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ABSTRACT 

Concerns regarding reproducibility of resting-state functional magnetic resonance imaging 

(R-fMRI) findings have been raised. Little is known about how to operationally define R-fMRI 

reproducibility and to what extent it is affected by multiple comparison correction strategies 

and sample size. We comprehensively assessed two aspects of reproducibility, test-retest 

reliability and replicability, on widely used R-fMRI metrics in both between-subject contrasts of 

sex differences and within-subject comparisons of eyes-open and eyes-closed (EOEC) 

conditions. We noted permutation test with Threshold-Free Cluster Enhancement (TFCE), a 

strict multiple comparison correction strategy, reached the best balance between family-wise 

error rate (under 5%) and test-retest reliability / replicability (e.g., 0.68 for test-retest reliability 

and 0.25 for replicability of amplitude of low-frequency fluctuations (ALFF) for between-subject 

sex differences, 0.49 for replicability of ALFF for within-subject EOEC differences). Although 

R-fMRI indices attained moderate reliabilities, they replicated poorly in distinct datasets 

(replicability < 0.3 for between-subject sex differences, < 0.5 for within-subject EOEC 

differences). By randomly drawing different sample sizes from a single site, we found reliability, 

sensitivity and positive predictive value (PPV) rose as sample size increased. Small sample 

sizes (e.g., < 80 (40 per group)) not only minimized power (sensitivity < 2%), but also 

decreased the likelihood that significant results reflect “true” effects (PPV < 0.26) in sex 

differences. Our findings have implications for how to select multiple comparison correction 

strategies and highlight the importance of sufficiently large sample sizes in R-fMRI studies to 

enhance reproducibility. 
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1. INTRODUCTION 

The ability to replicate an entire experiment is essential to the scientific method (Open Science 

Collaboration, 2015). Much of the scientific enterprise, such as providing detailed descriptions 

of methods and peer-reviewing manuscripts before publication, is intended to optimize 

agreement of results when performed by different researchers. Such efforts are crucial 

because science cannot progress if results cannot be reproduced (Blackford, 2017). However, 

concerns regarding the reproducibility of biomedical and psychological research are 

increasingly being expressed (Open Science Collaboration, 2015; Ioannidis, 2005; Prinz, et al., 

2011). This is particularly relevant to the field of resting-state functional magnetic resonance 

imaging (R-fMRI) (Carp, 2012a; Poldrack, et al., 2017), which has appeared to be a fruitful 

approach for basic, translational and clinical neuroscience (Biswal, et al., 1995; Fox and 

Raichle, 2007; Fox, et al., 2005). Beyond its reported sensitivity to developmental, aging and 

pathological processes (Hjelmervik, et al., 2014; Luo, et al., 2011; Tomasi and Volkow, 2012), 

R-fMRI is being increasingly adopted due to the relative ease of data collection and 

amenability to aggregation across studies and sites (Zuo, et al., 2014). These advantages are 

counterbalanced by high data dimensionality, relatively small sample size of most studies and 

the great amount of flexibility in data analysis, all of which threaten reproducibility.  

 

Some aspects of R-fMRI reproducibility have been examined. Intra-class correlation (ICC), 

which models the ratio of between-subject variability to within-subject variability (Caceres, et 

al., 2009; Shrout and Fleiss, 1979), has been used to assess test-retest reliability, and 

moderate-to-high ICC has been reported for most R-fMRI metrics (Cao, et al., 2014; Shehzad, 
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et al., 2009; Zuo and Xing, 2014; Zuo, et al., 2013; Zuo, et al., 2010a). However, ICC may be 

less informative, given the common practice in the field of reporting P- or Z-thresholded 

statistical maps (Kristo, et al., 2014). Different thresholding techniques vary in the sets and 

numbers of voxels, it is crucial to evaluate the test-rest reliability and replicability of the 

supra-threshold voxels. Thus, the first focus of the current study is to quantify the reliability 

replicability of R-fMRI metrics with thresholding. We compared differences of common 

metrics between males and females (between-subject) and between eyes-open (EO) and 

eyes-closed (EC) conditions (within-subject) and determined how well the significant clusters 

were reproduced on retests (test-retest reliability) or in totally different datasets/studies 

(replicability). Sex differences were chosen because sex is an objective category that can be 

readily investigated across large scale datasets. To wit, differences in brain function between 

men and women have been well documented in the R-fMRI literature (Allen, et al., 2011; 

et al., 2015; Bluhm, et al., 2008; Filippi, et al., 2013; Hjelmervik, et al., 2014; Kilpatrick, et al., 

2015; Scheinost, et al., 2015; Tomasi and Volkow, 2012; Xu, et al., 2015). We chose to 

examine differences between EO and EC conditions to test whether our approach 

to within-subject designs. EO and EC differences have been reported to differ considerably in 

R-fMRI studies (Yan, et al., 2009; Zou, et al., 2009). 

 

Test-rest reliability and replicability of the supra-threshold voxels are highly sensitive to the 

statistical threshold used to define significance. Such reproducibility was reported decreased 

as the significance threshold is enhanced (Duncan, et al., 2009). However, liberalizing the 

statistical threshold can dramatically increase the family-wise error rate (FWER), as recently 
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demonstrated systematically for widely-used statistical methods (Eklund, et al., 2016). The 

trade-off between reproducibility and FWER requires a comprehensive investigation into 

different statistical approaches for multiple comparison correction to try to reach a balance. 

