
 1

Auxin Response Factors – output control in auxin biology 

 

Mark Roosjen*, Sébastien Paque* and Dolf Weijers# 

Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, the 

Netherlands 

*These authors contributed equally  

# Correspondence: dolf.weijers@wur.nl 

 

Abstract 

The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if 

not all, of these processes are mediated by changes in gene expression. Auxin acts on gene 

expression through a short nuclear pathway that converges upon the activation of a family of 

DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the 

effector of auxin response and translate the chemical signal to the regulation of a defined set of 

genes. Given the limited number of dedicated components in auxin signaling, distinct properties 

among the ARF family likely contributes to the establishment of multiple unique auxin responses 

in plant development. In the two decades following the identification of the first ARF in 

Arabidopsis much has been learnt about how these transcription factors act, and how they generate 

unique auxin responses. Progress in genetics, biochemistry, genomics and structural biology have 

helped to develop mechanistic models for ARF action. However, despite intensive efforts, many 

central questions are yet to be addressed. In this review we highlight what has been learnt about 

ARF transcription factors, and identify outstanding questions and challenges for the near future. 
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In the past decade, the auxin signaling pathway that leads to gene expression responses has 

been characterized in detail (Weijers and Wagner, 2016). The core of the auxin pathway, which 

takes place in the nucleus, is centered around three different factors (Figure 1). The pathway relies 

on the inhibiting role of Aux/IAAs, inhibitors of the Auxin Response transcription Factors (ARFs) 

that allow auxin-dependent gene expression. To unlock the system, auxin binds directly to the 

SCF (TIR1/AFB) ubiquitin ligase and hence increases the affinity for Aux/IAAs proteins, leading 

to their subsequent degradation by the 26S proteasome. Released from Aux/IAA inhibition, ARFs 

can then modulate auxin-dependent gene transcription. Based on this model, ARFs are considered 

as the output of the nuclear auxin pathway. 

 

To date, these three signaling components appear to be sufficient to trigger nuclear auxin 

signaling in a heterologous system (Pierre-Jerome et al., 2014). The fact that these three 

components belong to multigene families offers some explanations for how such a simple pathway 

can control such a wide array of different developmental processes. Importantly, there may be 

significant functional specialization among ARFs. However, the precise mechanisms that generate 

dynamics and specificity to auxin output are largely unknown, but the community is currently 

addressing this challenge. This review will focus on the effectors of the nuclear auxin pathway in 

Arabidopsis. Given their position in the auxin pathway, we focus our discussion on the mode of 

action of the ARFs. Recent insights in the past years have allowed the community to see these 

transcription factors in a new light. This review will give a comprehensive overview of the work 

that has been done and will raise questions that need to be tackled in the future. 

 

Domain organization of ARF transcription factors 

 

The Arabidopsis genome encodes 23 ARFs that fall into three subclasses called A, B and 

C. Importantly, only few loss of function mutants show an obvious growth phenotype, and double 

mutants have revealed gene redundancy between close relatives (Okushima et al., 2005). 

However, a combination of promotor-swap, misexpression and loss-of-function approaches 

suggested that ARFs are not interchangeable and lead to specific phenotypes (Rademacher et al., 

2011, 2012). Most ARFs share a similar topology with three conserved protein domains and the 

properties of these need to be understood in detail. Here, the three representative domains will be 

introduced separately. 

  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129122doi: bioRxiv preprint 

https://doi.org/10.1101/129122
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

All ARFs possess at their N terminus a conserved DNA binding domain (DBD) 

(Okushima et al., 2005; Boer et al., 2014). Surprisingly, a phylogenetic tree using only DBD 

protein sequences appears similar to that using full-length protein sequences (Boer et al., 2014). 

This suggests that some functional specificities could be provided by this domain. Crystal 

structures of the DBDs of ARF1 and ARF5 revealed an unique 3D conformation of the DBD and 

highlight the presence of three different subdomains: a B3 subdomain showing similarity with the 

DNA-contacting domain of bacterial endonucleases, a dimerization domain (DD) allowing ARF 

dimerization and a Tudor like ancillary domain (AD) of unknown function which might be 

involved in an interaction with the DD. The DBD of ARFs fulfils a critical role for a transcription 

factor:  Recognition of a DNA motif, called the auxin responsive element (AuxRE). In addition, 

the DBD allows dimerization of ARFs that mediates biological activity. 

 

Specific DNA binding through the DNA-binding domain 

One of the functions of a transcription factor is to bind DNA with sequence specificity. 

