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Abstract 15 

Genome-wide association studies have identified hundreds of risk loci for autoimmune disease, yet only 16 

a minority (~25%) share genetic effects with changes to gene expression (eQTLs) in immune cells. 17 

RNA-Seq based quantification at whole-gene resolution, where abundance is estimated by culminating 18 

expression of all transcripts or exons of the same gene, is likely to account for this observed lack of 19 

colocalisation as subtle isoform switches and expression variation in independent exons can be 20 

concealed. We performed integrative cis-eQTL analysis using association statistics from twenty 21 

autoimmune diseases (560 independent loci) and RNA-Seq data from 373 individuals of the Geuvadis 22 

cohort profiled at gene-, isoform-, exon-, junction-, and intron-level resolution in lymphoblastoid cell 23 

lines. After stringently testing for a shared causal variant using both the Joint Likelihood Mapping and 24 

Regulatory Trait Concordance frameworks, we found that gene-level quantification significantly 25 

underestimated the number of causal cis-eQTLs. Only 5.0-5.3% of loci were found to share a causal 26 

cis-eQTL at gene-level compared to 12.9-18.4% at exon-level and 9.6-10.5% at junction-level. More 27 

than a fifth of autoimmune loci shared an underlying causal variant in a single cell type by combining 28 

all five quantification types; a marked increase over current estimates of steady-state causal cis-eQTLs. 29 

As an example, we dissected in detail the genetic associations of systemic lupus erythematosus and 30 

functionally annotated the candidate genes. Many of the known and novel genes were concealed at 31 

gene-level (e.g. BANK1, UBE2L3, IKZF2, TYK2, LYST). By leveraging RNA-Seq, we were able to 32 

isolate the specific transcripts, exons, junctions, and introns modulated by the cis-eQTL - which 33 

supports the targeted design of follow-up functional studies involving alternative splicing. Causal cis-34 

eQTLs detected at different quantification types were also found to localise to discrete epigenetic 35 

annotations. We provide our findings from all twenty autoimmune diseases as a web resource.   36 

  37 
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Author Summary 38 

It is well acknowledged that non-coding genetic variants contribute to disease susceptibility through 39 

alteration of gene expression levels (known as eQTLs). Identifying the variants that are causal to both 40 

disease risk and changes to expression levels has not been easy and we believe this is in part due to how 41 

expression is quantified using RNA-Sequencing (RNA-Seq). Whole-gene expression, where abundance 42 

is estimated by culminating expression of all transcripts or exons of the same gene, is conventionally 43 

used in eQTL analysis. This low resolution may conceal subtle isoform switches and expression 44 

variation in independent exons. Using isoform-, exon-, and junction-level quantification can not only 45 

point to the candidate genes involved, but also the specific transcripts implicated. We make use of 46 

existing RNA-Seq expression data profiled at gene-, isoform-, exon-, junction-, and intron-level, and 47 

perform eQTL analysis using association data from twenty autoimmune diseases. We find exon-, and 48 

junction-level thoroughly outperform gene-level analysis, and by leveraging all five quantification 49 

types, we find >20% of autoimmune loci share a single genetic effect with gene expression. We 50 

highlight that existing and new eQTL cohorts using RNA-Seq should profile expression at multiple 51 

resolutions to maximise the ability to detect causal eQTLs and candidate genes.  52 

  53 
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Introduction 54 

The autoimmune diseases are a family of heritable, often debilitating, complex disorders in which 55 

immune dysfunction leads to loss of tolerance to self-antigens and chronic inflammation [1]. Genome-56 

wide association studies (GWAS) have now detected hundreds of susceptibility loci contributing to risk 57 

of autoimmunity [2] yet their biological interpretation still remains challenging [3]. Mapping single 58 

nucleotide polymorphisms (SNPs) that influence gene expression (eQTLs) can provide meaningful 59 

insight into the potential candidate genes and etiological pathways connected to discrete disease 60 

phenotypes [4]. For example, such analyses have implicated dysregulation of autophagy in Crohn’s 61 

disease [5], the pathogenic role of CD4+ effector memory T-cells in rheumatoid arthritis [6], and an 62 

overrepresentation of transcription factors in systemic lupus erythematosus [7].  63 

 64 

Expression profiling in appropriate cell types and physiological conditions is necessary to capture the 65 

pathologically relevant regulatory changes driving disease risk [8]. Lack of such expression data is 66 

thought to explain the observed disparity of shared genetic architecture between disease association and 67 

gene expression at certain autoimmune loci [9]. A much overlooked cause of this disconnect however, 68 

is not only the use of microarrays to profile gene expression, but also the resolution to which expression 69 

is quantified using RNA-Sequencing (RNA-Seq) [10]. Expression estimates of whole-genes, individual 70 

isoforms and exons, splice-junctions, and introns are obtainable with RNA-Seq [11–18]. The SNPs that 71 

affect these discrete units of expression vary strikingly in their proximity to the target gene, localisation 72 

to specific epigenetic marks, and effect on translated isoforms [18]. For example, in over 57% of genes 73 

with both an eQTL influencing overall gene expression and a transcript ratio QTL (trQTL) affecting 74 

the ratio of each transcript to the gene total, the causal variants for each effect are independent and 75 

reside in distinct regulatory elements of the genome [18].  76 

 77 

RNA-Seq based eQTL investigations that solely rely on whole-gene expression estimates are likely to 78 

mask the allelic effects on independent exons and alternatively-spliced isoforms [16–19]. This is in part 79 

due to subtle isoform switches and expression variation in exons that cannot be captured at gene-level 80 
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[20]. A large proportion of trait associated variants are thought to act via direct effects on pre-mRNA 81 

splicing that do not change total mRNA levels [21]. Recent evidence also suggests that exon-level based 82 

strategies are more sensitive than conventional gene-level approaches, and allow for detection of 83 

moderate but systematic changes in gene expression that are not necessarily derived from alternative-84 

splicing events [15,22]. Furthermore, gene-level summary counts can be biased in the direction of 85 

extreme exon outliers [22]. Use of isoform-, exon-, and junction-level quantification in eQTL analysis 86 

also support the potential to not only point to the candidate genes involved, but also the specific 87 

transcripts or functional domains affected [10,18]. This of course facilitates the design of targeted 88 

functional studies and better illuminates the causative relationship between regulatory genetic variation 89 

and disease. Lastly, though intron-level quantification is not often used in conventional eQTL analysis, 90 

it can still provide valuable insight into the role of unannotated exons in reference gene annotations, 91 

retained introns, and even intronic enhancers [23,24].  92 

 93 

Low-resolution expression profiling with RNA-Seq will impede the subsequent identification of causal 94 

eQTLs when applying genetic and epigenetic fine-mapping approaches [25]. In this investigation, we 95 

aim to increase our knowledge of the regulatory mechanisms and candidate genes of human 96 

autoimmune disease through integration of GWAS and RNA-Seq expression data profiled at gene-, 97 

isoform-, exon-, junction-, and intron-level in lymphoblastoid cell lines (LCLs). This is firstly 98 

performed in detail using association data from a GWAS in systemic lupus erythematosus, and is then 99 

scaled up to a total of twenty autoimmune diseases. Our findings are provided as a web resource to 100 

interrogate the functional effects of autoimmune associated SNPs (www.insidegen.com), and will serve 101 

as the basis for targeted follow-up investigations.  102 

  103 
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Results 104 

 105 

Gene-level expression quantification underestimates the number of causal cis-eQTLs 106 

Using densely imputed genetic association data from a large-scale GWAS in systemic lupus 107 

erythematosus (SLE) in persons of European descent [7], we performed integrative cis-eQTL analysis 108 

with RNA-Seq expression data profiled at five resolutions: gene-, transcript-, exon-, junction-, and 109 

intron-level. The expression data are derived from the 373 healthy European donors of the Geuvadis 110 

project (all individuals are included as part of the 1000 Genomes Project) profiled in lymphoblastoid 111 

cell lines (LCLs) [18]. See S1 Figure and methods for a summary of how expression at the five 112 

resolutions was quantified using RNA-Seq. A total of 38 genome-wide significant SLE loci (S1 Table) 113 

were put forward for analysis following removal of: associated SNPs with minor allele frequency < 5%, 114 

secondary associations upon conditional analysis on lead variant, and major histocompatibility complex 115 

loci - owing to the known complex linkage disequilibrium (LD) patterns. To test for evidence of a single 116 

shared causal variant between disease and gene expression at each of the remaining 38 SLE associated 117 

loci, we employed the rigorous Joint Likelihood Mapping (JLIM) framework [9] using summary-level 118 

statistics for the SLE association (primary trait) and full genotype-level data for gene expression 119 

(secondary trait). Using JLIM, cis-eQTLs were defined if a nominal association (P<0.01) with at least 120 

one SNP existed within 100kb of the SNP most associated with disease and the transcription start site 121 

of the gene located within +/-500kb of that SNP (as defined by the authors of the JLIM package). JLIM 122 

P-values were corrected for multiple testing as per the JLIM standards by using a false discovery rate 123 

(FDR) of 5% per RNA-Seq quantification type (i.e. at exon-level, JLIM P-values were FDR adjusted 124 

for total number of exons tested in cis to the 38 SNPs). Causal associations of the integrative cis-eQTL 125 

SLE GWAS analysis using the JLIM package across the five RNA-Seq quantification types are 126 

available in S2 Table and the full output (including non-causal associations) are available in S3 Table. 127 

