasive carcinoma (977 tumors), glioma (796 tumors), uterine 225 

corpus endometrial carcinoma (248 tumors), head and neck squamous cell carcinoma (510 226 

tumors), liver hepatocellular carcinoma (198 tumors), prostate adenocarcinoma (332 tumors), 227 

and stomach adenocarcinoma (289 tumors). Mutations were filtered to remove all but single 228 

base-pair missense mutations in exons.    229 

Non-coding (intron) mutation data from were acquired from published analyses. (Lawrence et 230 

al. 2013) 231 

 232 

RNA data 233 
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Level 3 normalized RNA sequencing data quantified with RNA-Seq by Expectation Maximization 234 

(RSEM)(Li and Dewey 2011) were downloaded from the Broad Firehose (Broad Institute TCGA 235 

Genome Data Analysis Center (2015): Firehose stdata__2015_11_01 run. Broad Institute of MIT 236 

and Harvard. doi:10.7908/C1571BB1).  These data are quartile-normalized RSEM count 237 

estimates. 238 

 239 

Gene-length and sequence information 240 

Gene length information was downloaded from UniProt (http://www.uniprot.org/), and coding 241 

sequences were downloaded from BioMart (http://www.biomart.org/). 242 

 243 

Calculations: 244 

Mutation rates in expressed and non-expressed genes 245 

For tumor t ∈ tumor type Ti ∈ T, where T = (!!! INVALID CITATION !!! {}) (see Tumor 246 

mutation data, above); and for gene g ∈ G, where G = all sequenced genes; and where Lg = 247 

the length of gene g in amino acids (a.a.s); 248 

𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖) = �|missense mutations in 𝑔𝑔 in 𝑡𝑡|
𝑡𝑡∈𝑇𝑇𝑖𝑖

 249 

Where 250 

𝑅𝑅(𝑔𝑔, 𝑡𝑡) = {RNA sequencing counts (see RNA data) for gene 𝑔𝑔 in tumor  𝑡𝑡 ∧ 𝑔𝑔 ∈ 𝐺𝐺 ∧ 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖} 252 

 251 

Define expressed genes 253 

𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖 = {𝑔𝑔 ∶  𝑔𝑔 ∈ 𝐺𝐺 ∧ |{𝑡𝑡 ∶  𝑅𝑅(𝑔𝑔, 𝑡𝑡)  > 8 ∧ 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖  }| > 0.95 |𝑇𝑇𝑖𝑖| ∧𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖) ≥ 1} 254 

and not-expressed genes as 255 

𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖 = {𝑔𝑔 ∶  𝑔𝑔 ∈ 𝐺𝐺 ∧  |{𝑡𝑡 ∶  𝑅𝑅(𝑔𝑔, 𝑡𝑡) < 8 ∧ 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 }| > 0.95 |𝑇𝑇𝑖𝑖| ∧ 𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖) ≥ 1} 256 
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Determine an expected number of mutations for each gene by means of the gene’s relative non-257 

coding mutation rate, the average mutational rate in not expressed genes, and the length of the 258 

gene’s coding sequence: 259 

𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖) = 𝑛𝑛𝑛𝑛(𝑔𝑔) ∗
|𝐺𝐺|

∑ 𝑛𝑛𝑛𝑛(𝛾𝛾)𝛾𝛾∈𝐺𝐺
∗
∑ 𝑚𝑚(𝛾𝛾,𝑇𝑇𝑖𝑖)𝛾𝛾∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

∑ 𝐿𝐿𝛾𝛾𝛾𝛾∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

∗ 𝐿𝐿𝑔𝑔 260 

Where nm(g)  = the non-coding mutation rate for gene g calculated from published whole-261 

genome sequencing of tumor samples (Lawrence et al. 2013). 262 

 263 

To calculate the significance of the depletion in mutations in expressed genes, 264 

�
𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖)

∶ 𝑔𝑔 ∈ 𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖�  and �
𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖)

 ∶ 𝑔𝑔 ∈ 𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖� 266 

 were compared with a two-tailed Wilcoxon Rank-Sum test.   265 

The proportion of mutations depleted in expressed genes relative to not expressed genes was 267 

calculated as 268 

𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖 = 1 − �
∑ 𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)𝑔𝑔∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∑ 𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖)𝑔𝑔∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∗
∑ 𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖)𝑔𝑔∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

∑ 𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)𝑔𝑔∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

� 269 

The number of additional expressed mutations expected in sequenced tumors was calculated as 270 

∑ 𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)𝑔𝑔∈𝐺𝐺𝑒𝑒
|𝑇𝑇𝑖𝑖|

∗
1

1 − 𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖
 271 

 272 

Determining the effect of intron mutation rate controls on mutation rate covariates 273 

Using the intron mutation rate to estimate the background mutation rates of genes should 274 

ideally control for known gene mutation rate covariates, including replication time, chromatin 275 

accessibility, and GC nucleotide percentage.  Where Ti  = lung adenocarcinomas, observed and 276 

expected  (intron-normalized) missense mutations were calculated for each expressed gene as 277 
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in “Mutation rates in expressed and non-expressed genes,” above.  Replication time and 278 

chromatin accessibility of each gene were accessed from a published source (Lawrence et al. 279 

2013).  The %GC nucleotides of each gene was determined from each gene’s coding sequence.   280 

To determine these relationships before controlling via the intron mutation rate, an expected 281 

number of mutations was calculated for each gene assuming a uniform mutation rate, or E0(g): 282 