The B3 subdomain is involved in the recognition of the ARF-specific AuxRE DNA motif. The 

crystal structures of the DBD of ARF1 and ARF5 homodimers, as well as the complex of ARF1 

DBD with DNA allowed to visualize the mode of protein-DNA interaction. This ARF-DNA 

crystal confirmed results obtained two decades ago when domains involved in ARF DNA binding 

had been discovered (Ulmasov et al., 1997a) and shows how amino acids in the DBD interact with 

the DNA binding motif TGTCTC (Boer et al., 2014). Mutations in these DNA-interacting amino 

acids indeed affect their DNA binding properties and their biological activity. 

The canonical TGTCTC was originally identified in promotors of auxin-responsive genes 

in pea and soybean, and was shown to mediate ARF-activated gene expression (Ulmasov et al., 

1995, 1997a, 1999a). In the past few years, different techniques have broadened the spectrum of 

known AuxREs. For example, protein-binding microarrays (PBMs) showed that the original 

AuxRE was not the sequence with the highest ARF-binding affinity, and instead identified the 

TGTCGG element as a high-affinity binding site (Boer et al., 2014; Franco-Zorrilla et al., 2014). 

Likewise, TGTCGG also appeared as a representative DNA binding motif of ARF2 and ARF5 in 

a “cistrome” analysis that measured in vitro binding to genomic fragments (O’Malley et al., 2016). 

  

This higher affinity for TGTCGG has been translated into an optimized artificial auxin 

response reporter where the 9 TGTCTC repeats in the widespread “DR5” tool have been replaced 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129122doi: bioRxiv preprint 

https://doi.org/10.1101/129122
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

by TGTCGG repeats (DR5v2) (Liao et al., 2015). This subtle change leads to improvement of the 

sensitivity of the marker. The coexistence of these two AuxRE’s does not conflict with the 

numerous results showing the involvement of TGTCTC, but rather enlarge the scope of cis 

elements in auxin response. In fact, the TGTCGG motif appeared to be only present in a third of 

the strong cistrome peaks of ARF2 and ARF5 and its presence was distinct from the AuxRE 

sequence TGTCTC (Boer et al., 2014). The significance of AuxRE diversification is still unknown 

but gene ontology enrichment analysis of genes from auxin transcriptomes suggest that there is a 

correlation between particular AuxRE’s and specific processes (Zemlyanskaya et al., 2016). 

PBMs on ARF1 and ARF5 DBD’s tested all the variants possible from TGTCNN and 

show that ARFs are in fact able to bind various variants. At the same time, an indirect proof that 

other TGTCNN variants could be involved in auxin response came from a meta-analysis of auxin 

transcriptomes published previously (Zemlyanskaya et al., 2016), as well as from cell type 

specific root transcriptomes (Bargmann et al., 2013). Correlation with auxin up/down regulation 

and overrepresentation of AuxRE’s highlights putative new AuxRE that will need to be 

biologically tested. Most of the examples of biological relevance used, as a proof of concept, the 

canonical AuxRE TGTCTC. e.g. (Weiste and Dröge-Laser, 2014; Ripoll et al., 2015). 

Understanding the code hidden behind the disposition of AuxREs along the genome is of great 

importance to understand ARFs mode of action and how auxin responsiveness is specified. 

 

 As the crystals structures of ARF1 and ARF5 DBDs show a high degree of similarity, Boer 

et al. tested the ability of the ARF1 and ARF5 dimers to bind differently spaced AuxREs. 

Surprisingly, ARF1 and ARF5 did not behave the same regarding the difference in space between 

two palindromic AuxRE’s. ARF5 seemed to be more lenient than ARF1. This result gave birth to 

the caliper model where different ARFs can bind different AuxRE motifs with affinity depending 

on spacer length. This model is supported by the analysis of the cistrome of ARF5 and ARF2 

where analysis of the enrichment of AuxRE in promotor of genes bound by the two ARFs show 

distinct patterns (O’Malley et al., 2016). This caliper theory emphasizes the cooperative binding 

of two AuxREs where this interaction enhances the binding of the homodimers to DNA compared 

to binding on the DNA independently (Boer et al., 2014). 

In addition to sequences of the AuxRE and the spacing between two AuxRE’s, the 

orientation of the elements is also an important parameter for binding specificity.  Since the 

discovery of the AuxRE, it is known that differently oriented AuxREs are auxin inducible 

(Guilfoyle et al., 1998). Cistromes for ARF2 and ARF5 clearly show that both proteins do not 
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bind the same motif (O’Malley et al., 2016). The difference in orientation between direct repeats 

and inverted repeats should impact the interactions between two AuxREs. The fact that ARF2 and 

ARF5 do not have the same motifs preferences could reflect specific conformation for 

homo/hetero dimerization of the ARF on composite AuxREs. However, structural information is 

at present only available for binding of the ARF1 DBD to an inverted repeat (Boer et al., 2014), 

and it remains an open question whether alternative dimerization modes underly binding to 

alternative repeats. 