See S2 Figure for the distribution of JLIM P-values across the five RNA-Seq quantification types. 128 

 129 
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We found the number of cis-eQTLs driven by the same causal variant as the SLE disease association 130 

was markedly underrepresented when considering conventional gene-level quantification (Table 1). 131 

Only two of the 38 SLE susceptibility loci (5.3%) were deemed to be causal cis-eQTLs at gene-level 132 

for three candidate genes. Interestingly, this is a similar proportion to that observed by the authors of 133 

the JLIM method (Chun et al [9]). They found that 16 of the 272 (5.9%) autoimmune susceptibility loci 134 

tested were cis-eQTLs driven by a shared causal variant in the Geuvadis RNA-Seq dataset using gene-135 

level quantification (based upon the seven autoimmune diseases interrogated - not including SLE).  136 

 137 

Of note, transcript-level quantification did not increase the number of causal cis-eQTLs (Table 1). 138 

Transcript-level analysis did, however, yield a greater number of candidate genes (seven individual 139 

transcripts derived from a total of four genes). Both junction- and intron-level quantification increased 140 

the number of causal cis-eQTLs to four (10.5% of the 38 total SLE loci). Using exon-level 141 

quantification, we were able to define seven of the 38 SLE susceptibility loci (18.4%) as being 142 

significant cis-eQTLs driven by a single shared causal variant. Exon-level analysis also produced the 143 

greatest number of candidate gene targets: nine unique genes derived from 24 individual SNP-exon 144 

pairs (Table 1). Therefore, even with multiple testing burden to correct for all SNP-exon cis-eQTL 145 

pairs; we firstly conclude that exon-level analysis detects more causal cis-eQTLs than gene-level.  146 

 147 

A fifth of associated SNPs possess shared genetic effects with cis-eQTLs using RNA-Seq in LCLs 148 

By combining all five types of RNA-Seq quantification (gene, transcript, exon, junction, and intron) we 149 

could define nine of the 38 SLE susceptibility loci (23.7%) as being driven by the same causal variant 150 

as the cis-eQTL in LCLs (Table 1). Interestingly, this value, derived from interrogating only a single 151 

cell type, is almost equal to the total number of causal autoimmune cis-eQTLs detected by Chun et al 152 

[9]  (~25%) when looking across the three different cell types analysed using JLIM (CD4+ T-cells – 153 

measured by microarray, CD14+ monocytes – microarray, and LCLs – RNA-Seq gene-level).  154 

 155 

We found that when considering the specificity of cis-eQTLs and target genes identified by JLIM 156 

mapping across the five RNA-Seq quantification types, both gene- and transcript-level quantification 157 
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were redundant with respect to exon-level data; i.e. there were no causal cis-eQTLs or target genes 158 

detected at gene- or transcript-level that were not captured by exon-level analysis (S3 Figure). Both 159 

junction- and intron-level quantification captured a single causal cis-eQTL each that was not captured 160 

by exon-level. We conclude that profiling at all resolutions of RNA-Seq is required to capture the full 161 

set of potentially causal cis-eQTLs.  162 

 163 

Associated SNPs are most likely to colocalize with exon- and junction-level cis-eQTLs        164 

We compared the detection of cis-eQTLs using a standard linear-regression approach with the JLIM 165 

method. To fully explore relationships within our results, a pairwise comparison was made across the 166 

five RNA-Seq quantification types for matched SNP-gene cis-eQTL pairs (Figure 1). We only 167 

considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association P-168 

value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons, 169 

junctions, and introns were annotated with the same gene symbol, we selected the associations that 170 

minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across RNA-Seq 171 

quantification types. There were over 250 matched SNP-gene cis-eQTL pairs per comparison. We 172 

firstly observed that the correlation of both cis-eQTL association P-values from regression and JLIM 173 

P-values across RNA-Seq quantification types reflected the methods in which expression quantification 174 

was obtained (Figure 1A). Both cis-eQTL and JLIM P-values between matched SNP-gene pairs at gene- 175 

and transcript-level were highly correlated as gene-level estimates are obtained from the sum of all 176 

transcript-level estimates for the same gene (see methods and S1 Figure). Exon-level and junction-level 177 

associations were also highly correlated due to split-reads being incorporated into the exon-level 178 

estimate. As expected, intron-level cis-eQTL and JLIM P-values for matched SNP-gene pairs were only 179 

weakly correlated against other quantification types - as reads mapping to introns are not included in 180 

the other quantification models. Interestingly, although cis-eQTL association P-values for matched 181 

SNP-gene pairs between transcript-level and junction-level were found to be relatively high (r2=0.70), 182 

we found the JLIM P-values for the matched pairs to be comparatively low (r2=0.29); suggesting that 183 

whilst the strength of the cis-eQTL maybe similar between these quantification types, the underlying 184 

causal variants driving the disease and cis-eQTL association are likely to be independent.  185 
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By plotting the JLIM P-values for matched SNP-gene pairs between different quantification types, we 186 

found many instances of P-values distributed along the axes rather than on the diagonal (Figure 1B). 187 

Our findings therefore suggest that often, one quantification type is more likely to explain the observed 188 

disease association than the other. When we compared conventional gene-level cis-eQTL analysis 189 

against exon-level results (Figure 1C), we found that of the 296 matched SNP-gene cis-eQTL 190 

associations (P<0.01), eleven (4%) were deemed to share the same causal variant at both gene- and 191 

exon-level using a nominal JLIM P-value threshold < 0.01. Only three of the 296 matched SNP-gene 192 

cis-eQTL associations (1%) were captured by gene-level only - in contrast to the 26 (9% of total 193 

associations) captured uniquely at exon-level. As expected, the overwhelming majority of cis-eQTL 194 

associations (86%) did not possess a single shared causal variant at either gene- or exon-level. We 195 

performed this analysis for all possible combinations of quantification types (Table 2). In each instance, 196 

gene-level analysis detected only the minority of nominally causal associations for matched SNP-gene 197 

association pairs (JLIM P<0.01). Exon-level and junction-level analysis consistently detected more 198 

causal cis-eQTL associations than gene-, transcript-, and intron-level. In fact, when combined, exon- 199 

and junction-level analysis explained the most nominally causal associations for all significant SNP-200 

gene cis-eQTL association pairs (23.8%).  201 

  202 

Leveraging RNA-Seq aids GWAS interpretation and reveals novel candidate genes 203 

We functionally dissected the 12 candidate genes taken from the nine SLE associated loci that showed 204 

strong evidence of a shared causal variant with a cis-eQTL in LCLs. The nine, causal cis-eQTLs and 205 

corresponding 12 candidate genes per RNA-Seq quantification type are listed in Table 3 along with 206 

their cis-eQTL association P-values and related JLIM P-values. We systematically annotated all 12 207 

genes using a combination of cell/tissue expression patterns, mouse models, known molecular 208 

phenotypes, molecular interactions, and associations with other autoimmune diseases (S4 Table). We 209 

found the majority of novel SLE candidate genes detected by RNA-Seq were predominately expressed 210 

in immune-related tissues such as whole blood, the spleen and thymus, and the small intestine. Based 211 

on our gene annotation and what is already documented at certain loci, we were sceptical on the 212 

pathogenic involvement of three candidate genes (PHTF1, ARHGAP30, and RABEP1). Although the 213 
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cis-eQTL effect for these genes is evidently driven by the shared causal variant as the disease 214 

association (defined by JLIM), it is possible that these effects of expression modulation are merely 215 

passengers that are carried on the same functional haplotype as the true causal gene(s) and do not 216 

contribute themselves to the breakdown of self-tolerance (detailed in S4 Table). We show the regional 217 

association plots and the candidate genes detected from cis-eQTL analysis in S4 Figure.  218 

 219 

The causal cis-eQTL rs2736340 for genes BLK and FAM167A was detected at all RNA-Seq profiling 220 

types. It is well established that the risk allele of this SNP reduces proximal promoter activity of BLK; 221 

a member of the Src family kinases that functions in intracellular signalling and the regulation of B-cell 222 

proliferation, differentiation, and tolerance [26]. The allelic consequence of FAM167A expression 223 

modulation is unknown. We found multiple instances of known SLE susceptibility genes that were 224 

concealed when using gene-level quantification. For example, we defined rs7444 as a causal cis-eQTL 225 

for UBE2L3 at transcript- and exon-level - but not at gene-level (Table 3). The risk allele of rs7444 has 226 

been associated with increased expression of UBE3L3 (Ubiquitin conjugating enzyme E2 L3) in ex vivo 227 

B-cells and monocytes and correlates with NF-κB activation along with increased circulating 228 

plasmablast and plasma cell numbers [27]. Similarly, the rs10028805 SNP is a known splicing cis-229 

eQTL for BANK1 (B-cell scaffold protein with ankyrin repeats 1). We replicated at exon-, and junction-230 

level this splicing effect which has been proposed to alter the B-cell activation threshold [28]. Again, 231 

this mechanism was not detected using gene-level quantification.  232 

 233 

IKZF2 (detected at the exon-level only) is a transcription factor thought to play a key role in T-reg 234 

stabilisation in the presence of inflammatory responses [29]. IKZF2 deficient mice acquire an auto-235 

inflammatory phenotype in later life similar to rheumatoid arthritis, with increased numbers of activated 236 