𝐸𝐸0(𝑔𝑔) = 𝐿𝐿𝑔𝑔 ∗
∑ 𝑚𝑚(𝛾𝛾)𝛾𝛾∈𝐺𝐺

∑ 𝐿𝐿𝛾𝛾𝛾𝛾∈𝐺𝐺
 283 

For both the intron-normalized expected and the uniform mutation rate expected, Each 284 

covariate score for expressed genes was plotted against the log2 observed / expected mutations 285 

of those genes, and a linear regression determined.   286 

 287 

Estimating the effects of transcription-coupled repair 288 

To estimate the effect of transcription-coupled repair, mutation rates were quantified in the 289 

transcribed and not-transcribed strands. For each missense mutation μ, define the starting base 290 

�𝐵𝐵𝜇𝜇0� and ending base �𝐵𝐵𝜇𝜇1�, and its indistinguishable complement with starting base 𝐵𝐵𝜇𝜇′0 and 291 

𝐵𝐵𝜇𝜇′1. There are six kinds of recognizable base-pair transitions, as some are indistinguishable from 292 

a mutation in the opposite strand.   293 

 294 

For G>T mutations in lung adenocarcinomas and C>T mutations in melanomas, mutation rates 295 

were calculated on a gene-by-gene basis in expressed and not-expressed genes.  296 

 297 

Define 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
𝛽𝛽  as the number of mutations in of the class β0 > β1 (e.g. C>T) in the transcribed 298 

(template) DNA strand of gene g in tumor type Ti, and 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
𝛽𝛽′  as the mutations in the class β’0 > β’1 299 

in the not-transcribed (coding) DNA strand of gene g in tumor type Ti: 300 
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𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
𝛽𝛽 = ���𝜇𝜇 ∶  𝜇𝜇 ∈ missense in 𝑔𝑔 in 𝑡𝑡 ∧ 𝐵𝐵𝜇𝜇0 = 𝛽𝛽0 ∧ 𝐵𝐵𝜇𝜇1 = 𝛽𝛽1��

𝑡𝑡∈𝑇𝑇𝑖𝑖

 301 

and 302 

𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
′𝛽𝛽 = ���𝜇𝜇 ∶  𝜇𝜇 ∈ missense in 𝑔𝑔 in 𝑡𝑡 ∧ 𝐵𝐵𝜇𝜇′0 = 𝛽𝛽0 ∧ 𝐵𝐵𝜇𝜇′1 = 𝛽𝛽1��

𝑡𝑡∈𝑇𝑇𝑖𝑖

 303 

Also define 𝑆𝑆𝑔𝑔
𝛽𝛽and 𝑆𝑆𝑔𝑔

′𝛽𝛽 as the number of sites that could mutate in the transcribed (template) 304 

DNA strand and not-transcribed (coding) DNA strand of gene g respectively, or 305 

𝑆𝑆𝑔𝑔
𝛽𝛽 = |{base 𝐵𝐵 ∶ 𝐵𝐵 ∈ 𝑔𝑔 ∧ 𝐵𝐵 = 𝛽𝛽0}| 306 

𝑆𝑆𝑔𝑔
′𝛽𝛽 = |{base 𝐵𝐵 ∶ 𝐵𝐵 ∈ 𝑔𝑔 ∧ 𝐵𝐵 = 𝛽𝛽′0}| 307 

Determine an expected number of mutations for each gene, and for each strand, by means of 308 

the gene’s relative non-coding mutation rate, the average mutational rate in expressed genes, 309 

and the length of the gene’s coding sequence of the base in question (for the template strand) 310 

or its complement (for the coding strand): 311 

𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖,𝛽𝛽) = 𝑛𝑛𝑛𝑛(𝑔𝑔) ∗
|𝐺𝐺|

∑ 𝑛𝑛𝑛𝑛(𝛾𝛾)𝛾𝛾∈𝐺𝐺
∗
∑ 𝑓𝑓𝛾𝛾,𝑇𝑇𝑖𝑖

𝛽𝛽 + 𝑓𝑓𝛾𝛾,𝑇𝑇𝑖𝑖
′𝛽𝛽

𝛾𝛾∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

∑ 𝑆𝑆𝛾𝛾
𝛽𝛽 + 𝑆𝑆𝛾𝛾

′𝛽𝛽
𝛾𝛾∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

∗ 𝑆𝑆𝑔𝑔
𝛽𝛽 312 

And: 313 

𝐸𝐸′(𝑔𝑔,𝑇𝑇𝑖𝑖 ,𝛽𝛽) = 𝑛𝑛𝑛𝑛(𝑔𝑔) ∗
|𝐺𝐺|

∑ 𝑛𝑛𝑛𝑛(𝛾𝛾)𝛾𝛾∈𝐺𝐺
∗
∑ 𝑓𝑓𝛾𝛾,𝑇𝑇𝑖𝑖

𝛽𝛽 + 𝑓𝑓𝛾𝛾,𝑇𝑇𝑖𝑖
′𝛽𝛽

𝛾𝛾∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

∑ 𝑆𝑆𝛾𝛾
𝛽𝛽 + 𝑆𝑆𝛾𝛾

′𝛽𝛽
𝛾𝛾∈𝐺𝐺𝑛𝑛,𝑇𝑇𝑖𝑖

∗ 𝑆𝑆𝑔𝑔
′𝛽𝛽 314 

 315 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129205doi: bioRxiv preprint 