 Some correlation seems to exist between the number of AuxRE in a promotor region and 

its auxin inducibility (Berendzen et al., 2012; O’Malley et al., 2016) . If several variants of 

AuxRE’s confer auxin responsiveness, and the spacing or orientation of AuxRE modules lead to 

different affinities for the ARFs, it can explain the functional diversity of ARFs and how every 

ARF could be involved in different developmental processes and why they have specific 

transcriptomes. 

 Crystallography of the DBD of ARF1 and ARF5 show that they homodimerize through 

their DD mediated by hydrophobic interactions. A critical question is whether this 

homodimerization is biologically relevant. One of the arguments could be that point mutations on 

amino acids involved in the homodimerization of ARF5 failed to rescue the strong phenotype of 

the loss of function mutant of ARF5 and without causing any change in the protein folding (Boer 

et al., 2014). Another piece of evidence to support the biological role of the ARF dimerization is 

provided by a study in the crop Brassica napus where a variant lacking 55 amino acids in the N-

terminal domain of ARF18 was unable to dimerize. This dimerization seems to be a requirement 

for activity, as truncated ARF18 was not able to either bind the DR5 element or inhibit the 

expression of an auxin response reporter like the wild-type protein (Liu et al., 2015). Moreover, 

this deletion leads to decreased fruit size and seed weight. While some studies show some 

heterodimerization between different ARFs, currently it is not known whether the DBD is 

involved in this interaction. 

 

Modulating gene activity through the middle region 

 

While the ARF DBD is highly similar in structure and sequence, the middle Region (MR) 

shows a strongly contrasting property in that it displays the highest divergence in amino acid 

composition of the ARFs. Thus far, research has primarily focused on the functional properties of 

the DBD and the PB1 domain, and the properties of the MR have largely remained elusive. 
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However, the MR has offered a framework to categorize the ARF family into either activators or 

repressors. This classification has been based on the enrichment of specific amino acids in the 

MR, as well as on the ability of some tested ARFs to either activate or repress transcription 

from promotors containing the canonical AuxRE TGTCTC (Ulmasov et al., 1999b; Tiwari et al., 

2003). The activator/repressor categorization correlates with the division in subgroups A/B/C. 

Those ARFs tested as activators belong to class A, while class B ARFs encompass the ones tested 

as repressors (Tiwari et al., 2003). 

 

 The class A ARFs, regarded as activators, carries MR’s that are enriched in glutamines, 

while MR’s in class B and C ARFs have a strong enrichment in serines, prolines and threonines. 

This observation has not yet gone beyond a correlation, and it is unclear what mechanisms 

underlie activation and repression. Transient expression experiments of class B ARFs on a few 

known auxin-dependent promotors did not show a strong gene induction after auxin treatment. 

However, no genome-wide analysis of transcriptomes has been conducted on class B/C ARFs. It is 

worth to point out that the promotors used in transient expression assays mainly contained 

TGTCTC motifs and that, based on the recent knowledge on ARF binding sites preferences, other 

motifs would perhaps be better suited for analyzing class B/C ARF activity. This should be 

thoroughly studied to gain better insight into the mode of action of the different classes of ARFs. 

The important fundamental question of how ARFs function cannot be answered only with a study 

in heterologous systems on a small set of specific genes. Particularly because genetic studies show 

that class B and C ARFs can be linked to auxin regulated processes, and that class A ARFs are 

able to repress certain genes (Sessions and Zambryski, 1995; Sessions et al., 1997; Nemhauser et 

al., 2000; Zhao et al., 2010; Zhang et al., 2014), the categorization of ARFs into activator and 

repressor categories should be exercised with caution.  

 

 An emerging concept in eukaryotic transcription factor biology is the usage of intrinsic 

disorder (ID) to elicit specific and rapid conformational changes to allow for adaptive interaction 

surfaces, conditional DNA binding or modulation of protein function through posttranslational 

modifications (Liu et al., 2008). In light of ARF biology such mechanisms might provide an 

additional layer of specificity determination in auxin output control. An example of ID in 

contribution to signaling diversity is the p53 tumor suppressor, which is involved in a wide set of 

cell fate decisions. Both the N- and C-terminal domains (comprising a third of the total protein 

sequence) are intrinsically disordered and contribute to most of the know protein-protein 

interactions (Dunker et al., 2008). Furthermore, most of the post-translational modifications 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2017. ; https://doi.org/10.1101/129122doi: bioRxiv preprint 

https://doi.org/10.1101/129122
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7

cluster on the intrinsic disordered regions (Dunker et al., 2008). Besides a role in signaling 

diversity, intrinsically disordered domains can affect DNA binding. For example, the Drosophila 

transcription factor Ultrabithorax (Ubx) contains two intrinsically disordered domains that 

modulate the binding affinity of the structured DNA binding homeodomain (Liu et al., 2008; 

Hsiao et al., 2014).  