CD4+ and CD8+ T-cells, T-follicular helper cells, and germinal centre B-cells, which culminates in 237 

autoantibody production [30]. Of note, other members of this gene family, IKZF1 and IKZF3, are also 238 

associated with SLE and can hetero-dimerize (S4 Table) [7]. We also believe LYST, ATG4D, and TYK2 239 

to also be intriguing candidate genes. LYST encodes a lysosomal trafficking regulator [31] whilst 240 

ATG4D is a cysteine peptidase involved in autophagy and this locus is associated with multiple 241 
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sclerosis, psoriasis, and rheumatoid arthritis [32]. TYK2 is discussed in greater detail in the following 242 

section.  243 

 244 

RNA-Seq can resolve the potential causal regulatory mechanism(s) 245 

Interestingly, for the three causal SNP-gene pairs detected at gene-level (rs2736340 – BLK, rs2736340 246 

– FAM167A, and rs7444 – CCDC116), we found that at exon-level, all expressed exons of the stated 247 

genes were deemed to possess causal associations. For example, rs2736340 is a causal cis-eQTL for all 248 

thirteen exons of BLK and for all three exons of FAM167A (S5 Table). These data suggest that gene-249 

level analysis is capturing associations where all - or the majority of exons - are modulated by the cis-250 

eQTL in a causal manner.  251 

 252 

We found that within the SLE associated loci that showed evidence of a shared causal variant with a 253 

cis-eQTL (Table 3), there were many instances in which the proposed causal cis-eQTL modulated 254 

expression of only a single expression element. This enabled us to resolve the potential regulatory effect 255 

of the causal cis-eQTL to a particular transcript, exon, junction, or intron (S5 Table). We were able to 256 

resolve to a single expression element in nine of the twelve candidate SNP-gene pairs. For example, 257 

rs9782955 is a causal cis-eQTL for LYST at junction-level for only a single junction (chr1:235915471-258 

235916344; cis-eQTL P=1.3x10-03; JLIM P=2.0x10-04). We provide depicted examples of this isolation 259 

analysis for candidate genes IKZF2 (S5 Figure), UBE2L3 (S6 Figure), and LYST (S7 Figure). Clearly 260 

when only the minority of exons are effected – which we found occurred in nine of twelve association 261 

pairs - gene-level analysis conceals the cis-eQTL association. 262 

 263 

We provide a worked example of resolving the causal mechanism(s) using RNA-Seq for the novel 264 

association rs2304256 with TYK2 (Figure 2). The top panel of Figure 2A shows the genetic association 265 

to SLE at the 19p13.2 susceptibility locus tagged by lead SNP rs2304256 (P=1.54x10-12). Multiple 266 

tightly correlated SNPs span the gene body and the 3¢ region of TYK2 – which encodes Tyrosine Kinase 267 

2 - thought to be involved in the initiation of type I IFN signalling [33]. In the panel below, we plot the 268 
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gene-level association of all SNPs in cis to TYK2 and show no significant association of rs3204256 with 269 

TYK2 expression (P=0.18). At exon-, and intron-level, we were able to classify rs2304256 as a causal 270 

cis-eQTL for a single exon (chr19: 10475527-10475724; cis-eQTL P=2.58x10-09; JLIM P<10-04) and 271 

single intron (chr19: 10473333-10475290; P=2.20x10-08; JLIM P=2x10-04) of TYK2 respectively as 272 

shown in the bottom two panels of Figure 2A. We show the exon and intron labelling of TYK2 in further 273 

detail in S8 Fig. We found strong correlation of association P-values of the SLE GWAS and the P-274 

values of TYK2 cis-eQTLs against at exon-level and intron-level, but not at gene-level; strengthening 275 

our observation that rs2304256 is a causal cis-eQTL for TYK2 at these resolutions (Figure 2B). The risk 276 

allele rs2304256 [C] was found to be associated with decreased expression of the TYK2 exon and 277 

increased expression of the TYK2 intron (Figure 2C). By plotting the cis-eQTL P-values alongside the 278 

JLIM P-values for all exons and introns of TYK2 against rs2304256 (Figure 2D), we clearly show that 279 

only a single exon and a single intron of TYK2 colocalize with the SLE association signal – marked by 280 

an asterisk (note that rs2304256 is a strong cis-eQTL for many introns of TYK2 but only shares a causal 281 

variant with one intron). We show the genomic location of the affected exon and intron of TYK2 in 282 

Figure 2E (exon 8 and the intron between exons 9 and 10 – N.B that exons and introns are numbered 283 

based on their inclusion in the cis-eQTL analysis and some maybe omitted from analysis due to no 284 

expression). Intron 9-10 of TYK2 is clearly ‘expressed’ in LCLs according to transcription levels 285 

assayed by RNA-Seq on LCLs (GM12878) from ENCODE (Figure 2E).  286 

 287 

Interestingly, rs2304256 (marked by an asterisk in Figure 2E) is a missense variant (V362F) within the 288 

affected exon 8 of TYK2. The PolyPhen prediction of this substitution is predicted to be benign and, to 289 

the best of our knowledge, no investigation has isolated the functional effect of this particular amino 290 

acid change. We do not believe the cis-eQTL at exon 8 to be a result of variation at rs3204256 and 291 

mapping biases, as the alignability of 75mers by GEM from ENCODE is predicted to be robust around 292 

exon 8 (Figure 2E). In fact, rs3204256 [C] is the reference allele yet is associated with decreased 293 

expression of exon 8.  294 

 295 
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In conclusion, we have found an interesting and novel mechanism that would have been concealed by 296 

gene-level analysis that involves the risk allele of a missense SNP associated with decreased expression 297 

of a single exon of TYK2 but increased expression of the neighbouring intron. Whether the cis-eQTL 298 

effect and missense variation act in a combinatorial manner and whether the intron is truly retained or 299 

if it is derived from an unannotated transcript of TYK2 is an interesting line of investigation. 300 

 301 

Detection of cis-eQTLs and candidate-genes of autoimmune disease using RNA-Seq 302 

We re-performed our integrative cis-eQTL analysis with the same Geuvadis RNA-Seq dataset in LCLs 303 

using association data from twenty autoimmune diseases. This was to firstly reiterate the importance of 304 

leveraging RNA-Seq in GWAS interpretation and to secondly demonstrate that our findings in SLE 305 

persisted across other immunological traits. As the raw genetic association data were not available for 306 

all twenty diseases, we were unable to implement the JLIM pipeline which requires densely typed or 307 

imputed GWAS summary-level statistics. We therefore opted to use the Regulatory Trait Concordance 308 

(RTC) method, which requires full genotype-level data for the expression trait, but only the marker 309 

identifier for the lead SNP of the disease association trait (see methods for a description of the RTC 310 

method). We stringently controlled our integrative cis-eQTL analysis for multiple testing to limit 311 

potential false positive findings of overlapping association signals. To do this, we applied a Bonferroni 312 

correction to nominal cis-eQTL P-values separately per disease and per RNA-Seq quantification type 313 

(i.e. at exon-level, cis-eQTL P-values were corrected for the total number of exons tested in cis the 314 

associated SNPs of the single disease in hand). A similar strategy was adopted by the authors of the 315 

JLIM package who corrected separately for specific disease and cell type combinations [9]. We 316 

rigorously defined causal cis-eQTLs, as associations with PBF < 0.05 and RTC > 0.95. An overview of 317 

the analysis pipeline is depicted in S9 Figure and S10 Figure. Using an r2 cut-off of 0.8 and a 100kb 318 

limit, we pruned the 752 associated SNPs from the twenty human autoimmune diseases from the 319 

Immunobase resource (S6 Table) to obtain 560 independent susceptibility loci. Again, we only 320 

considered common (MAF >5%), autosomal loci outside of the MHC.  321 

 322 
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Our findings confirmed our previous results from the SLE investigation and again support the gene-323 

level study using the JLIM package from Chun et al [9]. As before, we found that only 5% (28 of the 324 

560 loci) of autoimmune susceptibility loci were deemed to share causal variants with cis-eQTLs using 325 

either gene- or transcript-level analysis (Figure 3A). Exon-level analysis more than doubled the yield 326 

to 13% (72 of the 560 loci) with junction-, and intron-level analysis also outperforming gene-level (10% 327 

and 8% respectively). When combining all RNA-Seq quantification types, we could define 20% of 328 

autoimmune associated loci (110 of the 560 loci) as being candidate causal cis-eQTLs - which 329 

corroborates our previous estimate in SLE using the JLIM package (23.7%). 330 

 331 

By separating causal cis-eQTL associations out by quantification type, we found over half (65%) were 332 

detected at exon-level, and considerable overlap of cis-eQTL associations existed between both types 333 

(Figure 3B). Unlike in our SLE analysis, gene- and isoform-level analysis did capture a small fraction 334 

of causal cis-eQTLs that were not captured at exon-level. Our data therefore suggest that although exon- 335 

and junction-level, and to a lesser extent intron-level analysis, capture most candidate-causal cis-336 

eQTLs. It is necessary to prolife gene-expression at all quantification types to avoid misinterpretation 337 

of the functional impact of disease associated SNPs.  338 

 339 

We mapped the causal cis-eQTLs detected by all RNA-Seq quantification types back to the diseases to 340 

which they are associated (Figure 3C). Interestingly, we observed the diseases that fell below the 20% 341 

average comprised autoimmune disorders related to the gut: celiac disease (7%), inflammatory bowel 342 

disease (14%), Crohn’s disease (16%), and ulcerative colitis (18%). These observations are likely to be 343 

a result of the cellular expression specificity of associated genes in colonic tissue and in T-cells [34]. 344 