Accordingly, the impact of statistical method, especially multiple comparison correction 

strategies, on reproducibility is the second focus of the present study.  

 

A third concern is the low statistical power of small samples, which are prevalent in the field of 

neuroscience. Carp reviewed over 200 fMRI studies published since 2007, and found the 

median sample size was 15 for one-group studies and 14.75 per group for two-group studies, 

resulting in unacceptable statistical power for most studies (Carp, 2012b). Another recent 

analysis (Poldrack, et al., 2017), reviewed 1131 sample sizes in neuroimaging studies over 

more than 20 years. Despite the steady increase in sample size (with median sample size up 

to 28.5 for single-group studies and 19 per group in multi-group studies), the median study in 

2015 was only sufficiently powered to detect effects greater than 0.75. Button and colleagues 

calculated the statistical power of neuroscience studies with data extracted from 

meta-analyses. They found that the median statistical power of studies in the field of 

neuroscience was optimistically estimated to be between ~8% and ~31% (Button, et al., 

2013). Moreover, the statistical findings of low power studies are unlikely to reflect true effects 

(i.e., they have low positive predictive value, PPV) (Button, et al., 2013; Ioannidis, 2005). 

Although these concerns have long been known, empirical evidence of how sample size 

influences reliability, as well as power and positive predictive value (PPV) of R-fMRI data are 

still scant. The attempt to quantify sensitivity and PPV has been hampered by the problem of 
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how to define truly positive results. Here, we define findings that are reproducible in many 

datasets as the “gold standard”, which makes it possible to quantify sensitivity and PPV as a 

function of sample size. 

 

To address the above issues, we systematically analyzed four independent datasets to 

quantify both the test-retest reliability and replicability of R-fMRI data and investigate how 

multiple comparison correction strategies impact them. We also considered how sample size 

might influence reliability as well as power and PPV. Five common R-fMRI metrics, namely, 

the amplitude of low frequency fluctuation (ALFF) and its fractional version (fALFF), regional 

homogeneity (ReHo), degree centrality (DC) and voxel-mirrored homotopic connectivity 

(VMHC) were employed to encompass possible sex and EOEC differences. We conclude by 

recommending a guideline based on this quantitative analysis to address the challenge of 

reproducibility in R-fMRI research. 

 

2. MATERIALS AND METHODS 

2.1. Participants and Imaging Protocols 

We performed our analyses on four independent datasets. Three of them are publicly 

available via the International Neuroimaging Data-sharing Initiative (INDI, data available at 

http://fcon_1000.projects.nitrc.org): the Consortium for Reliability and Reproducibility (CORR) 

(Zuo, et al., 2014), the 1000 Functional Connectomes Project (FCP) (Biswal, et al., 2010) and 

Beijing EOEC1 (Liu, et al., 2013). The fourth dataset (Beijing EOEC2) was available through 

The R-fMRI Maps Project (http://rfmri.org/BeijingEOEC2_Raw), and was the basis of 
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previous studies (Yan, et al., 2009; Zou, et al., 2009). The first two datasets were analyzed to 

evaluate test-retest reliability, replicability and the influence of sample size on 

between-subject sex differences (for details, see Tables S1-S2). The latter two datasets were 

employed to explore whether our approach generalizes to within-subject studies (EO and EC 

differences). In the former two datasets, participants were instructed to simply rest while 

awake in a scanner (mostly 3T, although three FCP sites used 1.5T scanners). In the latter 

two datasets, participants were instructed to open or to close their eyes while being scanned 

at 3T (8 minutes per session, EO and EC order counterbalanced across subjects). The 

R-fMRI data were acquired using an echo-planer imaging (EPI) sequence. A high-resolution 

T1-weighted anatomical image was also obtained for each participant for spatial 

normalization and localization. The corresponding institutional review boards of each 

collection center approved or provided waivers for the sharing of anonymized data, which 

were obtained with written informed consent from each participant.  

 

The first dataset originally included 549 subjects who underwent 2 scanning sessions (mean 

time range = 205 ± 161 days) available at CORR. Of those, 420 subjects (age 21.45�2.67, 

208 females, henceforth the “CORR dataset”, see Table S1 for details) were selected after 

quality control with the following exclusion criteria. To avoid the confounds of development or 

aging, only young adults (age between 18 and 32) were included. Subjects were excluded if 

their functional scans showed excessive motion, indexed by mean frame-wise displacement 

(FD) (Jenkinson, et al., 2002) exceeding 0.2mm. Participants with poor T1 or functional 

images, low quality normalization or inadequate brain coverage were also excluded. The 
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second dataset consisted of 716 young healthy subjects (age 22.34�2.92, 420 females, 

henceforth the “FCP dataset”, see Table S2 for details) selected from FCP with the same 

inclusion criteria as the CORR dataset. The third dataset consisted of 48 healthy subjects 

(age 22.42�2.24, 24 females, henceforth the “Beijing EOEC1 dataset”). The fourth dataset 

included 20 subjects (age 20.95�1.82, 10 females, henceforth the “Beijing EOEC2 dataset”). 