The steroid hormone receptor (SHR) family is another class of proteins exemplifying the 

importance of ID in signaling. Similar to the MR of ARFs, the N-terminal transactivation domain 

(NTD), which can either activate or repress transcription, shows the least sequence homology 

among the SHR family and no structure of this region is available (Gallastegui et al., 2015). The 

SHR have a modular structure and among 400 analyzed vertebrate and invertebrate SHR family 

members the NTD showed the highest level of disorder (69%) (Krasowski et al., 2008). Induced 

folding of the NTD upon co-factor binding has been shown for the androgen-receptor (Reid et al., 

2002; McEwan et al., 2007; Tantos et al., 2012). Similar to p53, most post translational 

modifications fall within the NTD of SHR proteins (Lavery and Mcewan, 2005; McEwan et al., 

2007). The nature and convergence of different types of regulation on the ID domains implicate a 

focal point of extensive signal enhancement/diversity. To elaborate on the presence of intrinsic 

disorder, ARF protein sequences were analyzed using the disordered prediction algorithm 

PONDR-FIT (Xue et al., 2010). The prediction, quite strikingly, shows a high degree of disorder 

in the MR of class A ARFs, which also seems to be conserved in the liverwort Marchantia 

polymorpha (Figure 2). There is a strong contrast to class B/C ARFs, which do not show this 

strong predicted disorder. Although there is no functional data supporting the existence of intrinsic 

disorder in the MR of activator ARFs, it provides a new concept in the explanation to the wide set 

of responses an ARF can elicit in specific cell types in response to auxin. Functional analysis of 

these ID regions should also help to define if ID is connected to the ability to activate gene 

expression. 

 

Regulation of ARF activity through the C-terminal domain 

 

It has long been known that the C-terminal ARF domain mediates interactions with 

Aux/IAA proteins (Ulmasov et al., 1997b). Structural analysis on the C-terminal domain recently 

revealed the structural basis of such heterotypic interaction of ARF5 (Nanao et al., 2014), ARF7 

(Korasick et al., 2014), IAA17 (Han et al., 2014) and PsIAA4 (Dinesh et al., 2015). The structural 

analysis of ARF5 and ARF7 revealed type I/II PB1 domains and the chemical basis of 

dimerization (Korasick et al., 2014; Nanao et al., 2014). The domain has both acidic and basic 
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motifs, which form a tertiary β-grasp-fold structure. The sidedness of the structure, with an acidic 

and a basic face that can interact with other PB1 domains via electrostatic interactions, creates a 

front to back arrangement. This arrangement underlies homo- and hetero-dimerization between 

ARFs and with Aux/IAAs that also carry a PB1 domain and use it to interact with ARFs.  

 Several studies explored interaction specificity between Aux/IAA and ARF proteins, in an 

effort to map pathway complexity that might explain diverse auxin outputs. Two comprehensive 

studies utilizing large scale yeast 2-hybrid (Y2H) assays showed the variety at which these 

interactions can occur (Vernoux et al., 2011; Piya et al., 2014). Interestingly, in this assay, class B 

and C ARFs have limited to no interactions with Aux/IAAs (Vernoux et al., 2011; Piya et al., 

2014). This suggests that auxin regulation within the nuclear pathway exclusively converges upon 

class A ARFs. Taken at face value, this finding would suggest that class B and C ARFs are 

disconnected from auxin regulation, and act by counteracting class A ARFs, for example by 

competing for DNA binding or blocking through heterodimerization (Richter et al., 2013). It 

should be noted that in these large-scale interaction studies, proteins are expressed at much higher 

levels than naturally occurring and might also have increased stability. From studies in the moss 

Physcomitrella patens, a model was suggested wherein class A and B ARFs either compete or 

cooperate to repress or induce transcription respectively (Lavy et al., 2016). It appears that more 

in vivo studies are dearly needed to determine if and how class B and C ARFs are wired into the 

auxin response network, and what purpose their PB1 domains have. 