https://doi.org/10.1101/129205
http://creativecommons.org/licenses/by-nd/4.0/


15 
 

To test the relative mutation rates of the non-transcribed (coding) strand,  316 

�
𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
′𝛽𝛽

𝐸𝐸′(𝑔𝑔,𝑇𝑇𝑖𝑖,𝛽𝛽) :𝑔𝑔 ∈ 𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖�  319 

and 317 

�
𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
′𝛽𝛽

𝐸𝐸′(𝑔𝑔,𝑇𝑇𝑖𝑖,𝛽𝛽) :𝑔𝑔 ∈ 𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖� 320 

were compared with a two-tailed Wilcoxon Rank-Sum test. 318 

 321 

The percent depletion of mutations in expressed genes remaining after controlling for 322 

transcription coupled repair and noncoding mutation rates was computed by comparing the 323 

mutation rate of the not-transcribed strand of expressed genes and the mutation rate of  the 324 

not-transcribed strand of not expressed genes, or: 325 

100 ∗ �1−
∑ 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖

′𝛽𝛽
𝑔𝑔∈𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖

∑ 𝐸𝐸′(𝑔𝑔,𝑇𝑇𝑖𝑖,𝛽𝛽)𝑔𝑔∈𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖

∗  
∑ 𝐸𝐸′(𝑔𝑔,𝑇𝑇𝑖𝑖 ,𝛽𝛽)𝑔𝑔∈𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖

∑ 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
′𝛽𝛽

𝑔𝑔∈𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖

� 326 

For each observable transition β (e.g. G>A), where the starting base is defined as β0 (or its 327 

complement β’0), and the ending base as β0 or its complement β’0, the percent depletion of 328 

mutations in expressed genes was calculated in each strand.  For the not-transcribed (coding) 329 

strand, this rate in tumor type Ti is:  330 

100 ∗ �1−
∑ 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖

′𝛽𝛽
𝑔𝑔∈𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖

∑ 𝐸𝐸′(𝑔𝑔,𝑇𝑇𝑖𝑖,𝛽𝛽)𝑔𝑔∈𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖

∗  
∑ 𝐸𝐸′(𝑔𝑔,𝑇𝑇𝑖𝑖 ,𝛽𝛽)𝑔𝑔∈𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖

∑ 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
′𝛽𝛽

𝑔𝑔∈𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖

� 331 

While for the transcribed (template) strand, this rate in tumor type Ti is:  332 

100 ∗ �1−
∑ 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖

𝛽𝛽
𝑔𝑔∈𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖

∑ 𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖,𝛽𝛽)𝑔𝑔∈𝐺𝐺𝑒𝑒, 𝑇𝑇𝑖𝑖

∗  
∑ 𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖,𝛽𝛽)𝑔𝑔∈𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖

∑ 𝑓𝑓𝑔𝑔,𝑇𝑇𝑖𝑖
𝛽𝛽

𝑔𝑔∈𝐺𝐺𝑛𝑛, 𝑇𝑇𝑖𝑖

� 333 

 334 
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Finding conservative amino acid transitions from cancer mutation data 335 

To determine the strength of selection on individual amino acid (a.a.) substitutions, a.a. 336 

substitution rates in lung adenocarcinomas from TCGA were examined. T is defined as the set of 337 

sequenced lung adenocarcinomas (see Tumor mutation data, above), and G is the set of 338 

sequenced genes. 339 

Where 340 

𝑅𝑅(𝑔𝑔, 𝑡𝑡) = {RNA sequencing counts (see RNA data)for gene 𝑔𝑔 in tumor  𝑡𝑡 ∧ 𝑔𝑔 ∈ 𝐺𝐺 ∧ 𝑡𝑡 ∈ 𝑇𝑇} 341 

𝑀𝑀(𝑔𝑔, 𝑡𝑡) = {missense mutations in 𝑔𝑔 in 𝑡𝑡}, 342 

𝐿𝐿𝑔𝑔 = length of g in amino acids 344 

define expressed genes as: 343 

𝐺𝐺𝑒𝑒 = {𝑔𝑔 ∶  𝑔𝑔 ∈ 𝐺𝐺 ∧ |{𝑡𝑡 ∶  𝑅𝑅(𝑔𝑔, 𝑡𝑡)  > 8 ∧ 𝑡𝑡 ∈ 𝑇𝑇 }| > 0.95 |𝑇𝑇|} 345 

and not expressed genes as 346 

𝐺𝐺𝑛𝑛 = {𝑔𝑔 ∶  𝑔𝑔 ∈ 𝐺𝐺 ∧  |{𝑡𝑡 ∶  𝑅𝑅(𝑔𝑔, 𝑡𝑡) < 8 ∧ 𝑡𝑡 ∈ 𝑇𝑇 }| > 0.95 |𝑇𝑇|} 347 

Call 348 

𝐺𝐺𝑒𝑒′ = 𝐺𝐺𝑒𝑒 ∖  �𝑔𝑔 ∶ 𝑔𝑔 ∈ 𝐺𝐺 ∧
∑ |𝑀𝑀(𝑔𝑔, 𝑡𝑡)|𝑡𝑡∈𝑇𝑇

𝐿𝐿𝑔𝑔

∑ ∑ |𝑀𝑀(𝑔𝑔, 𝑡𝑡)|𝑔𝑔∈𝐺𝐺𝑡𝑡∈𝑇𝑇

∑ 𝐿𝐿𝑔𝑔𝑔𝑔∈𝐺𝐺
� > 2 � 350 

Determine the matrix of transitions between each a.a. in expressed genes 349 

𝑆𝑆𝑒𝑒′,𝑖𝑖𝑖𝑖  = � ���𝑚𝑚 ∶ 𝑚𝑚 ∈ 𝑀𝑀(𝑔𝑔, 𝑡𝑡)  ∧  starting a.a. of 𝑚𝑚 = a.a.𝑖𝑖  ∧ ending a.a. of 𝑚𝑚 = a.a.𝑗𝑗�
𝑡𝑡∈𝑇𝑇