The same inclusion criteria as the CORR and FCP datasets were applied, but no subject was 

excluded. For further information on the datasets including scanning protocols please refer to 

the CORR (http://fcon_1000.projects.nitrc.org/indi/CoRR/html/index.html), FCP 

(http://fcon_1000.projects.nitrc.org/index.html) and Beijing EOEC1 

(http://fcon_1000.projects.nitrc.org/indi/retro/BeijingEOEC.html) websites. The Beijing 

EOEC2 dataset used the same scanning parameters as the Beijing EOEC1 dataset; the 

detailed protocol can be found in Yan et al. (2009). 

 

2.2. Preprocessing 

Unless otherwise stated, all preprocessing was performed using the Data Processing 

Assistant for Resting-State fMRI (DPARSF, Yan and Zang, 2010, http://rfmri.org/DPARSF), 

which is based on Statistical Parametric Mapping (SPM, http://www.fil.ion.ucl.ac.uk/spm) and 

the toolbox for Data Processing & Analysis of Brain Imaging (DPABI, Yan, et al., 2016, 

http://rfmri.org/DPABI). First, the initial 10 volumes were discarded, and slice-timing 

correction was performed with all volume slices corrected for different signal acquisition time 

by shifting the signal measured in each slice relative to the acquisition of the slice at the 

mid-point of each repetition time (TR). Then, the time series of images for each subject were 
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realigned using a six-parameter (rigid body) linear transformation with a two-pass procedure 

(registered to the first image and then registered to the mean of the images after the first 

re-alignment). After realignment, individual T1-weighted MPRAGE images were co-registered 

to the mean functional image using a 6 degree-of-freedom linear transformation without 

re-sampling and then segmented into gray matter (GM), white matter (WM) and cerebrospinal 

fluid (CSF) (Ashburner and Friston, 2005). Finally, transformations from individual native 

space to MNI space were computed with the Diffeomorphic Anatomical Registration Through 

Exponentiated Lie algebra (DARTEL) tool (Ashburner, 2007). 

 

2.3. Nuisance Regression 

To minimize head motion confounds, we utilized the Friston 24-parameter model (Friston, et 

al., 1996) to regress out head motion effects. The Friston 24-parameter model (i.e., 6 head 

motion parameters, 6 head motion parameters one time point before, and the 12 

corresponding squared items) was chosen based on prior work that higher-order models 

remove head motion effects better (Satterthwaite, et al., 2013; Yan, et al., 2013a). Additionally, 

mean FD was used to address the residual effects of motion in group analyses. Mean FD is 

derived from Jenkinson's relative root mean square (RMS) algorithm (Jenkinson, et al., 2002). 

As global signal regression (GSR) is still a controversial practice in the R-fMRI field, and 

given the recent advice that analyses with and without GSR be considered complementary 

(Murphy and Fox, 2016), we evaluated results both with and without GSR. Other sources of 

spurious variance (WM and CSF signals) were also removed from the data through linear 

regression to reduce respiratory and cardiac effects. Additionally, linear trends were included 
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as a regressor to account for drifts in the blood oxygen level dependent (BOLD) signal. We 

performed temporal bandpass filtering (0.01-0.1Hz) on all time series except for ALFF and 

fALFF analyses. Of note, temporal bandpass filtering was performed after nuisance 

regression, thus would not reintroduce nuisance-related variation (Hallquist, et al., 2013). 

 

2.4. A Broad Array of R-fMRI Metrics 

Amplitude of Low Frequency Fluctuations (ALFF) (Zang, et al., 2007) and fractional ALFF 

(fALFF) (Zou, et al., 2008): ALFF is the mean of amplitudes within a specific frequency 

domain (here, 0.01-0.1Hz) from a fast Fourier transform of a voxel’s time course. fALFF is a 

normalized version of ALFF and represents the relative contribution of specific oscillations to 

the whole detectable frequency range. 

Regional Homogeneity (ReHo) (Zang, et al., 2004): ReHo is a rank-based Kendall’s 

coefficient of concordance (KCC) that assesses the synchronization among a given voxel and 

its nearest neighbors’ (here, 26 voxels) time courses. 

Degree Centrality (DC) (Buckner, et al., 2009; Zuo, et al., 2012): DC is the number or sum of 

weights of significant connections for a voxel. Here, we calculated the weighted sum of 

positive correlations by requiring each connection’s correlation coefficient to exceed a 

threshold of r > 0.25 (Buckner, et al., 2009). 

Voxel-mirrored homotopic connectivity (VMHC, Anderson, et al., 2011; Zuo, et al., 2010b): 

VMHC corresponds to the functional connectivity between any pair of symmetric 

inter-hemispheric voxels - that is, the Pearson’s correlation coefficient between the time 

series of each voxel and that of its counterpart voxel at the same location in the opposite 
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hemisphere. The resultant VMHC values were Fisher-Z transformed. For better 

correspondence between symmetric voxels, VMHC requires that individual functional data be 

further registered to a symmetric template and smoothed (4 mm FWHM). The group 

averaged symmetric template was created by first computing a mean normalized T1 image 

across participants, and then this image was averaged with its left–right mirrored version 

(Zuo, et al., 2010b). 