 An interesting finding in the structural analysis of ARFs and Aux/IAA proteins was that 

PB1 domains have the capacity to oligomerize in vitro, in crystal and in solution (Korasick et al., 

2014; Nanao et al., 2014). The biological significance of such oligomerization is still an open 

question. ARF5 that lacks the PB1 domain has reduced capacity to bind DNA in vitro, and this 

could be overcome by antibody-induced dimerization (Ulmasov et al., 1999a). Thus, PB1-

interactions, in addition to being the site for auxin regulation through Aux/IAA binding, could 

potentiate DNA binding. Mathematical modeling of TIR1/AFB, auxin, ARF and Aux/IAA 

interactions provide a conceptual basis for significance of ARF oligomerization on auxin output 

(Farcot et al., 2015). Aux/IAA-ARF interactions may determine the amplitude, Aux/IAA-

Aux/IAA interactions the speed and ARF-ARF interactions the sensitivity of the response. Since 

the parameters depend on the PB1 domain interaction, oligomerization may significantly affect the 

auxin output (Weijers and Wagner, 2016). On the other hand, questions can be raised about the 

relevance of mediated ARF DNA binding by the homo/hetereodimerization through the PB1 

domain. For example the truncated ARF5 (ΔPB1) is hyperactive and still able to activate 

transcription (Krogan et al., 2012). Also, ARF4 and ARF3 act redundantly in establishing leaf 
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polarity (Pekker et al., 2005). Since ARF3 naturally lacks a PB1 domain it appears that this 

domain is not required for ARF function in this context. A kinetic analysis of ARF-ARF, ARF-

Aux/IAA and Aux/IAA-Aux/IAA interactions in vitro showed that the affinity of ARF:ARF 

homo-dimers is ~10 to ~100 fold lower than ARF:AuxIAAs hetero-dimers (Han et al., 2014). This 

suggests that equilibria will tend to favor heterotypic interactions, thus endowing auxin regulation 

upon ARFs. 

 

Dynamic control of auxin-dependent genes in a chromatin context 

 

An important question is how auxin – and ARFs – can regulate genes in the context of 

chromatin. It had previously been shown that Aux/IAA proteins recruit the co-repressor TOPLESS 

(TPL), and likely repress expression through histone de-acetylation (Long et al., 2006; Szemenyei 

et al., 2008). Recently, a chromatin switch mechanism has also been proposed to direct ARF-

dependent gene activation. Chromatin can be configured in a bipartite manner; either closed 

marking an inactive state or an open configuration marking an active state. Recently a switch in 

this state was found in which ARF5 is able to unlock closed chromatin in concert with the 

SWI/SNF chromatin remodelers BRHAMA (BRM) and SPLAYED (SYD) (Wu et al., 2015). 

Aux/IAA proteins compete with SWI-SNF recruitment to ARF5, and thus Aux/IAA degradation 

allows chromatin remodeling (Wu et al., 2015). Furthermore, the GRE motif-binding bZIP 

transcription factors can recruit the histone acetyltransferase (HAT) SAGA complex to a GH3 

gene and induce auxin responsive transcription (Weiste and Dröge-Laser, 2014). Interestingly, a 

conserved bZIP motif was shown to be occluded prior to ARF5-dependent chromatin unlocking 

(Wu et al., 2015).  From these two studies it follows that there may be a concerted action of 

ARF5-induced nucleosome remodeling followed by HAT-dependent histone modification during 

developmental reprogramming. Since this mechanism has so far only been demonstrated for 

ARF5, it will be interesting to see if all class A ARFs, and possibly class B/C ARFs, operate in a 

similar manner. 

Conversely, it was recently shown that histone deacetylation plays a role in the regulation 

of genes by other class A ARFs (Fukaki et al., 2006). The ARF7/19 and IAA14 proteins play a 

critical role in lateral root initiation (Okushima et al., 2005). Through phenotypic analysis and 

exogenous histone deacetylase inhibitor application it was shown that the chromatin remodeler 

PICKLE (PKL) and histone deacetylation are required for IAA14-mediated ARF7/19 inhibition. 

Since PKL strongly resembles the mammalian CHD3/Mi-2 protein of the Nucleosome 
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Remodeling Deacetylase complex (NuRD), consisting of several histone deacetylases, it is 

conceivable that such concerted action of remodeling and histone deacetylation takes place on 

ARF target loci.  

Interactions between ARFs and chromatin regulators appear to be multi-layered and 

complex. For example, under low auxin levels, the TPL co-repressor bridges the CDK8 kinase 

module (CKM) of the MEDIATOR complex with the ARF7/19 - IAA14 module (Ito et al., 2016). 