�
𝑔𝑔∈𝐺𝐺𝑒𝑒′

 351 

and the matrix of transitions between each a.a. in not expressed genes 352 

𝑆𝑆𝑛𝑛,𝑖𝑖𝑖𝑖  = � ���𝑚𝑚 ∶ 𝑚𝑚 ∈ 𝑀𝑀(𝑔𝑔, 𝑡𝑡)  ∧  starting a.a. of 𝑚𝑚 = a.a.𝑖𝑖  ∧ ending a.a. of 𝑚𝑚 = a.a.𝑗𝑗�
𝑡𝑡∈𝑇𝑇

�
𝑔𝑔∈𝐺𝐺𝑛𝑛

  353 

(0 < 𝑖𝑖 ≤ 𝑗𝑗 ≤ 20) 354 
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Where 355 

𝑐𝑐(𝐺𝐺, 𝑥𝑥) = ��{codon 𝑦𝑦 ∶ codon 𝑦𝑦 ∈ 𝑔𝑔 ∧  codon 𝑦𝑦 = 𝑥𝑥}
𝑔𝑔∈𝐺𝐺

� 356 

And  357 

𝑆𝑆𝑝𝑝 = �𝑥𝑥 ∶ 𝑥𝑥 ∈ codons ∧ 𝑥𝑥 ∈ codons that code for a.a.𝑖𝑖 ∧ 𝑥𝑥 ∈ �codons 1 missense from a.a.𝑗𝑗�� 358 

Compute the matrix of starting codon counts in expressed genes: 359 

𝐶𝐶𝑒𝑒′(𝑖𝑖, 𝑗𝑗) = � 𝑐𝑐(𝐺𝐺𝑒𝑒′ , 𝑥𝑥)
𝑥𝑥∈𝑆𝑆𝑝𝑝

 360 

and compute the matrix of starting codon counts in not-expressed genes: 361 

𝐶𝐶𝑛𝑛 (𝑖𝑖, 𝑗𝑗) = � 𝑐𝑐(𝐺𝐺𝑛𝑛,𝑥𝑥)
𝑥𝑥∈𝑆𝑆𝑝𝑝

 362 

for (0 < 𝑖𝑖 ≤ 𝑗𝑗 ≤ 20), 363 

giving 𝑆𝑆𝑒𝑒′ , 𝑆𝑆𝑛𝑛,𝐶𝐶𝑒𝑒′ , and 𝐶𝐶𝑛𝑛 a size of 20 x 20. 364 

Compute the average depletion of substitutions 𝑟𝑟 such that 365 

𝑟𝑟 =
∑𝑆𝑆𝑛𝑛
∑𝐶𝐶𝑛𝑛

∗
∑𝐶𝐶𝑒𝑒′

∑ 𝑆𝑆𝑒𝑒′
 366 

Use r to calculate an expected rate for each amino acid substitution in expressed genes, or  367 

𝐸𝐸𝑒𝑒′,𝑖𝑖𝑖𝑖 =  
𝑆𝑆𝑒𝑒′,𝑖𝑖𝑖𝑖 𝑟𝑟 + 𝑆𝑆𝑛𝑛,𝑖𝑖𝑖𝑖

𝑟𝑟
×

𝐶𝐶𝑒𝑒′,𝑖𝑖𝑖𝑖
𝐶𝐶𝑒𝑒′,𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑛𝑛,𝑖𝑖𝑖𝑖

 368 

and in not-expressed genes 369 

𝐸𝐸𝑛𝑛,𝑖𝑖𝑖𝑖 = �𝑆𝑆𝑒𝑒′,𝑖𝑖𝑖𝑖 𝑟𝑟 +  𝑆𝑆𝑛𝑛,𝑖𝑖𝑖𝑖�  ×
𝐶𝐶𝑛𝑛,𝑖𝑖𝑖𝑖

𝐶𝐶𝑒𝑒′,𝑖𝑖𝑗𝑗 + 𝐶𝐶𝑛𝑛,𝑖𝑖𝑖𝑖
 370 

Using the expected and observed matrices, calculate a χ2 statistic for each substitution, stored 371 

as matrix X such that 372 

𝑋𝑋𝑖𝑖𝑖𝑖 =
�𝑆𝑆𝑒𝑒′,𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑒𝑒′,𝑖𝑖𝑖𝑖�

2

𝐸𝐸𝑒𝑒′,𝑖𝑖𝑖𝑖
+
�𝑆𝑆𝑛𝑛,𝑖𝑖𝑖𝑖 − 𝐸𝐸𝑛𝑛,𝑖𝑖𝑖𝑖�

2

𝐸𝐸𝑛𝑛,𝑖𝑖𝑖𝑖
 373 
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Use X to compute p values with the χ2 test with one degree of freedom, giving matrix P, where 374 