 

Before entering into further analyses, all of the metric maps were Z-standardized (subtracting 

the mean value for the entire brain from each voxel, and dividing by the corresponding 

standard deviation) and then smoothed (4 mm FWHM), except for VMHC (which were 

smoothed and Fisher-Z transformed beforehand). To verify if our conclusions were affected 

by smoothing kernel, we have also re-analyzed our data with 8mm FWHM smoothing kernel.  

 

2.5. Strategies to Correct for Multiple Comparisons 

We first evaluated the FWER of 31 different statistical strategies (see Tables 1 and 2). 

Statistical maps were thresholded using eight versions of the one-tailed Gaussian random 

field theory (GRF) (Friston, et al., 1994; Nichols and Hayasaka, 2003) correction procedure, 

as implemented in DPABI (Yan, et al., 2016). These eight thresholding approaches used 

single-voxel thresholds (or cluster-defining thresholds) of P < 0.01 (Z > 2.33), P < 0.005 (Z > 

2.58), P < 0.001 (Z > 3.09), or P < 0.0005 (Z > 3.29), and cluster size thresholds of P < 0.05, 

or P < 0.025. Given that GRF correction is only performed on one-tailed tests, we set P < 

0.025 to perform two one-tailed tests, which is equivalent to two-tailed P < 0.05 after 
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Bonferroni correction. Furthermore, we evaluated FWER of two versions of Monte Carlo 

simulation (simulated 1000 times) based corrections (Ledberg, et al., 1998), which is 

implemented in AFNI (AFNI 3dClustSim, https://afni.nimh.nih.gov/afni/doc/manual/3dclust.pdf) 

and DPABI (DPABI AlphaSim), separately. We note the bug reported in Eklund et al. (2016) 

had been fixed in the software versions used in the current study. Each version of Monte 

Carlo simulation based correction used the same eight thresholding approaches used for 

GRF. Statistical maps were also thresholded using seven kinds of permutation tests (PT), as 

implemented in PALM (Winkler, et al., 2016) and integrated into DPABI. For PALM 

approaches, two-tailed P < 0.05 (compared to 1000 permutations in FWER evaluation, and 

5000 permutations for the remaining analyses) was set as the final threshold. For 

cluster-extent PT, voxel thresholds (cluster-defining thresholds) of two-tailed P < 0.02 (Z > 

2.33), P < 0.01 (Z > 2.58), P < 0.002 (Z > 3.09) and P < 0.001 (Z > 3.29) were set. The 

threshold-free cluster enhancement (TFCE) (Smith and Nichols, 2009) and voxel-wise 

correction (VOX) with PT were also tested at two-tailed P < 0.05. Finally, false discovery rate 

(FDR) (Genovese, et al., 2002) correction was also examined.  

 

2.6. Evaluating FWER of Different Strategies to Correct for Multiple Comparisons 

To calculate the FWERs of different approaches for multiple comparison corrections, we 

performed permutation tests (1000 permutations in this study). For this permutation test, we 

first selected 106 female young subjects from the Beijing site within the FCP dataset to 

maximize sample homogeneity. Then, 40 subjects were randomly picked from the set of 106 

subjects and randomly assigned to two equal groups (20 per group). Because assignment 
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was fully random, no significant results should have emerged when these two groups’ R-fMRI 

metrics were compared. Detection of a significant difference after multiple comparison 

correction indicated a family wise error had occurred. Thus, FWER was calculated as the 

proportion of such false positives in all comparisons within the permutation test. 

 

2.7. Assessing Test-Retest Reliability and Replicability of Different Datasets with 

Regard to Between-Subject Sex Differences and Within-Subject EOEC 

Differences 

We first assessed the test-retest reliability and replicability of sex differences with CORR and 

FCP datasets. For each of the first two datasets, we employed a general linear model to 

examine the sex differences in R-fMRI measures while taking the confounding effects of age, 

head motion (mean FD) and site into account. Sex effect was estimated by the t value of the 

regressor corresponding to sex. Then the group difference map was corrected using different 

multiple comparison correction approaches described above to obtain statistically significant 

clusters.  

 

The Dice coefficient was used to evaluate test-retest reliability as calculated by the following 

equation:  

���� �
2 � 	�������

	� 
 		
 

 

Where V1 and V2 represents the number of supra-threshold voxels in test 1 and test 2 of the 

CORR dataset, and Voverlap stands for the number of supra-threshold voxels in both tests.  
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To calculate replicability, we selected the voxels which were significant in both sessions in the 

CORR dataset, and then calculated how they overlapped with the significant voxels in the 

FCP dataset. We used the same Dice formula, with V1 representing the number of voxels 

significant in both sessions in the CORR dataset, V2 representing the number of voxels 

significant in the FCP dataset, and Voverlap standing for the number of voxels that were 

significant in both sessions in the CORR dataset as well as significant in the FCP dataset. 

 

For each multiple comparison correction strategy, we calculated test-retest reliability and 

replicability. To figure out which multiple comparison correction strategy yielded the best 

test-retest reliability and replicability, a non-parametric one-way repeated measures ANOVA 

(Friedman’s test) on 5 metrics by 2 preprocessing strategies (with and without GSR) was 

conducted, and followed by post-hoc analyses corrected by Tukey's honest significant 

difference criterion.  