Correspondingly, we observed an above-average frequency of causal cis-eQTLs detected in SLE (22%) 345 

and primary biliary cirrhosis (37%); diseases in which the pathogenic role of B-lymphocytes and 346 

autoantibody production is well documented [34]. Note that there are 60 SLE GWAS associations in 347 

this analysis as these originate from three independent GWA studies (S6 Table). We further broke down 348 

our results per disease by RNA-Seq quantification type (Figure 3D) and in all cases, the greatest 349 

frequency of causal cis-eQTLs and candidate genes were captured by exon- and junction-level analyses. 350 
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 351 

Web resource for functional interpretation of association studies of autoimmune disease 352 

We provide our analysis as a web resource (found at www.insidegen.com) for researchers to lookup 353 

causal cis-eQTLs and candidate genes from the twenty autoimmune diseases detected across the five 354 

RNA-Seq quantification types. The data are sub-settable and exportable by SNP ID, gene, RNA-Seq 355 

resolution, genomic position, and association to specific autoimmune diseases.  356 

 357 

Causal cis-eQTLs localise to discrete chromatin regulatory elements 358 

The causal variants underling cis-eQTL associations at the five RNA-Seq quantification types were 359 

often independent (Figure 1) and a previous investigation has suggested that causal variants of gene-360 

level and transcript-level cis-eQTLs reside in discrete functional elements of the genome [18]. We 361 

therefore investigated whether this notion held true across the five RNA-Seq quantification types tested 362 

in this study. To accomplish this, we selected the causal cis-eQTLs from the twenty autoimmune 363 

diseases interrogated, and per quantification type, tested for enrichment of these SNPs across various 364 

chromatin regulatory elements taken from the Roadmap Epigenomics Project in LCLs (using both the 365 

Roadmap chromatin state model and the positions of histone modifications). We implemented the 366 

permutation-based GoShifter algorithm to test for enrichment of causal cis-eQTLs and tightly correlated 367 

variants (r2>0.8) in genomic functional annotations in LCLs (see methods) [25]. Results of this analysis 368 

are depicted in Figure 4. We found the 28 gene-level cis-eQTLs were enriched in two chromatin marks: 369 

strong enhancers (P=0.036) and H3K27ac occupancy sites – a marker of active enhancers (P=0.002). 370 

Transcript-level cis-eQTLs were also enriched in H3K27ac occupancy sites (P=0.039) but were not 371 

enriched in any other marks. The 72 exon-level cis-eQTLs were additionally enriched in active 372 

promoters (P=0.017). Interestingly, the 54 causal cis-eQTLs detected at junction-level were found to 373 

be enriched in weak enhancers only (P=0.002); whilst the 43 intron-level cis-eQTLs were enriched in 374 

chromatin states predicted to be involved in transcriptional elongation (P=0.001; 83% of intron-level 375 

cis-eQTLs). Disease relevant cis-eQTLs detected at different expression phenotypes using RNA-Seq 376 

clearly localise to largely discrete functional elements of the genome.  377 
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 378 

We quantified the number of causal cis-eQTLs and tightly correlated variants (r2>0.8) per quantification 379 

type that were predicted to be alter splice site consensus sequences of the target genes (assessed by 380 

Sequence Ontology for the hg19 GENCODE v12 reference annotation). We found only two of the 28 381 

(7%) gene-level cis-eQTLs disrupted consensus splice-sites for their target genes compared to the 14% 382 

and 13% detected at exon- and junction-level respectively (Figure 4C). Our data suggest that although 383 

exon- and junction- level analysis leads to the greatest frequency of causal cis-eQTLs, the majority at 384 

this resolution cannot be explained directly by variation in annotated splice site consensus sequences 385 

(splice region/donor/acceptor/ variants).  386 

  387 
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Discussion 388 

Elucidation of the functional consequences of non-coding genetic variation in human disease is a major 389 

objective of medical genomics [35]. Integrative studies that map disease-associated eQTLs in relevant 390 

cell types and physiological conditions are proving essential in progression towards this goal through 391 

identification of causal SNPs, candidate-genes, and illumination of molecular mechanisms [36]. In 392 

autoimmune disease, where there is considerable overlap of immunopathology, integrative eQTL 393 

investigations have been able to connect discrete aetiological pathways, cell types, and epigenetic 394 

modifications, to particular clinical manifestations [2,34,36,37]. Emerging evidence however has 395 

suggested that only a minority (~25%) of autoimmune associated SNPs share casual variants with basal-396 

level cis-eQTLs in primary immune cell-types [9].  397 

 398 

Genetic variation can influence expression at every stage of the gene regulatory cascade - from 399 

chromatin dynamics, to RNA folding, stability, and splicing, and protein translation [21]. It is now well 400 

documented that SNPs affecting these units of expression vary strikingly in their genomic positions and 401 

localisation to specific epigenetic marks [18]. The eQTLs that affect pre-transcriptional regulation - 402 

affecting all isoforms of a gene - differ in the proximity to the target gene and effect on translated 403 

isoforms than their co-transcriptional trQTL (transcript ratio QTL) counterparts. Where the effect size 404 

of eQTLs generally increases in relation to transcription start site proximity, trQTLs are distributed 405 

across the transcript body and generally localise to intronic binding sites of splicing factors [18,21]. In 406 

over 57% of genes with both an eQTL influencing overall gene expression and an trQTL affecting the 407 

ratio of each transcript to the gene total, the causal variants for each effect are independent and reside 408 

in distinct regulatory elements of the genome [18]. In fact, three primary molecular mechanisms are 409 

thought to link common genetic variants to complex traits. A large proportion of trait associated SNPs 410 

act via direct effects on pre-mRNA splicing that do not change total mRNA levels [21]. Common 411 

variants also act via alteration of pre-mRNA splicing indirectly through effects on chromatin dynamics 412 

and accessibility. Such chromatin accessibility QTLs are however more likely to alter total mRNA 413 

levels than splicing ratios. Lastly, it is thought that only a minority of trait associated variants have 414 
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direct effects on total gene expression that cannot be explained by changes in chromatin. As RNA-Seq 415 

becomes the convention for genome-wide transcriptomics, it is essential to maximise its ability to 416 

resolve and quantify discrete transcriptomic features so to expose the genetic variants that contribute to 417 

changes in expression and isoform usage. The reasoning for our investigation therefore was to delineate 418 

the limits of microarray and RNA-Seq based eQTL cohorts in the functional annotation of autoimmune 419 

disease association signals.  420 

 421 

To map autoimmune disease associated cis-eQTLs, we interrogated RNA-Seq expression data profiled 422 

at gene-, isoform, exon-, junction-, and intron-level, and tested for a shared genetic effect at each 423 

significant association. As we had densely imputed summary statistics from our SLE GWAS, we opted 424 

to use the Joint Likelihood Mapping (JLIM) framework [9] to test for a shared causal variant between 425 

the disease and cis-eQTL signals. This framework has been rigorously benchmarked against other 426 

colocalisation procedures. Summary statistics were not available for the remaining autoimmune 427 

diseases and therefore we implemented the Regulatory Trait Concordance (RTC) method for these 428 

diseases and set a stringent multiple testing threshold to define causal cis-eQTLs. We found the 429 

estimates of causal cis-eQTLs were near identical between the two methods used (Table 1 and Figure 430 

3A). Exon- and junction-level quantification led to the greatest frequency of causal cis-eQTLs and 431 

candidate genes (exon-level: 13-18%, junction-level: JLIM: 10-11%). We conclusively found that 432 

associated variants were in fact more likely to colocalize with exon- and junction-level cis-eQTLs when 433 

applying a nominal JLIM P-value threshold of <0.01 (Figure 1B and Table 2). Gene-level analysis was 434 

thoroughly outperformed in all cases (5%). Our findings that gene-level analysis explain only 5% of 435 

causal cis-eQTLs corroborate the findings from Chun et al [9] who composed and used the JLIM 436 

framework to annotate variants associated with seven autoimmune diseases (multiple sclerosis, IBD, 437 

Crohn’s disease, ulcerative colitis, T1D, rheumatoid arthritis, and celiac disease). They found that only 438 

16 of the 272 autoimmune associated loci (6%) shared causal variants with cis-eQTLs using gene-level 439 

RNA-Seq (with the same Geuvadis European cohort in LCLs as used herein). In our investigation, we 440 

argue that it is necessary to profile expression at all possible resolutions to diminish the likelihood of 441 

overlooking potentially causal cis-eQTLs. In fact, by combining our results across all resolutions, we 442 
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found that 20-24% of autoimmune loci were candidate-causal cis-eQTLs for at least one target gene. 443 

Our study therefore increases the number of autoimmune loci with shared genetic effects with cis-444 

eQTLs in a single cell type by over four-fold. Interestingly, using microarray data from CD4+ T-cells 445 

Chun et al classified 37 of the 272 autoimmune loci (14%) as causal cis-eQTLs [9] - strengthening the 446 

hypothesis that autoimmune loci (especially those associated with inflammatory diseases of the gut) are 447 

enriched in CD4+ T-cell subsets and the cells themselves are pathogenic [25,34]. Microarray data are 448 

known to underestimate the number of true causal cis-eQTLs [10]. If we assume that by leveraging 449 

RNA-Seq we can increase the number of causal cis-eQTLs four-fold, we hypothesise that as many as 450 

~54% of autoimmune loci may share causal cis-eQTLs with gene expression at multiple resolutions in 451 