Pi,j = the p value calculated from Xij 375 

Also calculate matrix F where 376 

𝐹𝐹𝑖𝑖𝑖𝑖 =
𝑆𝑆𝑒𝑒′,𝑖𝑖𝑖𝑖
𝐶𝐶𝑒𝑒′,𝑖𝑖𝑖𝑖

×
𝐶𝐶𝑛𝑛,𝑖𝑖𝑖𝑖

𝑆𝑆𝑛𝑛,𝑖𝑖𝑖𝑖
 377 

a.a.i and a.a.j are called substitutable if  378 

𝐹𝐹𝑖𝑖𝑖𝑖 ≤
1
𝑟𝑟
∧ 𝑃𝑃𝑖𝑖𝑖𝑖 ≤ 0.251 ∧ 𝐹𝐹𝑗𝑗𝑗𝑗 ≤

1
𝑟𝑟
∧ 𝑃𝑃𝑗𝑗𝑗𝑗 ≤ 0.251 379 

 380 

Finding conservative amino acid transitions from BLOSUM 381 

Substitutable amino acids from BLOSUM 90 were identified as pairs of amino acids with 382 

BLOSUM log-odds scores > 0.  The significance of the overlap between substitutable amino acids 383 

identified from BLOSUM and those identified in tumors was calculated with the CDF of the 384 

hypergeometric distribution.      385 

 386 

Identifying genes under purifying selection in multiple tumor types 387 

To find genes under purifying selection in multiple tumor types, data from melanomas, lung 388 

adenocarcinomas, colorectal adenocarcinomas, liver hepatocellular carcinomas, gliomas, and 389 

breast invasive carcinomas were used (forming set T).  First, genes were only included in the 390 

analysis if they were called expressed in all tumor types, where  391 

𝐺𝐺𝑒𝑒 = {𝑔𝑔:𝑔𝑔 ∈ 𝐺𝐺 ∧ |{𝑇𝑇𝑖𝑖 ∈ 𝑇𝑇 ∶  |{𝑡𝑡 ∶ 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 ∧ 𝑅𝑅(𝑔𝑔, 𝑡𝑡) > 8}| > 0.95 ∗ |𝑇𝑇𝑖𝑖|}| > |𝑇𝑇|} 392 

An expected number of mutations was computed for each gene, or E(g), based on each gene’s 393 

non-coding / intron mutation rate in tumors subjected to whole-genome sequencing(Lawrence 394 

et al. 2013): 395 
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𝐸𝐸(𝑔𝑔) = � 𝑛𝑛𝑛𝑛(𝑔𝑔) ∗
|𝐺𝐺|

∑ 𝑛𝑛𝑛𝑛(𝛾𝛾)𝛾𝛾∈𝐺𝐺
∗
∑ 𝑚𝑚(𝛾𝛾,𝑇𝑇𝑖𝑖)𝛾𝛾∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∑ 𝐿𝐿𝛾𝛾𝛾𝛾∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∗ 𝐿𝐿𝑔𝑔
𝑇𝑇𝑖𝑖∈ 𝑇𝑇

 396 

 397 

Where Lg = the length of gene g in amino acids, nm(g)  = the non-coding mutation rate for gene 398 

g calculated from published whole-genome sequencing of tumor samples (Lawrence et al. 399 

2013), and  400 

𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖) = ��� missense mutations in 𝑔𝑔 in 𝑡𝑡
𝑡𝑡∈𝑇𝑇𝑖𝑖

��.   403 

In this way, recurrent mutations (the same missense mutation observed more than once) within 401 

each tumor type were dropped from the analysis.   402 

The expected number of mutations was compared to observed number of mutations, where 404 

𝑂𝑂(𝑔𝑔) = �𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝑇𝑇𝑖𝑖∈𝑇𝑇

 405 

Genes were identified as under purifying selection (N) in these tumor types if they passed a p 406 

value and fold change cutoff: 407 

𝑁𝑁 =  �𝑔𝑔:𝑔𝑔 ∈ 𝐺𝐺𝑒𝑒  ∧
𝑂𝑂(𝑔𝑔)
𝐸𝐸(𝑔𝑔) <

1
2
∧ �

�𝐸𝐸(𝑔𝑔)�𝑥𝑥

𝑥𝑥!
𝑒𝑒−�𝐸𝐸(𝑔𝑔)�

𝑥𝑥=𝑂𝑂(𝑔𝑔)

𝑥𝑥=0
< 0.01� 408 

 409 

Identifying gene sets under purifying selection in multiple tumor types 410 

Gene sets were obtained from the Molecular Signature Database (Subramanian et al. 2005) 411 

version 5.1; sets examined were from the hallmark, canonical pathways, BioCarta, KEGG, 412 

Reactome, and GO subsets of the Molecular Signature Database, totaling 2834 sets, making S�, 413 

with set S ∈ S�.  To find sets under purifying selection, mutations in these sets were examined in 414 

the melanoma, lung adenocarcinoma, and colorectal adenocarcinoma tumor types {Ti ∈ T}.  For 415 

each tumor type, expressed genes were defined as genes  416 
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𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖 = �𝑔𝑔 ∶  𝑔𝑔 ∈ 𝐺𝐺 ∧ ��𝑡𝑡 ∶  𝑅𝑅𝑔𝑔,𝑡𝑡  > 8 ∧ 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 �� > 0.95 |𝑇𝑇 = 𝑇𝑇𝑖𝑖 |� 420 

Sets were filtered so that they only contained genes with mutations in these tumors, so 417 