 

Finally, we defined the voxels that were significant in both CORR sessions and in the FCP 

dataset as the “gold standard” for further evaluation (see section below). We believe these 

consistently significant voxels reflect true differences between males and females based on 

their high test-retest reliability and replicability in two large sample datasets.  

 

To see whether our findings on between-subject sex differences generalized to within-subject 

EOEC differences, we further evaluated the replicability of the EOEC differences across two 
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Beijing EOEC datasets. For each dataset, paired-t tests between EC and EO conditions were 

performed to examine EOEC differences in R-fMRI measures, while taking the confounding 

effect of head motion (mean FD) into account. Of note, between-subject factors (e.g., age 

and sex) did not need to be covaried in this within-subject design. Then, the EOEC difference 

map was corrected using the different previously described multiple comparison correction 

approaches to obtain statistically significant clusters. Similar to the sex difference analyses, 

the Dice coefficient was employed to calculate the replicability of EOEC differences between 

two Beijing EOEC datasets. Then, a non-parametric one-way repeated measures ANOVA 

(Friedman’s test) on 5 metrics by 2 preprocessing strategies (with and without GSR) and 

post-hoc analyses corrected by Tukey's honest significant difference criterion were 

conducted to evaluate all multiple comparison correction strategies with regard to replicability 

of EOEC differences. 

 

2.8. Influences of Sample Size on Test-retest Reliability, Sensitivity and Positive 

Predictive Value 

To estimate the influence of sample size on test-retest reliability, we tested the Dice 

coefficient of two tests (test/retest) as a function of sample size 

(k�{30,40,50,60,70,80,90,100,120,140,160,180,200}). First, we randomized 100 times the 

order of female participants (and separately the order of male participants) from a single site 

(the “SWU 4” site in the CORR dataset, which has two sessions of 116 males and 105 

females, for details see Table S1). Second, for each randomization of each k, we selected the 

first k/2 female participants and the first k/2 male participants. We then performed two-sample 
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t-tests on the ALFF maps (without GSR) between males and females (with age and head 

motion as covariates) and then applied permutation test with TFCE (which performs better, 

see Results) to threshold the results. Finally, we calculated the Dice coefficient between the 

thresholded maps (binarized) of the first test and the retest, for each of the 100 

randomizations and each k.  

 

We also evaluated the sensitivity and PPV of the voxels which were significant in both tests of 

each randomization and each k, based on the “gold standard” defined in the prior section. 

The sensitivity of a study measures the proportion of positives that were correctly identified as 

such (Altman and Bland, 1994), while PPV is the probability that a positive finding reflects a 

true effect (Ioannidis, 2005). A recent analysis (Button, et al., 2013) demonstrated that studies 

with small sample size not only reduce the chance of detecting a true effect, but also reduce 

the probability that significant findings reflect a true effect. To determine this effect of sample 

size, the sensitivity and PPV were calculated: 

���������� �
��

�� 
 ��
 

��	 �
��

�� 
 ��
 

where TP is equal to the number of “true positive voxels”, which were statistically significant 

and reflected the true effect. As the true effect is difficult to define, we used the voxels that 

were significant in both CORR sessions and in the FCP dataset (the “gold standard” voxels 

defined above) after PT correction with TFCE. FN represents the number of “false negative 

voxels” that were statistically insignificant but reflected a true effect. And FP stands for the 

number of the false positive voxels that were statistically significant but did not reflect a true 
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effect.  

 

Of note, the key source codes for the analyses of the current study have been released at 

https://github.com/Chaogan-Yan/PaperScripts/tree/master/Chen_2017_HBM, thus readers 

can check, replicate or make use of our scripts in their future studies. In addition, maps of all 

the R-fMRI metrics of the four datasets used in the current study have been openly shared 

through the R-fMRI Maps Project (http://rfmri.org/maps), thus readers can easily replicate the 

current results based on these shared maps. 

 

3. RESULTS 

3.1. FWER of Different Multiple Comparison Correction Strategies  

To evaluate the test-retest reliability and replicability of R-fMRI metrics, an appropriate 

statistical threshold and multiple comparison correction strategy must be defined in advance. 

The appropriate multiple comparison correction strategy must control the false positive rate at 

an acceptable level. Here, we evaluated 31 different multiple comparison correction 

strategies with 5 different R-fMRI metrics by 2 different preprocessing strategies (with and 

without GSR) in 106 female young adults (selected from the Beijing site of the FCP dataset). 

Based on the group differences of two randomly assigned groups (20 subjects per group, 

permuted 1000 times), we calculated FWER for each multiple comparison correction strategy. 