CD4+ T-cell populations. A large RNA-Seq based eQTL cohort profiled across many CD4+ T-cell 452 

subsets will therefore be of great use when annotating autoimmune-related traits. We reason that 453 

although using relevant cell types and context-specific conditions will undoubtedly increase our 454 

understanding of how associated variants alter cell physiology and ultimately contribute to disease risk; 455 

it is clearly shown herein that we are only picking the low hanging fruit in current eQTL analyses. We 456 

argue it necessary to reanalyse existing RNA-Seq based eQTL cohorts at multiple resolutions and 457 

ensure new datasets are similarly dissected. Despite the severe multiple testing burden, we also argue 458 

that expression profiling at multiple resolutions using RNA-Seq may be advantageous even when 459 

looking for trans-eQTL effects. As trans-eQTLs are generally more cell-type specific and have a 460 

weaker effect size, we decided not to perform such analyses using the Geuvadis LCL data. Large RNA-461 

Seq based eQTL cohorts in whole-blood will be more suitable for such analysis [19].   462 

 463 

As well as biological reasons for using multiple expression phenotypes for integrative eQTL analysis, 464 

there are also technical factors to consider. Gene-level expression estimates can generally be obtained 465 

in two ways – union-exon based approaches [14,17] and transcript-based approaches [11,12]. In the 466 

former, all overlapping exons of the same gene are merged into union exons, and intersecting exon and 467 

junction reads (including split-reads) are counted to these pseudo-gene boundaries. Using this counting-468 

based approach, it is also possible to quantify meta-exons and junctions easily and with high confidence 469 

by preparing the reference annotation appropriately [13,15,38]. Introns can be quantified in a similar 470 
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manner by inverting the reference annotation between exons and introns [18]. Of note, we found intron-471 

level quantification generated more candidate-causal cis-eQTLs than gene-level (Figure 3A). As the 472 

library was synthesised from poly-A selection, these associations are unlikely due to differences in pre-473 

mRNA abundance. Rather, they are likely derived from either true retained introns in the mature RNA 474 

or from coding exons that are not documented in the reference annotation used. Transcript-based 475 

approaches make use of statistical models and expectation maximization algorithms to distribute reads 476 

among gene isoforms - resulting in isoform expression estimates [11,12]. These estimates can then be 477 

summed to obtain the entire expression estimate of the gene. Greater biological insight is gained from 478 

isoform-level analysis; however, disambiguation of specific transcripts is not trivial due to substantial 479 

sequence commonality of exons and junctions. In fact, we found only 5% of autoimmune loci shared a 480 

causal variant at transcript-level.  481 

 482 

The different approaches used to estimate expression can also lead to significant differences in the 483 

reported counts. Union-based approaches, whilst computationally less expensive, can underestimate 484 

expression levels relative to transcript-based, and this difference becomes more pronounced when the 485 

number of isoforms of a gene increases, and when expression is primarily derived from shorter isoforms 486 

[20]. The Geuvadis study implemented a transcript-based approach to obtain whole-gene expression 487 

estimates. Clearly therefore, a gold standard of reference annotation and eQTL mapping using RNA-488 

Seq is essential for comparative analysis across datasets. Our findings support recent evidence that 489 

suggests exon-level based strategies are more sensitive and specific than conventional gene-level 490 

approaches [22]. Subtle isoform variation and expression of less abundant isoforms are likely to be 491 

masked by gene-level analysis. Exon-level allows for detection of moderate but systematic changes in 492 

gene expression that are not captured at gene-level, and also, gene-level summary counts can be shifted 493 

in the direction of extreme exon outliers [22]. It is therefore important to note that a positive exon-level 494 

eQTL association does not necessarily mean a differential exon-usage or splicing mechanism is 495 

involved; rather a systematic expression effect across the whole gene may exist that is only captured by 496 

the increased sensitivity. Additionally, by combining exon-level with other RNA-Seq quantification 497 

types, inferences can be made on the particular isoforms and functional domains affected by the eQTL 498 
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which can later aid biological interpretation and targeted follow-up investigations [10]. We clearly show 499 

this from our analysis of SLE candidate genes IKZF2 (S5 Figure), UBE2L3 (S6 Figure), LYST (S7 500 

Figure) and TYK2 (Figure 2). For TYK2 we reveal a novel mechanism whereby the associated variant 501 

rs2304256 [C] leads to decreased expression of a single exon and increased expression of a 502 

neighbouring intron (Figure 2). By isolating particular exons, junctions, and introns, one can design 503 

more refined follow-up investigations to study the functional impact of non-coding disease associated 504 

variants. We show how our findings can be leveraged to comprehensively examine GWAS results of 505 

autoimmune diseases. We found nine of the 38 SLE susceptibility loci were causal cis-eQTLs (Table 506 

3) for 12 candidate genes which we later functionally annotated in detail (S4 Table).     507 

 508 

Taken together, we have provided a deeper mechanistic understanding of the genetic regulation of gene 509 

expression in autoimmune disease by profiling the transcriptome at multiple resolutions using RNA-510 

Seq. Similar analyses leveraging RNA-Seq in new and existing datasets using relevant cell types and 511 

context-specific conditions (such as response eQTLs as shown in [39]) will undoubtedly increase our 512 

understanding of how associated variants alter cell physiology and ultimately contribute to disease risk.  513 

  514 
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Materials and Methods 515 

 516 

RNA-Sequencing expression data in lymphoblastoid cell lines 517 

RNA-Sequencing (RNA-Seq) expression data from 373 lymphoblastoid cell lines (LCLs) derived from 518 

four European sub-populations (Utah Residents with Northern and Western European Ancestry, British 519 

in England and Scotland, Finnish in Finland, and Toscani in Italia) of the Geuvadis project [18] were 520 

obtained from the EBI ArrayExpress website under accession: E-GEUV-1. The 89 individuals of the 521 

Geuvadis project from the Yoruba in Ibadan, Nigeria were excluded from this analysis. All individuals 522 

were included as part of the 1000Genomes Project. Expression was profiled using RNA-Seq at five 523 

quantification types: gene-, transcript-, exon-, junction-, and intron-level (the files downloaded and used 524 

in this analysis have the suffix: ‘QuantCount.45N.50FN.samplename.resk10.txt.gz’). Full methods of 525 

expression quantification can be found in the original publication and on the Geuvadis wiki page: 526 

http://geuvadiswiki.crg.es/). We have also provided a breakdown of the quantification methods in S1 527 

Figure. Expression data downloaded represent quantifications that are corrected for sequencing depth 528 

and gene/exon etc length (RPKM). Only expression elements quantified in >50 % of individuals were 529 

kept and Probabilistic Estimation of Expression Residuals (PEER) had been used to remove technical 530 

variation [40]. We transformed all expression data to a standard normal distribution.  531 

In summary, transcripts, splice-junctions, and introns were quantified using Flux Capacitor against the 532 

GENCODE v12 basic reference annotation [16]. Reads belonging to single transcripts were predicted 533 

by deconvolution per observations of paired-reads mapping across all exonic segments of a locus. Gene-534 

level expression was calculated as the sum of all transcripts per gene. Annotated splice junctions were 535 

quantified using split read information, counting the number of reads supporting a given junction. 536 

Intronic regions that are not retained in any mature annotated transcript, and reported mapped reads in 537 

different bins across the intron to distinguish reads stemming from retained introns from those produced 538 

by not yet annotated exons. Meta-exons were quantified by merging all overlapping exonic portions of 539 

a gene into non-redundant units and counting reads within these bins. Reads were excluded when the 540 

read pairs map to two different genes.  541 
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 542 

SLE associated SNPs 543 

SNPs genetically associated to systemic lupus erythematosus (SLE) were taken from the Bentham and 544 

Morris et al 2015 GWAS in persons of European descent [7]. The study comprised a primary GWAS, 545 

with validation through meta-analysis and replication study in an external cohort (7,219 cases, 15,991 546 

controls in total). Independently associated susceptibility loci taken forward for this investigation were 547 

those that passed either genome-wide significance (P<5x10-08) in the primary GWAS or meta-analysis 548 

and/or those that reached significance in the replication study (q<0.01). We defined the lead SNP at 549 

each locus as either being the SNP with the lowest P-value post meta-analysis or the SNP with the 550 

greatest evidence of a missense effect as defined by a Bayes Factor (see original publication). We 551 

omitted non-autosomal associations and those within the Major Histocompatibility Complex (MHC), 552 

and SNPs with a minor allele frequency (MAF) < 0.05. In total, 38 independently associated SLE 553 

associated GWAS SNPs were taken forward for investigation (S1 Table). Each susceptibility locus had 554 

previously been imputed to the level of 1000 Genomes Phase3 using a combination of pre-phasing by 555 

the SHAPEIT algorithm and imputation by IMPUTE (see original publication for full details) [7].    556 

 557 

Cis-eQTL analysis and Joint Likelihood Mapping (JLIM) of SLE associated SNPs  558 

 559 

Primary trait summary statistics file 560 

A JLIM index file for each of the 38 SLE associated SNPs was firstly generated by taking the position 561 

of each SNP (hg19) and a creating a 100kb interval in both directions. Summary-level association 562 

statistics were obtained form the Bentham and Morris et al 2015 European SLE GWAS (imputed to 563 

1000Genomes Phase 3). We downloaded summary-level association data (chromosome, position, SNP, 564 