�(𝑔𝑔 ∈ 𝑆𝑆)  ⊆ 𝐺𝐺
𝑆𝑆∈𝑆̃𝑆

 421 

and so that 418 

𝑆̃𝑆 = �𝑆𝑆 ∶  𝑆𝑆 ∈ 𝑆𝑆̅ ∧ 10 < |𝑆𝑆| < 400 ∧ ∀ 𝑇𝑇𝑖𝑖 ∈ 𝑇𝑇: 
��𝑔𝑔 ∈ 𝑆𝑆 ∩ 𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖��

|𝑆𝑆| > 0.5� 422 

 419 

An expected number of mutations was computed for each set, where 423 

𝐸𝐸(𝑆𝑆) = � � 𝑛𝑛𝑛𝑛(𝑔𝑔) ∗
|𝐺𝐺|

∑ 𝑛𝑛𝑛𝑛(𝛾𝛾)𝛾𝛾∈𝐺𝐺
∗
∑ 𝑚𝑚(𝛾𝛾,𝑇𝑇𝑖𝑖)𝛾𝛾∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∑ 𝐿𝐿𝛾𝛾𝛾𝛾∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∗ 𝐿𝐿𝑔𝑔
𝑇𝑇𝑖𝑖∈ 𝑇𝑇𝑔𝑔∈𝑆𝑆

 424 

Where Lg = the length of gene g in amino acids, nm(g)  = the non-coding mutation rate for gene 425 

g calculated from published whole-genome sequencing of tumor samples (Lawrence et al. 426 

2013), and  427 

𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖) = ���missense mutations in 𝑔𝑔 in 𝑡𝑡
𝑡𝑡∈𝑇𝑇𝑖𝑖

�� 428 

An observed number of mutations was also computed for each set, or O(S), where  429 

𝑂𝑂(𝑆𝑆) = � � 𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝑇𝑇𝑖𝑖∈𝑇𝑇𝑔𝑔∈𝑆𝑆

 430 

The difference between the observed and expected numbers of mutations for each set was 431 

determined through the CDF of the Poisson distribution, where 432 

𝐷𝐷(𝑆𝑆) =  �
�𝐸𝐸(𝑆𝑆)�𝑥𝑥

𝑥𝑥!
𝑒𝑒−�𝐸𝐸(𝑆𝑆)�

𝑥𝑥=𝑂𝑂(𝑆𝑆)

𝑥𝑥=0
 433 

To determine the significance of the depletion of mutations for each set, 1*104 random sets  434 

(𝑆𝑆𝑛𝑛𝑅𝑅) were generated for each set size, drawing from those genes in the union of all gene sets, so 435 

that  436 
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∀𝑆𝑆 ∈ 𝑆𝑆𝑛𝑛𝑅𝑅: |𝑆𝑆| = 𝑛𝑛 ∧ |𝑆𝑆𝑛𝑛𝑅𝑅| = 1 ∗ 104 ∧ � 𝑔𝑔 ∈ 𝑆𝑆
𝑆𝑆∈𝑆𝑆𝑛𝑛𝑅𝑅

⊆�𝑔𝑔 ∈ 𝑆𝑆
𝑆𝑆∈𝑆̃𝑆

 437 

The significance of each set’s depletion in mutation was evaluated by computing a p value, or 438 

p(S), based on the depletion of random sets of the same size, so that. 439 

𝑝𝑝(𝑆𝑆) = 𝑃𝑃𝑃𝑃 ��𝐷𝐷(𝜎𝜎) ∶  𝜎𝜎 ∈ 𝑆𝑆|𝑆𝑆|
𝑅𝑅 � ≤ 𝐷𝐷(𝑆𝑆)� 440 

As many sets were depleted beyond even 104 random sets, an estimated p value was computed 441 

by regressing the randomly sampled sets.  For each size set, the –log10 quantiles of those 442 

random sets with p(S) < 0.01 were fit with a linear regression vs the –log10(percentiles) that at 443 

which the quantiles were evaluated.  This regression, generating for each set size slope b and 444 

constant c, was used to compute the revised p values, P(S), where 445 

𝑃𝑃(𝑆𝑆) = 𝑏𝑏 ∗ 𝑝𝑝(𝑆𝑆) + 𝑐𝑐 446 

To correct for multiple hypothesis testing, a q-value was calculated using the method of 447 

Benjamini and Hochberg. (Benjamini and Hochberg 1995) 448 

 449 

Essentiality analysis of genes under purifying selection 450 

The impact on cancer cell line growth of CRISPR-mediated knockout has been previously 451 

published (Hart et al. 2015; Wang et al. 2015; Tzelepis et al. 2016).   In each of these three 452 

published pooled CRISPR screens, the investigators used differing methods to call whether a 453 

gene was essential.   In each screen, a gene was called essential or not essential in each tested 454 

cell line.  From this data, for each gene g, a score C(g) was recorded, or the proportion of tested 455 

cell lines in which this gene was deemed essential, based on the published results, from these 456 

three screens.  457 

Gene sets under purifying selection across all tumor types were identified as above (“Identifying 458 

gene sets under purifying selection in all tumor types”).  Sets under purifying selection (Sp) were 459 
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defined to be sets with q-values < 0.05, and an observed / expected number of mutations <0.8.  460 

Genes under purifying selection (Gp) were defined as the union of genes in sets under purifying 461 

selection (Sp),  or 𝐺𝐺𝑝𝑝 = ⋃ 𝑔𝑔 ∈ 𝑆𝑆𝑆𝑆∈𝑆𝑆𝑝𝑝 ;   𝑆𝑆𝑝𝑝 ⊂  𝑆̃𝑆, where S� represents those sets examined from the 462 