Table 1 presents FWERs and cluster sizes of GRF and Monte Carlo Simulation based 

correction strategies on ALFF without GSR. FWERs of other metrics with and without GSR 

can be found in supplementary materials (Tables S3-S11). For FWERs under GRF and 
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Monte Carlo Simulation based corrections, the liberal voxel P thresholds (cluster-defining 

threshold) (P < 0.01 (Z > 2.33) and P < 0.005 (Z > 2.58)) far exceeded nominal 5% level 

(Table 1, Figure 1 & Tables S3-S11). Furthermore, as most researchers are interested in 

two-tailed effects (e.g., both patients > controls and patients < controls), if they perform 

one-tailed thresholding twice (i.e., each tail P < 0.05), then the final FWER is higher than the 

nominal 5% level. Only if the researcher corrects the two tests of each tail (e.g., Bonferroni 

correction, each tail controlled at P < 0.025), can the FWER reach the nominal 5% level. For 

example, GRF was almost valid under the strictest threshold (voxel-wise P < 0.0005 and 

cluster-wise P < 0.025, each tail): FWER of all metrics under 6.35% (the upper limit of 

approximate theoretical 95% confidence interval of nominal 5%) except for DC (Table 2). 

However, for Monte Carlo Simulation based corrections, the cluster size for thresholding is 

looser (smaller) than GRF (Tables 1, S3-S11), thus the FWER is higher than GRF: there were 

much more FWERs exceeded 6.35% even under the strictest threshold, especially for DPABI 

AlphaSim (Table 2). These findings were replicated when we re-analyzed the data with 8mm 

FWMH smoothing kernel in preprocessing (Figure S1, Table 2 last column and Table S12).  

 

3.2. Test-retest Reliabilities of R-fMRI Metrics under Different Multiple Comparison 

Correction Strategies with Regard to Between-Subject Sex Differences 

After evaluating the FWER, we systematically evaluated the test-retest reliabilities of five 

R-fMRI metrics under 31 different multiple comparison correction strategies on the CORR 

dataset (Tables 3 and S13). On average, test-retest reliability reached 0.50 (SD: 0.13, Range: 

0.11 ~ 0.75) among different R-fMRI metrics. ALFF, fALFF and ReHo had relatively high 
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test-retest reliabilities: ALFF: 0.66 ± 0.01, fALFF: 0.61 ± 0.09, ReHo: 0.54 ± 0.05. In contrast, 

DC and VMHC had lower test-retest reliabilities: DC: 0.39 ± 0.05, VMHC: 0.43 ± 0.06. 

Interestingly, we found GSR decreased the test-retest reliability of R-fMRI metrics. For 

example, the test-retest reliability of DC decreased from 0.48 to 0.31 under correction of PT 

with TFCE when computed with GSR.  

 

Among those multiple comparison correction strategies that can control FWER under nominal 

5%, we would like to identify which one could achieve the best test-retest reliability. We 

performed a Friedman test on 5 metrics by 2 preprocessing strategies (with and without GSR) 

among 10 strategies of multiple comparison correction: 3 kinds of cluster-based correction 

(i.e., GRF, AFNI 3dClustSim and DPABI AlphaSim, the latter two were added for comparison 

although they cannot always control FWER under nominal 5%) with the strictest threshold 

(voxel-wise P < 0.0005 and cluster-wise P < 0.025, each tail), 6 kinds of PT and FDR (Figure 

2A). The 10 different multiple comparison correction strategies differed significantly 

(Friedman’s chi-square = 35.04, df = 9, P < 0.0001). Further post-hoc analysis revealed that 

PT with TFCE achieved the best test-retest reliability. PT with TFCE had significantly higher 

test-retest reliability than 3 kinds of cluster-based correction (i.e., GRF, AFNI 3dClustSim and 

DPABI AlphaSim) with the strictest threshold (voxel-wise P < 0.0005 and cluster-wise P < 

0.025, each tail), PT (voxel-wise threshold of P < 0.002 (Z > 3.09) and P < 0.001 (Z > 3.29) 

with cluster-wise thresholds of P < 0.05 (two tailed)) and PT with voxel-wise correction (VOX) 

in the post-hoc analysis (P < 0.05, multiple comparison corrected by Tukey's honest 

significant difference criterion) (Figure 2A).  
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In addition, we found test-retest reliabilities under cluster-based correction (i.e., GRF, AFNI 

3dClustSim and DPABI AlphaSim) with looser thresholds (e.g., voxel-wise P < 0.01 with 

cluster-wise P < 0.05, each tail) was higher than those with stricter thresholds (e.g., 

voxel-wise P < 0.0005 and cluster-wise P < 0.025, each tail) (Table S13). However, even at 

the cost of high FWER, cluster-based correction with loose thresholds did not show 

significantly higher test-retest reliability than PT with TFCE. Thus we conclude PT with TFCE 

was best able to balance FWER and test-retest reliability.  

 

3.3. Replicability of R-fMRI Metrics under Different Multiple Comparison Correction 

Strategies with Regard to Between-Subject Sex Differences 

To calculate replicability, we selected the voxels that were significant in both CORR sessions, 

and then calculated their overlap with the significant voxels in the FCP dataset (Tables 4 and 

S14). Generally, replicability was lower than test-retest reliability, achieving a mean of 0.11 

(SD: 0.06, Range: 0.00 ~ 0.28). Under the multiple comparison correction of PT with TFCE, 

ALFF (without GSR) reached a replicability of 0.25. None of the measures reached 

replicability higher than 0.3. This means that even voxels that could be reliably detected in 

two different sessions in the same subjects were difficult to replicate in a totally different 

dataset. This might be due to the many different factors between the two different datasets, 

for example, variation in ethnicity, sequence type, coil type, scanning parameters, participant 

instructions, head-motion restraint techniques, etc.  