P-value) for all directly typed or imputed SNPs with an IMPUTE info score >0.7 within each of the 38 565 

intervals. The two-sided P-value was transformed into a Z-statistic as described by JLIM.  566 

 567 

Reference LD file 568 
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Genotype files in VCF format for all 373 European individuals of the Geuvadis RNA-Seq project were 569 

obtained from the EBI ArrayExpress under accession: E-GEUV-1. The 41 individuals genotyped on 570 

the Omni 2.5M SNP array had been previously imputed to the Phase 1 v3 release as described [18]; the 571 

remaining had been sequenced as part of the 1000 Genomes Phase1 v3 release (low-coverage whole 572 

genome and high-coverage exome sequencing data). Using VCFtools, we created PLINK binary 573 

ped/map files for each of the 38 intervals and kept only biallelic SNPs with a MAF >0.05, imputation 574 

call-rates > 0.7, Hardy–Weinberg equilibrium P-value >1x10−04 and SNPs with no missing genotypes, 575 

we also only included SNPs that we had primary trait association summary statistics for. These are 576 

referred to as the secondary trait genotype files. We then used the JLIM Perl script fetch.refld0.EUR.pl 577 

to generate the 38 reference LD files from the 373 individuals (the script had been edited to include the 578 

extra 95 Finnish individuals).  579 

 580 

Cis-eQTL analysis 581 

We created a separate PLINK phenotype file (sample ID, normalized expression residual) for each 582 

individual gene, transcript, exon, junction, and intron in cis (within +/-500kb) to the 38 lead SLE GWAS 583 

SNPs. We only included protein-coding, lincRNA, and antisense genes in our analysis as classified by 584 

Ensembl BioMart. Using the chromosome 20 genotype VCF file of the 373 European individuals (E-585 

GEUV-1), we conducted principle component analysis (PCA) and generated an identity-by-state matrix 586 

using the Bioconductor package SNPRelate (S9 Figure) [41]. Based on these results, we decided to 587 

include the first three principle components and the binary imputation status (as 41 individuals had been 588 

genotyped on the Omni 2.5M SNP array were imputed to the Phase 1 v3 release) of the European 589 

individuals (derived from Phase1 and Phase2 1000Genomes releases) in the cis-eQTL analysis so to 590 

minimize biases derived from population structure and imputation status.  591 

We used PLINK to perform cis-eQTL analysis using the ‘--linear’ function, including the above 592 

covariates, for each expression unit (phenotype file) in cis to the 38 loci (secondary trait genotype files). 593 

We performed 10,000 permutations per regression and saved the output of each permutation procedure. 594 

In cis to the 38 SLE SNPs were: 439 genes, 1,448 transcripts (originating from 456 genes), 3,045 exons 595 

(400 genes), 2,886 junctions (332 genes), and 1,855 introns (443 genes).  596 
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 597 

Joint likelihood mapping (JLIM) and multiple testing correction 598 

Per RNA-Seq quantification type, a JLIM configuration file was created using the jlim_gencfg.sh script 599 

and JLIM then run using run_jlim.sh – setting the r2 resolution limit to 0.8. We merged the configuration 600 

files and output files to create the final results table which included the primary and secondary trait 601 

association P-value, the JLIM statistic, and the JLIM P-value by permutation. Multiple testing was 602 

corrected for on the JLIM P-values per RNA-Seq quantification type using a false discovery rate (FDR) 603 

as applied by the authors of JLIM. A JLIM P-value <10-04 means that the JLIM statistic is more extreme 604 

than the permutation (10,000). We classified causal cis-eQTLs as SLE associated variants that share a 605 

single causal variant with a cis-eQTL based on the following: if there existed a nominal cis-eQTL 606 

(P<0.01) with at least one SNP within 100kb of the SNP most associated with disease, the transcription 607 

start site of the expression target was located within +/-500kb of that SNP, and the FDR adjusted JLIM 608 

P-value of the association passed the 5% threshold. Candidate genes modulated by the causal cis-eQTL.  609 

 610 

Functional annotation of SLE associated genes from cis-eQTL analysis 611 

Using publically available resources, we systematically annotated the twelve SLE associated genes that 612 

were classified as being modulated by causal cis-eQTLs. The expression profiles at RNA-level across 613 

multiple cell and tissue types were interrogated in GTEx [42] and the Human Protein Atlas [43] - with 614 

the top three cell/tissue types documented per gene. We noted using Online Mendelian Inheritance in 615 

Man [44] any gene-phenotype relationships by caused by allelic variants and any immune-related 616 

phenotypes of animal models. Protein-protein interactions of candidate genes were taken from the 617 

BioPlex v2.0 interaction network (conducted in HEK293T cells) [45]. Using the ImmunoBase resource 618 

(https://www.immunobase.org/), we looked up each gene and noted if the gene had been prioritized as 619 

the ‘candidate gene’ within the susceptibility locus per publication. Finally, we counted the number 620 

publications from PubMed found using the keywords ‘gene name AND SLE’.  621 

 622 

Associated SNPs from twenty autoimmune diseases 623 
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Autoimmune associated SNPs were taken from the ImmunoBase resource (www.immunobase.org). 624 

This resource comprises summary case-control association statistics from twenty diseases: twelve 625 

originally targeted by the ImmunoChip consortium (ankylosing spondylitis, autoimmune thyroid 626 

disease, celiac disease, Crohn's disease, juvenile idiopathic arthritis, multiple sclerosis, primary biliary 627 

cirrhosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, ulcerative 628 

colitis), and eight others (alopecia areata, inflammatory bowel disease, IgE and allergic sensitization, 629 

narcolepsy, primary sclerosing cholangitis, Sjogren syndrome, systemic scleroderma, vitiligo).  630 

The curated studies and their corresponding references used in this analysis are presented in S6 Table. 631 

For each disease, we took the lead SNPs which were defined as a genome-wide significant SNP with 632 

the lowest reported P-value in a locus. Associations on the X-chromosome and within the MHC and 633 

SNPs with minor allele frequency < 5% were omitted from analysis, leaving 752 associated SNPs. We 634 

pruned these loci using the ‘--indep-pairwise’ function of PLINK 1.9 with a window size of 100kb and 635 

an r2 threshold of 0.8, to create an independent subset of 560 loci.  636 

 637 

Integrative cis-eQTL analysis of twenty autoimmune diseases with RNA-Seq 638 

An overview of the integration pipeline using the twenty autoimmune diseases against the Geuvadis 639 

RNA-Seq cohort in 373 European LCLs is depicted in S10 Figure. Genotype data of the 373 individuals 640 

were transformed and quality controlled as previously described in the above methods sections (biallelic 641 

SNPs kept with a MAF >0.05, imputation call-rates > 0.7, Hardy–Weinberg equilibrium P-value 642 

>1x10−04).  643 

We opted to use the Regulatory Trait Concordance (RTC) method to assess the likelihood of a shared 644 

causal variant between the disease association and the cis-eQTL signal [46]. This method requires full 645 

genotype-level data for the expression trait but only the marker identifier for the lead SNP of the disease 646 

association trait. SNPs within the 560 associated loci for the expression trait were firstly classified 647 

according to their position in relation to recombination hotspots (based on genome-wide estimates of 648 

hotspot intervals) [47]. Normalized gene expression residuals (PEER factor normalized RPKM) for 649 

each quantification type were transformed to standard normal and the first three principle components 650 
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used as covariates in the cis-eQTL model as well as the binary imputation status (as previously 651 

described above). All cis-eQTL association testing was performed using a liner regression model in R. 652 

Cis-eQTL mapping was performed for the lead SNP and all SNPs within the hotspot recombination 653 

interval against protein-coding, lincRNA, and antisense expression elements (genes, transcripts, exons 654 

etc.) within +/-500kb of the lead SNP. In cis to the 560 loci were: 7,633 genes, 27,257 transcripts 655 

(originating from 7,310 genes), 52,651 exons (5,435 genes), 48,627 junctions (4,237 genes), 34,946 656 

introns (6,233 genes).  657 

For each cis-eQTL association, the residuals from the linear-regression of the best cis-asQTL (lowest 658 

association P-value within the hotspot interval) were extracted. Linear regression was then performed 659 

using all SNPs within the defined hotspot interval against these residuals. The RTC score was then 660 

calculated as (NSNPs - RankGWAS SNP / NSNPs). Where NSNPs is the total number of SNPs in the recombination 661 

hotspot interval, and RankGWAS SNP is the rank of the GWAS SNP association P-value against all other 662 

SNPs in the interval from the liner association against the residuals of the best cis-eQTL.  663 

We rigorously adjusted for multiple testing of cis-eQTL P-values using a Bonferroni correction per 664 

quantification type (corrected for number of genes, isoforms, exons, junctions, and introns tested) and 665 

per disease – as we wanted to keep our analysis as close to the authors of JLIM who themselves also 666 

adjusted per cell type and per disease. We stringently defined causal cis-eQTLs as associations with 667 

expression PBF < 0.05 and an RTC score > 0.95. Candidate genes are modulated by the cis-eQTL.   668 

 669 

Functional enrichment of causal cis-eQTLs in chromatin regulatory elements  670 

To test for enrichment of causal cis-eQTL associations in chromatin regulatory elements we 671 

implemented the Genomic Annotation Shifter (GoShifter) package [25]. Chromatin regulatory elements 672 

were divided into two categories: chromatin state segmentation and histone marks. The genomic 673 

coordinates of the fifteen predicted chromatin state segmentations (active promoter, strong enhancer, 674 

insulator etc.) for LCLs (in the GM12878 cell-line) were downloaded from the UCSC Table browser 675 