Molecular Signature Database (see above).  Genes under purifying selection (Gp) was then 463 

compared to genes not under purifying selection (Gnp), where 𝐺𝐺𝑛𝑛𝑛𝑛 = ⋃ 𝑔𝑔 ∈ 𝑆𝑆𝑆𝑆∈𝑆𝑆𝑛𝑛𝑛𝑛 ;   𝑆𝑆𝑛𝑛𝑛𝑛 = 𝑆̃𝑆 ∖464 

𝑆𝑆𝑝𝑝.    465 

The essentiality of genes under purifying selection (Gp) was compared to the essentiality of 466 

genes not under purifying selection (Gnp); the essentiality of each gene was defined based on its 467 

score C(g), as defined above, representing the proportion of tested cell lines in which this gene 468 

was deemed essential.  To calculate the significance of the difference in essentiality between 469 

these groups of genes, 470 

�𝐶𝐶(𝑔𝑔) ∶ 𝑔𝑔 ∈ 𝐺𝐺𝑝𝑝� and �𝐶𝐶(𝑔𝑔)  ∶ 𝑔𝑔 ∈ 𝐺𝐺𝑛𝑛𝑛𝑛� 472 

 were compared with a two-tailed Wilcoxon Rank-Sum test.  471 

To determine the utility of purifying selection for finding essential genes, a receiver-operator 473 

characteristic curve was generated using genes ranked by their revised P values (see above).  474 

Each gene was given the lowest revised P value of the gene sets examined in which it was part.  475 

Genes that were called true positives (essential) were defined as genes that were deemed  476 

essential in > 5 / 7 examined cell lines in a pooled CRIPSR screen(Tzelepis et al. 2016). 477 

 478 

Identifying genes under tumor type-specific purifying selection 479 

First, genes were only included in this analysis if they were not called unexpressed in all tumor 480 

types, where  481 

𝐺𝐺𝑒𝑒 = 𝐺𝐺/ {𝑔𝑔:𝑔𝑔 ∈ 𝐺𝐺 ∧ |{𝑇𝑇𝑖𝑖 ∈ 𝑇𝑇 ∶  |{𝑡𝑡 ∶ 𝑡𝑡 ∈ 𝑇𝑇𝑖𝑖 ∧ 𝑅𝑅(𝑔𝑔, 𝑡𝑡) < 8}| > 0.95 ∗ |𝑇𝑇𝑖𝑖|}| > |𝑇𝑇|} 482 
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Genes with an increased mutation rate across tumors were also filtered out.  An expected 483 

number of mutations was computed for each gene, or En(g), based on each gene’s non-coding / 484 

intron mutation rate in tumors subjected to whole-genome sequencing(Lawrence et al. 2013): 485 

𝐸𝐸𝑛𝑛(𝑔𝑔) = � 𝑛𝑛𝑛𝑛(𝑔𝑔) ∗
|𝐺𝐺|

∑ 𝑛𝑛𝑛𝑛(𝛾𝛾)𝛾𝛾∈𝐺𝐺
∗
∑ 𝑚𝑚(𝛾𝛾,𝑇𝑇𝑖𝑖)𝛾𝛾∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∑ 𝐿𝐿𝛾𝛾𝛾𝛾∈𝐺𝐺𝑒𝑒,𝑇𝑇𝑖𝑖

∗ 𝐿𝐿𝑔𝑔
𝑇𝑇𝑖𝑖∈ 𝑇𝑇

 486 

Where Lg = the length of gene g in amino acids, nm(g)  = the non-coding mutation rate for gene 487 

g calculated from published whole-genome sequencing of tumor samples (Lawrence et al. 488 

2013), and  489 

𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖) = ���missense mutations in 𝑔𝑔 in 𝑡𝑡
𝑡𝑡∈𝑇𝑇𝑖𝑖

�� 490 

 491 

To identify genes under negative selection in a particular tumor type relative to other tumors, a 492 

different expected value was computed based on the mutation rate in all other tumors. 493 

For tumor type Ti ∈ T where T = {T1, T2, … T11} or all tumor types listed above in Tumor Mutation 494 

Data, so Ti ∩ Tj = ∅; and for gene g ∈ G where G = all sequenced genes \ O, where 495 

𝑀𝑀𝑔𝑔� (𝑡𝑡,𝑘𝑘) = �top 𝑘𝑘 genes ranked by 𝑚𝑚(𝑔𝑔, 𝑡𝑡) 𝐿𝐿𝑔𝑔⁄  | 𝑇𝑇𝑖𝑖� 496 

Ο = ��𝑔𝑔𝑖𝑖 =  𝑀𝑀𝑔𝑔� (𝑇𝑇𝑖𝑖, 10)� 
𝑡𝑡∈𝑇𝑇𝑖𝑖

∪ �𝑔𝑔 ∶ 𝑔𝑔 ∈ 𝐺𝐺𝑒𝑒  ∶  
∑ 𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)𝑇𝑇𝑖𝑖∈𝑇𝑇

𝐸𝐸𝑛𝑛(𝑔𝑔) > 2.5� 497 

Compute the expected number of missense mutations in g in Ti , or  498 

𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖) =  �𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝑔𝑔∈𝐺𝐺

 ×  � � 𝑚𝑚(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝜏𝜏∈(𝑇𝑇∖𝑇𝑇𝑖𝑖)