 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 1, 2017. ; https://doi.org/10.1101/128645doi: bioRxiv preprint 

https://doi.org/10.1101/128645
http://creativecommons.org/licenses/by/4.0/


 22

A Friedman’s test was conducted to compare replicability under the abovementioned 10 

different multiple comparison correction strategies (Figure 2B). The 10 different multiple 

comparison correction strategies differed significantly (Friedman’s chi-square = 45.73, df = 9, 

P < 10-6). PT with TFCE had significantly higher replicability than PT with VOX in post-hoc 

analysis (P < 0.05, multiple comparison corrected by Tukey's honest significant difference 

criterion) (Figure 2B). Again, we found that, even at the cost of high FWER, cluster-based 

correction with liberal thresholds (voxel-wise P < 0.01 and cluster-wise P < 0.05, each tail) did 

not show significantly higher replicability than PT with TFCE (Table S14).  

 

3.4. Core Brain Regions with Reliable and Replicable Sex Differences  

Sections 3.1 ~ 3.3 showed that PT with TFCE yielded moderate test-retest reliability and 

replicability while maintaining FWER under the nominal 5% level, thus outperforming the 

alternative multiple comparison correction strategies. This allowed us to determine the core 

brain regions which differ by sex in R-fMRI metrics by identifying voxels that were replicated 

across both sessions of the CORR dataset and the FCP dataset when applying PT with 

TFCE correction. As shown in Figure 3, significant differences between males and females 

were reproducibly observed for all R-fMRI metrics. Brain regions with sex differences varied 

across R-fMRI metrics, although they converged at the posterior cingulate cortex (PCC). PCC 

demonstrated lower spontaneous activity in males compared with females in all the metrics 

except for DC (i.e., ALFF, fALFF, ReHo and VMHC). The voxels with replicable sex 

differences were considered the “gold standard” in Section 3.6 to calculate sensitivity and 

PPV with different sample sizes.  
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3.5. Replicability of R-fMRI Metrics under Different Multiple Comparison Correction 

Strategies with Regard to Within-Subject EOEC Differences 

To verify whether our approach generalizes to within-subject design studies, we further 

calculated replicability of significant voxels from two EOEC datasets (Beijing EOEC1 and 

EOEC2 datasets). Again, we used the Dice coefficient to evaluate replicability (see Tables 5 

and S15). Although replicabilities of within-subject EOEC differences were higher than 

between-subject sex differences (Mean: 0.23, SD: 0.13, Range: 0.00 ~ 0.50), overall 

replicability still did not reach adequate levels. Similarly, replicabilities of ALFF (0.30 ± 0.14), 

fALFF (0.19 ± 0.09) and ReHo (0.35 ± 0.10) were higher than those of DC (0.12 ± 0.09) and 

VMHC (0.16 ± 0.07). We then conducted a Friedman’s test to compare replicability under the 

abovementioned 10 different multiple comparison correction strategies . The different multiple 

comparison correction strategies differed significantly (Friedman’s chi-square = 78.61, df = 9, 

P < 10-12). Again, post-hoc analysis revealed that PT with TFCE had the best replicability 

(Figure 2C). PT with TFCE had significantly higher replicability than 3 kinds of cluster-based 

correction (i.e., GRF, AFNI 3dClustSim and DPABI AlphaSim) with strictest threshold 

(voxel-wise P < 0.0005 and cluster-wise P < 0.025, each tail), PT (voxel-wise threshold of P < 

0.002 (Z > 3.09) with cluster-wise thresholds of P < 0.05 (two tailed)), PT with voxel-wise 

correction (VOX) and FDR in the post-hoc analysis (P < 0.05, multiple comparison corrected 

by Tukey's honest significant difference criterion) (Figure 2C). 

 

We further analyzed the spatial locations of significant EOEC differences. As illustrated in 
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Figure 4, replicable significant EOEC differences were observed mainly in bilateral precentral 

and postcentral gyrus (EC > EO) and bilateral occipital cortices (EO > EC).  

 

3.6. Influences of Sample Size on Test-retest Reliability, Sensitivity and PPV 

First, we assessed the test-retest reliability of sex differences in ALFF without GSR across 

different sample sizes (k), which we measured using the Dice coefficient (Figure 5A, Table 6). 

Mean test-retest reliability gradually increased from 0.02 (Dice coefficient, SD = 0.08, k = 30) 

to 0.46 (Dice coefficient, SD = 0.07, k = 200). However, at a classical sample size for R-fMRI 

(k = 60, 30 per group), mean test-retest reliability was only 0.08 (Dice coefficient, Table 6).  

 

For significant voxels in both tests of each randomization and each k, we calculated 

sensitivity (power) and PPV using the previously defined “gold standard” (significant voxels in 

both CORR sessions and in the FCP dataset after correction of PT with TFCE). As shown in 

Figure 5B and Table 6, mean sensitivity increased from 0.0007 (SD = 0.004, k = 30) to 0.43 

(SD = 0.07, k = 200). For PPV, after increasing from 0.02 (SD = 0.09, k = 30) to 0.26 (SD = 

0.24, k = 80), PPV reached an asymptote at around 0.30 (Figure 5C, Table 6). 