The CKM Mediator module prevents the association of the core Mediator subcomplex with RNA 

polymerase II (Ito et al., 2016). The TPL-mediated interaction is probably distinct from the 

proposed recruitment of histone de-acetylases by TPL (Long et al., 2006), and importantly it 

might not involve covalent histone modifications. Under high auxin levels, IAA14 becomes 

degraded thus leading to loss of the TPL-CKM bridge followed by active transcription (Ito et al., 

2016). Such a sequences of events resembles a primed transcriptional state that can accommodate 

quick transcriptional responses. It is clear from the few examples given here that we are only 

beginning to scratch the surface of chromatin-level control in ARF action, and further exploration 

in this area is likely to give much more insight into the fast and dynamic regulation of auxin-

responsive genes. 

 

No protein is an island – ARF cofactors shape auxin response 

 

 Other than interaction with chromatin regulators, transcription factors (TF) usually 

cooperate with co-factors that can modulate DNA binding specificity or transcriptional activity. 

Such interactions can assemble into higher-order protein complexes that can regulate the local 

chromatin environment and activate or repress gene transcription. In some instances, as reported 

for the Drosophila Hox TFs, co-factors can modulate the TF to gain novel DNA binding 

specificities (Slattery et al., 2011).  In comparison with other TFs, the number of reported co-

factors for ARFs is limited and, if reported, the precise functionality of the interaction not 

completely elucidated (Figure 3). Since co-factors are important in modulating TF activity, it is 

conceivable that ARF co-factors play a significant role in modulating activity.  

Interactions between TFs can occur within and between families (Bemer et al., 2016). For 

ARFs, such (ARF-ARF) interactions have only been shown in vitro and appear to be a 

requirement for high-affinity DNA binding (Boer et al., 2014). Interactions between transcription 

factors of different families are also frequently reported, extending the repertoire of TF activity 

and integrating several developmental, environmental and hormonal pathways. For ARFs this has 
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been shown in several instances. An example is the interaction between MYB77 and ARF7. It was 

shown that this interaction is important for the regulation of auxin-dependent genes and might 

integrate abscisic acid signaling with auxin response (Shin et al., 2007; Zhao et al., 2014). A more 

complex integration was shown for ARF6, which interacts with the bHLH factor phytochrome 

interacting factor 4 (PIF4) and brassinazole resistant 1 (BRZ1) to regulate a common set of target 

genes (Oh et al., 2014). It was further shown by genetic studies and Y2H that gibberellic acid 

signaling integrates in the ARF6-PIF4-BZR1 complex by disrupting ARF6-PIF4 interaction 

through the DELLA protein repressor of GA (RGA). Of note is that the PIF4 and RGA 

interactions predominantly occur through the middle region and that RGA also interacts with 

ARF7 and ARF8 (Oh et al., 2014). Another bHLH (big petal (BPE)) - has also been shown to 

support ARF function. ARF8 and BPE synergistically act during petal organ growth (Varaud et 

al., 2011). It was further shown that ARF8, but also ARF6, interacts with the MADS-box 

transcription factor FRUITFULL (FUL) to promote fruit valve growth (Ripoll et al., 2015). 

Although the primary focus of the described ARF-TF interactions all relate to class A ARFs 

interactions with class B ARFs have also been described to a lesser extent. For example, ARF3 

has been studied in the context of polarity determination where it interacts with the GARP family 

member ABERRANT TESTA SHAPE. In two studies, ARF2 has been shown to interact with 

MADS-box TF FUL and AP1 (Smaczniak et al., 2012; Ripoll et al., 2015).  

From this non-exhaustive list of examples, it is apparent that ARFs are not the sole entities 

in regulating auxin dependent transcription. One prominent question that can be raised from the 

studies reported thus far is whether there is a common mode of regulation on auxin target genes. It 

appears that hetereotypic TF interactions are common, especially for class A ARFs. Cooperative 

DNA binding of two TFs can result in a net increase in affinity for their motifs while the 

specificity for the motifs remains unchanged (Spitz and Furlong, 2012). On the other hand 

cooperative binding can also create new specificities. It appears that cooperative binding plays a 

role in ARF dependent transcriptional activity as is the case for many other plant related TFs 

(Bemer et al., 2016). MYB77 has interaction with ARF7 and bZIP-dependent SAGA complex 

recruitment induces auxin transcription (Shin et al., 2007; Weiste and Dröge-Laser, 2014). The 

binding motifs of MYB and bZIP have been shown to be enriched and evolutionary conserved 

near AuxRE (Berendzen et al., 2012).  

 Currently a comprehensive analysis on ARF/cofactor interactions is lacking. An unbiased 

in planta approach on all ARFs, as was for example performed on several MADS-box TFs 
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(Smaczniak et al., 2012), could promote our understanding on how ARFs regulate transcription. In 

perspective, the BioGrid interaction database lists over 1000 interactions for the human p53 

protein while ARFs only have a small portion of that number listed (Figure 3). This exemplifies 

that the field is currently far from understanding ARF biology. 