� � 𝑚𝑚(𝛾𝛾,𝑇𝑇𝑖𝑖)
𝜏𝜏∈(𝑇𝑇∖𝑇𝑇𝑖𝑖)𝛾𝛾∈𝐺𝐺

� � 499 

The calculated expected number of mutations for each gene was used to identify those genes 500 

under negative selection in one tumor type relative to the others (N).   Genes were called as 501 
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under negative selection if they passed a fold-change and P value (calculated with the Poisson 502 

distribution) cutoff: 503 

𝑁𝑁 =  �𝑔𝑔:𝑔𝑔 ∈ 𝐺𝐺 ∧
𝑚𝑚(𝑔𝑔, 𝑡𝑡)
𝐸𝐸𝑔𝑔,𝑡𝑡

> 2 ∧ �
𝐸𝐸𝑔𝑔,𝑡𝑡

𝑥𝑥

𝑥𝑥!
𝑒𝑒−𝐸𝐸𝑔𝑔,𝑡𝑡

𝑥𝑥=𝑚𝑚𝑔𝑔,𝑡𝑡

𝑥𝑥=0
< 0.01� 504 

 505 

 506 

Identifying pathways enriched in genes under purifying selection in specific tumor types 507 

Pathways under purifying selection were identified from the list of genes under purifying 508 

selection generated after filtering out recurrent mutations as detailed above.  The overlap 509 

between genes under purifying selection and a database of pathway gene sets (NDEx) (Pratt et 510 

al. 2015) was evaluated with a CDF of the hypergeometric distribution.  511 

 512 

Identifying gene sets under purifying selection in specific tumor types 513 

Gene sets under purifying selection in specific tumor types were identified the same way as 514 

those gene sets under purifying selection in multiple tumor types (as detailed above), with the 515 

following differences.  First, the expected number of mutations in each gene was estimated 516 

based on comparing one tumor type to other tumor types, as in “identifying genes under tumor 517 

type-specific selection,” above, where  518 

𝐸𝐸(𝑔𝑔,𝑇𝑇𝑖𝑖) =  �𝑀𝑀(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝑔𝑔∈𝐺𝐺

 ×  � � 𝑀𝑀(𝑔𝑔,𝑇𝑇𝑖𝑖)
𝜏𝜏∈(𝑇𝑇∖𝑇𝑇𝑖𝑖)

� � 𝑀𝑀(𝛾𝛾,𝑇𝑇𝑖𝑖)
𝜏𝜏∈(𝑇𝑇∖𝑇𝑇𝑖𝑖)𝛾𝛾∈𝐺𝐺

� � 519 

 T = {melanoma, lung adenocarcinoma, and colorectal adenocarcinoma} 520 

All other analysis of the depletion of mutations, gene set filtering, statistical and multiple 521 

hypothesis control was identical to “Identifying gene sets under purifying selection in multiple 522 

tumor types,” above.   523 
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For melanomas, gene sets were called to be under purifying selection if they had a q-value < 524 

0.05 and an observed / expected mutation ratio < 0.5.   525 

For lung adenocarcinomas, gene sets were called to be under purifying selection if they had a q-526 

value < 0.1 and an observed / expected mutation ratio < 0.55.   527 

 528 

Estimating the impact of sequencing more tumors 529 

To evaluate the number of additional hits (individual genes identified as under purifying 530 

selection) we might find with more sequenced tumors, we down-sampled mutations by steps 531 

equivalent to the mutations of 40 average tumors in each tumor type, with 1000 replicates per 532 

down-sampling.  The sampling was started from the dropping mutations equal to 80 random 533 

tumors and continued until the first step before the average number of hits returned was ≤ 1.  534 

Down-sampled data were fit to a four-parameter logistic curve (R2 ≥ 0.99): 535 

𝑓𝑓(𝑥𝑥) = 𝐴𝐴 +
(𝐵𝐵 − 𝐴𝐴)

1 + 10(𝐶𝐶−𝑥𝑥)×𝐷𝐷 539 

These fits were used to predict the number of new hits that would be found by steps of 10 536 

additional sequenced tumors, and used to find an optimal distribution of sequenced tumors 537 

across tumor types to maximize the number of new hits. 538 

 540 

Determining the fraction of essential genes under purifying selection  541 

Genes under purifying selection across tumor types (Gp) were defined as above, the union of 542 

genes in sets under purifying selection.  Genes under increased purifying selection in melanomas 543 

(Gp
M) were defined similarly as the union of genes in sets under increased purifying selection in 544 

melanomas.  Sets under increased purifying selection in melanomas were defined, above, in 545 

“Identifying gene sets under purifying selection in specific tumor types.”  Gene sets were called 546 
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to be under increased purifying selection in melanomas if they had a q-value < 0.05 and an 547 

observed / expected mutation ratio < 0.5.      548 

Essential genes were identified from three CRISPR pooled screens (Hart et al. 2015; Wang et al. 549 

2015; Tzelepis et al. 2016), as discussed in “Essentiality analysis of genes under purifying 550 

selection,” above.  In each screen, a gene was called essential or not essential in each tested cell 551 

line.  From this data, for each gene g, a score Ci(g) was recorded for screen i, or the number of 552 

tested cell lines in which this gene was deemed essential, based on the published results, in 553 

each screen.  For each screen i, a gene was deemed essential if Ci(g) >  the number of cell lines 554 

tested in screen i - 2.   The set of genes deemed essential in each screen i was then termed Ges
i.   555 

Ges
i was also filtered so that it only included genes that were members of the sets in S� (the 556 

filtered gene sets from the Molecular Signature Database, see above), as those were the only 557 

genes that could be called under purifying selection. 558 

The proportion of genes in  Ges
i  that were under selection (members of Gp or Gp

M) was then 559 

assessed.  560 

 561 

Code Availability 562 

The code used in these analyses is available on request of the authors. 563 
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