(track name: wgEncodeBroadHmmGm12878HMM). Histone marks and DNase hypersensitivity sites 676 

were obtained from the NIH Roadmap Epigenomics Project for LCLs (GM12878) in NarrowPeak 677 
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format. Sites were filtered for genome-wide significance using an FDR threshold of 0.01 and peak 678 

widths harmonised to 200bp in length centred on the peak summit (as used in the GoShifter publication).  679 

We obtained all SNPs in strong LD (r2 > 0.8) with the causal cis-eQTLs by using the getLD.sh script 680 

from GoShifter (interrogating the 1000Genomes Project for Phase3 Europeans). Per quantification type, 681 

we then calculated the proportion of loci in which at least one SNP in LD overlapped a chromatin 682 

regulatory element (conducted one at a time per chromatin mark). The coordinates of the chromatin 683 

marks were then randomly shifted, whilst retaining the positions of the SNPs, and frequency of overlap 684 

re-calculated. This was carried out over 1,000 permutations to draw the null distribution. The P-value 685 

was calculated as the proportion of iterations for which the number of overlapping loci was equal to or 686 

greater than that for the tested SNPs (P < 0.05 used as significance threshold).   687 

 688 

Data visualisation and online resource 689 

R version 3.3.1 and ggplot2 was used to create heatmaps, box-plots, and correlation plots. Genes were 690 

plotted in UCSC Genome Browser [48] and regional association plots in LocusZoom [49]. To access 691 

the online results table, visit www.insidegen.com and follow the link ‘Lupus’ then ‘data for scientists’. 692 

The table is under title: Expression data associated with different autoimmune diseases.   693 

	 	694 
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Figure captions 840 

 841 

Figure 1. Pairwise comparison of cis-eQTL and JLIM P-values for matched SNP-gene pairs 842 

This figure is complementary to the data in Table 2 and is derived from cis-eQTL analysis of the 38 843 

SLE associated SNPs using RNA-Seq and implementation of the JLIM method to assess evidence of a 844 

shared causal variant. (A) We measured the Pearson’s correlation separately of all cis-eQTL and JLIM 845 

P-values between matched SNP-gene cis-eQTL pairs across the five RNA-Seq quantification types. We 846 

only considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association 847 

P-value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons, 848 

junctions, and introns were annotated with the same gene symbol, we selected the associations that 849 

minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across RNA-Seq 850 

quantification types. Note the weak JLIM P-value correlation of matched transcript-level and junction-851 

level cis-eQTLs suggesting they stem from independent causal variants. (B) Correlation plots of 852 

matches SNP-gene cis-eQTL pairs as described above (red: cis-eQTL P-value; blue: JLIM P-value). 853 

Note that JLIM P-values often aggregate on the axis rather than on the diagonal suggesting independent 854 

causal variants across different quantification types. (C) An example of the sensitivity of exon-level 855 

analysis relative to gene-level. The majority of nominally significant JLIM P-values (<0.01) for 856 

matched SNP-gene pairs are captured by exon-level analysis and concealed at gene-level (green box: 857 

9%).  858 

 859 

Figure 2. Isolation of potential causal molecular mechanism in TYK2 by SLE cis-eQTL rs2304256 860 

(A) SLE GWAS association plot and cis-eQTL association plot around the 19p13.2 susceptibility locus 861 

tagged by rs2304256. The top panel shows the association plot with SLE that spans the gene body and 862 

3¢ region of TYK2 (Tyrosine Kinase 2). The haplotype block composed of highly correlated SNPs is 863 

highlighted in the red block. The second panel shows the cis-eQTL association plot at gene-level of all 864 

proximal SNPs to TYK2 (no significant association with rs2304256 is detected). The third panel shows 865 

the same regional association but at exon-level for the most associated exon of TYK2 with rs2304256 – 866 
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the bottom panel is at intron-level for TYK2 (both are highly associated). (B) Correlation of SLE GWAS 867 

P-value and cis-eQTL association P-value for all SNPs in cis to TYK2. We show at gene-level the most 868 

associated SLE SNPs are not cis-eQTLs (top panel). The middle and bottom panels show the same 869 

correlation at exon-level and intron-level and reveal the most associated SNPs to SLE are also the most 870 

associated cis-eQTLs to TYK2. (C) The direction of effect of cis-eQTL rs2304256 with TYK2 at gene-871 

level (top), exon-level (middle), and intron-level (bottom panel). The risk allele is rs2304256 [C]. (D) 872 

The top panel shows cis-eQTL association and JLIM P-values for all exons of TYK2 against rs2304256. 873 

Exon 8 (marked by an asterisk) is defined as having a causal association with rs2304256. The bottom 874 

panel shows the intron-level cis-eQTL of TYK2 against rs2304256. Note many introns are cis-eQTLs 875 

but are not causal with rs2304256. Exons and introns are numbered consecutively from start to end of 876 

gene if they are expressed (note some are not and therefore not included). (E) The genomic location of 877 

the single exon and single intron of TYK2 that are modulated by rs2304256 are highlighted (rs2304256 878 

is marked by an asterisk in red). The bottom two panels show the transcription levels assayed by RNA-879 

Seq on LCLs assayed by ENCODE. Note intron 9-10 of TYK2 is clearly expressed. The alignability of 880 

75-mers by GEM is also shown to show the mapability of reads around rs2304256.  881 

 882 

Figure 3. Breakdown of autoimmune associated causal cis-eQTLs using RNA-Seq 883 

(A) Percentage and number of causal cis-eQTL associations detected per RNA-Seq quantification type, 884 

following LD pruning of associated SNPs from twenty autoimmune diseases to 560 independent 885 

susceptibly loci. The top chart shows the number of causal cis-eQTLs when combining all RNA-Seq 886 

profiling types together (20%). (B) Sharing of causal cis-eQTL associations per quantification type (110 887 

detected in total). Percentage of causal cis-eQTLs captured are shown as a percentage of the 110 total. 888 

(C) Total causal cis-eQTLs per disease across all five levels of RNA-Seq quantification, using the 20 889 

diseases of the ImmunoBase resource. In orange are disease-associated SNPs that show no shared 890 

association with expression across any quantification type. In blue are the disease-associated SNPs that 891 

are also causal cis-eQTLs. (D) Causal cis-eQTLs and candidate genes per disease broken down by 892 

quantification type.  893 

 894 
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Figure 4. Functional annotation of causal autoimmune cis-eQTLs  895 

(A) We took the causal autoimmune cis-eQTLs detected for each RNA-Seq quantification type and 896 

performed enrichment testing for chromatin state segmentation and histone marks in LCLs taken from 897 

the NIH Roadmap Epigenomics Project. We used the GoShifter algorithm to do this (see methods); 898 

which takes all SNPs in strong LD (r2>0.8) with the causal cis-eQTLs and calculates the proportion of 899 

SNPs overlapping chromatin marks, the positions of the marks are then shuffled whilst retaining the 900 

SNP positions, and the fraction of overlap recalculated over 1,000 permutations. A permutation P-value 901 

is then generated – which is annotated in each box (P<0.05 deemed significant). The heat colour is 902 

representative of the permutation P-value. Significant enrichment tests are highlighted in bold. The total 903 

number of causal cis-eQTLs per quantification type are annotated at the bottom of the heatmap. (B) The 904 

percentage of causal cis-eQTLs in chromatin regulatory marks per quantification type. An asterisk 905 

shows that this level of enrichment is deemed to be significant as shown in panel A. (C) The percentage 906 

of causal cis-eQTLs in chromatin regulatory marks per quantification type that are or are highly 907 

correlated (r2>0.8) with SNPs that alter splice site consensus sequences of the target genes (assessed by 908 

Sequence Ontology for the hg19 GENCODE v12 reference annotation).  909 

  910 
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Supporting information 911 

 912 

S1 Table. SLE GWAS in persons of European Descent (38 loci taken forward for cis-eQTL analysis). 913 

 914 

S2 Table. SLE associated cis-eQTL associations deemed to be causal as defined by the JLIM pipeline 915 

(this is the output from JLIM). 916 

 917 

S3 Table. All SLE associated cis-eQTL associations by the JLIM pipeline – causal and non-causal 918 

associations (provided as a separate XLSX). 919 

 920 

S4 Table. Functional annotation of SLE candidate genes detected by cis-eQTL analysis using RNA-921 

Seq. 922 

 923 

S5 Table. Number of expression elements that are deemed to have a causal association with the SLE 924 

risk SNP. 925 

 926 

S6 Table. Curated studies of the ImmunoBase Resource. 927 

 928 

S1 Fig. Overview of the five quantification types used to estimate gene expression using RNA-Seq. 929 

 930 

S2 Fig. Distribution of joint likelihood P-values across RNA-Seq quantification types with 38 SLE 931 

GWAS loci. 932 

 933 

S3 Fig. Specificity of cis-eQTLs and candidate genes identified by joint likelihood mapping using SLE 934 

GWAS across the five RNA-Seq quantification types. 935 

 936 
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S4 Fig. Regional association plots (+/-250kb) of SLE GWAS in Europeans – showing the nine loci that 937 

are causal cis-eQTLs and candidate genes from JLIM analysis. The full results of this analysis are in 938 