Is it really that simple? 

 

Historically, ARF1 was first found in a yeast 1-hybrid screen to identify transcription 

factors which bind on a synthetic DNA (P3[4x]) known to be highly auxin-responsive (Ulmasov et 

al., 1997a). All others ARFs have been found by sequence homology to ARF1 (Guilfoyle et al., 

1998). This history urges an existential question: are all ARFs really ARFs? Do all ARFs mediate 

auxin response? Is an ARF that is not able to interact with Aux/IAA proteins still connected to the 

auxin response network? The PB1 domain is lacking in ARF3, ARF13, ARF17, and ARF23. 

ARF23 is different from all others as it is heavily truncated from its DBD. It has been show that 

deletion between DBD and MR can affect dimerization of ARF18 (Liu et al., 2015), so there is 

good chance that ARF23 is not able to dimerize. Moreover its biological function or its ability to 

bind DNA is not known, and given that this gene is part of a recently duplicated cluster near the 

centromere of chromosome I (Okushima et al., 2005), there is a chance that ARF23 is becoming a 

pseudogene.  

For ARF3 and ARF17, it appears that despite lack of the PB1 domain, these proteins do 

control auxin-dependent development (Mallory et al., 2005; Simonini et al., 2016). Y2H showed 

that ARF17 was able to interact with Aux/IAAs, despite it is lacking the conserved PB1 (Piya et 

al., 2014). Moreover, truncated ARF5 or ARF7 (lacking the PB1 domain) could still be activated 

by auxin, though less efficiently than the full-length protein (Wang et al., 2013). Even if in planta 

proof is lacking, these findings raise the possibility that Aux/IAAs can even interact with truncated 

ARFs. Thus, it appears that the lack of PB1 can not be used as a criteria to discriminate ARF from 

non-ARF. 

 

In the past decades, research efforts characterized the canonical auxin signaling pathway 

wherein, under high auxin levels, repressive Aux/IAAs become degraded, relieving ARFs from 

repression. Although this auxin perception mechanism is well known, the regulatory mechanism 

by which ARFs control auxin output is still vaguely understood. Another aspect that is not 

currently investigated is the biological relevance of ARF heterodimerization. Few studies have 

demonstrated the ability of distinct ARFs to interact in vitro. Heterodimerization has been 
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observed in gel shift assays between ARF1 and ARF4 (Ulmasov et al. 1999) or between different 

ARFs in Y2H experiments (Ouellet et al., 2001; Hardtke et al., 2004; Vernoux et al., 2011). While 

it is thus clear that ARFs can heterodimerize, it needs to be established whether they do so in vivo, 

and the biological relevance of heterodimerization must be understood.  

  Besides the mechanism that concern the homeostasis of the nuclear auxin pathway, recent 

research revealed non-canonical pathways that effect ARF regulated gene expression. In the 

canonical pathway, control by posttranslational modifications have been identified, such as cis-

trans proline isomerization of Aux/IAAs (Dharmasiri et al., 2003), S-nitrosylation of TIR1 

(Terrile et al., 2012) and phosphorylation of Aux/IAAs (Colón-Carmona et al., 2000). For ARFs, 

phosphorylation events have been shown to be important for their function. During low potassium 

availability the K+ transporter HAK5 is upregulated to compensate for K+ deficiency (Gierth et 

al., 2005). The control of the HAK5 gene is modulated by ARF2. In the presence of sufficient K+ 

levels, ARF2 represses HAK5 transcription (Zhao et al., 2016). In K+ deficiency environments 

ARF2 becomes phosphorylated blocking ARF2 DNA binding activity (Zhao et al., 2016). This 

mechanism of modulation of DNA binding activity by phosphorylation has been shown on ARF2 

by the brassinosteroid (BR) -regulated BIN2 kinase (Vert et al., 2008). The integration of BR 

signaling components and activity modulation on activator ARFs has also been reported (Cho et 

al., 2014). During lateral root organogenesis ARF7 and ARF19 play pivotal roles and it was 

shown that the auxin module does not solely control the activity of these ARFs during this 

process. The BIN2 kinase phosphorylates these ARFs and inhibits Aux/IAA interaction 

potentiating ARF activity (Cho et al., 2014). Quite surprisingly is that BIN2 in this process is not 

activated by BR but by the tracheary element differentiation inhibitory factor (TDIF) peptide (Cho 

et al., 2014).  

Other than phosphorylation, a recent finding revealed an alternative auxin sensing 

mechanism resembling the animal thyroid hormone receptor pathway. The atypical (class B) 

ARF3/ETT is involved in auxin regulated gynoecium patterning (Sessions et al., 1997; Simonini 

et al., 2016). Since ETT lacks a PB1 domain, canonical auxin signaling is not likely to regulate 

ETT activity. ETT interacts with the basic helix-loop-helix (bHLH) transcription factor 

INDEHISCENT (IND) and this interaction is auxin-sensitive (Simonini et al., 2016). In a 

bimolecular fluorescence complementation experiment, upon addition of auxin, the ETT:IND 

dimer appeared to dissociate. Further Y2H experiments showed similar results for the ETT:IND 

dimer but also for other ETT:TF dimer complexes (Simonini et al., 2016) .  
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These results show how elaborate ARF activity can be modulated beside the core nuclear 

auxin module. An interesting question is whether these non-canonical pathways represent a 

general mode of action in ARF activity modulation. 

 

Concluding remarks 

 The past few years, many studies gave new details about ARFs mode of action and 

functions of their conserved domains. They confirmed the key role of the ARF as an output of the 

nuclear auxin pathway but particularly emphasizes new characteristics of ARF that were not 

suspected before. The mode of action of the ARFs was seen more like an on/off mechanism on 

TGTCTC motif while now, it is believed that ARF are more flexible than that and could be part of 

larger protein complex (chromatin switch or TF-TF). However, these recent breakthroughs raise 

new questions and need to be challenged first. Even if these findings brought new insights into 

ARF mode of action, it is still difficult to give a precise definition to describe this family. One of 

the reasons is that only little is known about the universality of these mechanisms. Testing these 

hypothesis on different ARFs classes (A,B,C) or “activators”/”repressors” ARFs will probably 

help to draw a mugshot of an ARF. It is also worth to highlight that some ARFs still have not been 

biologically characterized. It will be necessary to extend this knowledge to other species 

phylogenetically distant from Arabidopsis in order to understand how the auxin signaling pathway 

has evolved into a complex and apparently fine tuned system.  
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Figure legends 

 

 

Figure 1: The nuclear auxin pathway.  

Regulation of auxin output is executed by ARFs. Under low auxin levels, the Aux/IAA 

transcriptional co-repressors prevent ARFs from controlling auxin-regulated genes. When auxin 

levels increase, auxin serves as “molecular glue” between the TIR1/AFB receptor and the 

Aux/IAA protein. This leads to subsequent ubiquitination and degradation of the Aux/IAAs, 

releasing ARFs from inhibition. Protein abbreviations: ARF, AUXIN RESPONSE FACTOR; 

ASK1, ARABIDOPSIS SKP1 HOMOLOGUE; Aux/IAA, AUXIN/INDOLE-3-ACETIC ACID; 

CUL1, CULLIN 1; RBX1, RING-BOX 1; TIR1/AFB, TRANSPORT INHIBITOR RESISTANT 

1/AUXIN SIGNALING F-BOX.  

 

 

Figure 2: Intrinsic disorder in the ARF middle region.  

(A) Predicted disorder in the middle region appears to be a prominent and conserved feature in the 

class A “activator” ARFs. Full-length protein Arabidopsis ARF sequences, as well those from 

Marchantia polymorpha (MpARF) were used as input in the disorder prediction tool DisProt 

using the PONDR-FIT algorithm (Xue et al., 2010). Disordered values were used in R to generate 

a heatmap. Domain locations were retrieved from UniProt. (B) Disordered regions can serve as a 

focal signaling hub by obtaining induced structure with cofactors, modulation by posttranslational 

modifications or aid in DNA binding affinity/specificity. Protein abbreviations: ARF, AUXIN 

RESPONSE FACTOR; III/IV;C-TERMINAL PHOX AND BEM 1 DOMAIN; MR, MIDDLE 

REGION, DD, DIMERIZATION DOMAIN. 

 

Figure 3: ARF cofactors.  

(A,B) Complete interactome of the human tumour suppressor p53 (A) and ARF5 (B) depicts the 

limited state of our knowledge on ARF functioning in comparison with p53. Figure was made 

utilizing Cytoscape by selecting direct neighbours and using the BioGrid database (last accessed 

march 2017). (C) Current known modes of interactions and interactions surfaces of ARFs. Protein 

abbreviations: ARF, AUXIN RESPONSE FACTOR; Aux/IAA, AUXIN/INDOLE-3-ACETIC ACID, 

BRM, BRAHMA; SYD, SPLAYED; TF, TRANSCRIPTION FACTOR 
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