Table 3 of the manuscript and the summary results from the GWAS as provided in S1 Table. Candidate 939 

genes are highlighted in red. 940 

 941 

S5 Fig. SLE associated SNP rs3768792 is a causal cis-eQTL for IKZF2 for a single exon and a single 942 

intron.  943 

 944 

S6 Fig. SLE associated SNP rs7444 is a causal cis-eQTL for UBE2L3 for a single transcript and a single 945 

exon.   946 

 947 

S7 Fig. SLE associated SNP rs9872955 is a causal cis-eQTL for LYST for a single junction.   948 

 949 

S8 Fig. Exon and intron numbers for TYK2 (corresponding to Figure 2). The transcription start site is 950 

on the right of the diagram. 951 

 952 

S9 Fig. Processing of genotype data and principle component analysis. Genotype data in VCF format 953 

of 1000Genomes individuals were downloaded from E-GEUV1 (ArrayExpress). Insertion-deletion 954 

sites were removed, and bi-allelic SNPs kept only. SNPs with HWE < 0.0001 were removed and the 955 

VCF converted to 0,1,2 format using PLINK. Principle component analysis was performed on genotype 956 

data using the R package SNPRelate on chromosome 20. The first 3 components were included in the 957 

eQTL regression model as well as the binary imputation status (see methods). 958 

 959 

S10 Fig: Overview of integrative cis-eQTL analysis pipeline using 20 autoimmune diseases   960 
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Tables 962 

 963 

Table 1. Number of cis-eQTLs driven by the same causal variant as the SLE disease association (total number of SLE loci: 38) 

 Gene Transcript Exon Junction Intron Total 

Causal cis-eQTLsa 2 2 7 4 4 9b 

% of 38 SLE GWAS loci 5.3 5.3 18.4 10.5 10.5 23.7 

% of total causal eQTLs 22.2 22.2 77.8 44.4 44.4 100 

Candidate genes 3 4 9 5 5 12 

Expression targetsc 2 7 24 18 13 64 
The lead SNPs from the Bentham and Morris et al 2015 GWAS in persons of European descent were functionally annotated by cis-eQTL analysis in the Geuvadis RNA-Seq cohort in 
lymphoblastoid cell lines using RNA-Seq quantification profiled at five resolutions (gene, transcript, exon, junction, and intron). Only SNPs reaching genome-wide significance, not 
conditional peaks, outside of the major histocompatibility complex loci, and with minor allele frequency > 5% were included leaving 38 SLE lead SNPs in total. All SLE loci were 
densely imputed to the 1000 Genomes Phase 3 Imputation Panel as described in methods.  
All 38 loci (+/-100kb of each lead SNP) comprised a nominally significant cis-eQTL (P<0.01) for at least one gene within +/-500kb of the lead SNP at each resolution of RNA-Seq. 
Evidence of a single shared causal variant at each locus was assessed using the Joint Likelihood Mapping (JLIM) algorithm as described in methods.  
aNumber of loci where the disease association is consistent with a single shared effect for at least one cis-eQTL (P<0.01 and JLIM FDR adjusted P<0.05). bThe total number of unique 
causal cis-eQTLs across all RNA-Seq quantification types. cExpression targets corresponds to the quantification type in hand (i.e. number of exons at exon-level).  
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 965 
Table 2. Pairwise comparison of the number of cis-eQTLs with a nominal JLIM P-value < 0.01 

Quantification 
type X 

Quantification 
type Y 

Total matched cis-eQTLs 
(SNP ~ gene pairs P < 0.01) 

% Shared causal variant in  
X and Y (JLIM P < 0.01) 

% Shared causal variant in  
X only (JLIM P < 0.01) 

% Shared causal variant in 
Y only (JLIM P < 0.01) 

% No shared causal variant in 
X and Y (JLIM P < 0.01) 

Correlation of JLIM P  
(X ~ Y) 

Gene Transcript 267 3.00 1.87 5.62 89.51 0.63 
Gene Exon 296 3.72 1.01 8.78 86.49 0.57 
Gene Junction 229 3.49 1.75 11.79 82.97 0.46 
Gene Intron 252 1.59 3.57 5.56 89.29 0.35 

Transcript Exon 325 3.08 5.54 9.54 81.85 0.38 
Transcript Junction 261 3.07 5.75 12.64 78.54 0.29 
Transcript Intron 279 2.15 6.45 5.73 85.66 0.24 

Exon Junction 294 6.12 7.82 9.86 76.19 0.44 
Exon Intron 314 2.87 10.83 4.78 81.53 0.34 

Junction Intron 275 3.27 13.45 5.09 78.18 0.20 
This table is complementary to the data in Figure 1. We only considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association P-value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons, junctions, and 
introns were annotated with the same gene symbol, we selected the associations that minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across RNA-Seq quantification types. The first row for example is a pairwise comparison of matched SNP-
gene pairs between gene-level and transcript-level quantification (of which there are 267 matched pairs). 3% of these are deemed nominally causal (JLIM P < 0.01) at both gene-level and transcript, 1.87% at gene-level only and 5.62% at transcript-level only. 89.51% of 
matched SNP-gene pairs between gene- and transcript-level do not possess a nominally causal cis-eQTL. Pearson’s correlation was performed for matched SNP-gene JLIM P-value pairs. These data show that exon- and junction-level analysis consistently capture the majority 
of potentially causal cis-eQTL associations. JLIM: joint likelihood mapping.   

  966 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 17, 2017. ; https://doi.org/10.1101/128728doi: bioRxiv preprint 

https://doi.org/10.1101/128728
http://creativecommons.org/licenses/by/4.0/


 42 

 967 
 968 

Table 3. Nine SLE loci contain cis-eQTLs driven by the same variant as the disease association 
 Gene Transcript Exon Junction Intron 
Lead SNP Gene eQTL Pa JLIM P eQTL P JLIM P eQTL P JLIM P eQTL P JLIM P eQTL P JLIM P 
rs2476601 PHTF1 - - 2.2 x 10-3 6.2 x 10-1 5.0 x 10-8 1 8.4 x 10-47 1 1.4 x 10-4 1.0 x 10-4 
rs1801274 ARHGAP30 2.4 x 10-6 8.1 x 10-1 - - 1.1 x 10-4 2.0 x 10-4 9.4 x 10-3 7.4 x 10-3 1.2 x 10-3 4.8 x 10-1 
rs9782955 LYST 5.4 x 10-3 3.90 x 10-1 8.0 x 10-6 9.8 x 10-1 1.6 x 10-3 4.6 x 10-3 1.3 x 10-3 2.0 x 10-4 1.0 x 10-5 5.0 x 10-1 
rs3768792 IKZF2 - - 1.5 x 10-3 7.7 x 10-1 1.9 x 10-4 3.0 x 10-4 1.0 x 10-5 9.0 x 10-1 1.1 x 10-5 2.0 x 10-4 
rs10028805 BANK1 1.8 x 10-3 3.1 x 10-3 4.9 x 10-3 3.2 x 10-3 1.8 x 10-5 4.0 x 10-4 2.5 x 10-4 2.0 x 10-4 1.8 x 10-4 9.7 x 10-1 

rs2736340 BLK 3.2 x 10-26 < 10-4 1.0 x 10-9 < 10-4 1.4 x 10-31 < 10-4 7.6 x 10-28 < 10-4 3.1 x 10-24 < 10-4 
FAM167A 2.3 x 10-40 < 10-4 4.4 x 10-45 < 10-4 5.1 x 10-46 < 10-4 1.5 x 10-22 < 10-4 7.4 x 10-15 < 10-4 

rs2286672 RABEP1 1.4 x 10-3 5.1 x 10-2 1.3 x 10-4 9.4 x 10-1 7.4 x 10-5 4.0 x 10-4 4.5 x 10-4 7.0 x 10-4 1.3 x 10-4 8.5 x 10-1 

rs2304256 TYK2 1.2 x 10-3 7.6 x 10-1 9.9 x 10-6 9.9 x 10-1 2.5 x 10-9 < 10-4 1.3 x 10-4 3.0 x 10-3 2.2 x 10-9 2.0 x 10-4 
ATG4D - - 3.8 x 10-3 7.2 x 10-3 6.4 x 10-5 3.8 x 10-3 3.8 x 10-4 2.0 x 10-4 6.6 x 10-5 9.7 x 10-1 

rs7444 UBE2L3 5.7 x 10-3 2.0 x 10-1 5.9 x 10-14 < 10-4 9.9 x 10-5 < 10-4 5.1 x 10-5 9.5 x 10-1 1.2 x 10-3 9.0 x 10-1 
CCDC116 2.5 x 10-5 5.0 x 10-4 1.4 x 10-6 3.0 x 10-4 4.9 x 10-4 4.0 x 10-4 - - - - 

Nine of the 38 SLE loci (24%) were found to be driven by the same causal variant as the disease association across all five RNA-Seq quantification types in LCLs (cis-eQTL P<0.01 and joint likelihood of shared association FDR<0.05). Bold 
type indicates associations that show evidence of a shared causal variant for cis-eQTL and disease. aMinimum cis-eQTL P-value for any SNP within 100 kb of the lead SNP. Dashes (–) indicate genes that were either not detected or had 
minimum cis-eQTL P>0.01 in the RNA-Seq quantification type in hand. JLIM P-values <10-4 indicates the JLIM statistic is more extreme than permutation. JLIM: joint likelihood mapping. If multiple SNP-unit associations are deemed to 
be causal (i.e. one SNP shows a causal association to two exons of the same gene, the association with the smallest JLIM P-value is reported).  
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