 

4. DISCUSSION 

A recent analysis observed that the conclusions drawn from many neuroimaging studies are 

probably irreproducible (Poldrack et al., 2017). Lack of reproducibility may partly be due to (a) 

the abuse of liberal multiple comparison correction strategies and (b) the high prevalence of 

small sample size studies. Here, we provided a comprehensive examination of the impact of 
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different multiple comparison correction strategies and sample size on test-retest reliability 

and replicability across widely used R-fMRI metrics. We found that multiple comparison 

correction strategies with liberal thresholds could yield higher test-retest reliability and 

replicability but at the cost of dramatically increasing FWER to unacceptable levels. We noted 

that permutation test with TFCE, a strict multiple comparison correction strategy, reached the 

best balance between FWER (under 5%) and test-retest reliability and replicability (e.g., 0.68 

test-retest reliability and 0.25 replicability of sex differences in ALFF without GSR). Although 

sex differences in R-fMRI metrics could be detected with moderate test-retest reliabilities, 

they were poorly replicated in a distinct dataset (replicability of sex differences < 0.3). Among 

the brain regions showing the most reproducible sex differences, PCC demonstrated 

consistently lower spontaneous activity in males compared with females. Furthermore, by 

calculating replicabilities with two independent within-subject EOEC datasets, we found that 

the better performance of permutation test with TFCE generalized to within-subject design 

studies. Defining the most reproducible brain regions in two large sample datasets as a “gold 

standard”, and randomly drawing subjects with different sample sizes from one single site, we 

found that both test-retest reliability and sensitivity increased with sample size. However, PPV 

reached a plateau at k=80 (40 per group) and remained around 0.30 even with further sample 

size increases. Here we discuss the implications of our findings on decision-making regarding 

the choice of multiple comparison correction strategies and approach towards addressing the 

challenge of reproducibility. 

 

4.1. Selecting a Multiple Comparison Correction Strategy with Respect to FWER 
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Appropriate multiple comparison correction strategies must control the false positive rate at 

an acceptable level. Our results replicated the findings of prior work (Eklund, et al., 2016), 

which analyzed R-fMRI data with a putative task design to compute FWER in task fMRI 

studies. They also performed between-group comparisons on simulated null task activation 

maps and calculated the FWER. They found an unacceptably high FWER for most widely 

used multiple comparison correction strategies. Our results provide additional evidence from 

group comparisons with a range of R-fMRI metrics. Our results confirmed that multiple 

comparison correction strategies with a liberal threshold (e.g., with voxel wise P < 0.01 and 

cluster wise P < 0.05) led to an unacceptably high FWER, while PT can maintain the FWER 

at nominal 0.05 levels. 

 

Beyond replicating Eklund et al.’s conclusions regarding FWER, two additional points should 

be noted. First, researchers should pay close attention to whether the test is one-tailed or 

two-tailed. As most researchers are interested in two-tailed effects (e.g., both patients > 

controls and patients < controls), if they perform one-tailed thresholding twice (i.e., each tail P 

< 0.05), then the final FWER will be higher than 10% even if the voxel-level p is set to 0.0005 

(Z > 3.29). Such researchers have to correct for the two tests at each tail, that is, researchers 

could perform one-tailed correction twice, with each tail voxel-wise P < 0.0005 and 

cluster-wise P < 0.025. With such a setting in GRF correction, the FWER almost reaches the 

nominal level of 5%. Second, among the cluster-based thresholding strategies of GRF, AFNI 

3dClustSim and DPABI AlphaSim, we recommend the use of GRF. At the strictest level 

(voxel-wise P < 0.0005 and cluster-wise P < 0.025, each tail), GRF is almost valid, while 
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Monte Carlo Simulation based corrections (AFNI 3dClustSim and DPABI AlphaSim) still 

cannot control FWER at nominal 5% level in some cases. DPABI AlphaSim should not be 

used in the future, as it always gives looser cluster size threshold and higher FWER, even at 

a cost of high computational demand. Furthermore, several new options and programs, such 

as the “ACF” option implemented in 3dClustSim, 3dLocalACF and the “ETAC” option in 

3dXClustSim have been proposed to overcome deficits pointed out by Eklund et al. However, 

according to the recent redux by the AFNI group, these approaches were either inefficient in 

reducing FWERs or still under development (Cox, et al., 2017). Thus we did not apply these 

new methods in the current study, but we believe these efforts deserve further investigation in 

future work. 

 

In sum, in considering FWER, eight different multiple comparison correction strategies can be 

used: 1) GRF correction with strict p values (voxel wise P < 0.0005 and cluster wise P < 0.025 

for each tail); 2) four kinds of PT with extent thresholding; 3) PT with TFCE; 4) PT with 

voxel-wise correction; and 5) FDR correction. 

 

4.2. Selecting a Multiple Comparison Correction Strategy with Regard to Test-retest 

Reliability and Replicability 

FWER is not the only criterion in selecting a multiple comparison correction strategy; 

test-retest reliability and replicability may be even more crucial. An appropriate strategy 

should best balance FWER and reproducibility. For example, GRF with liberal thresholds 

(e.g., with voxel wise P < 0.01 and cluster wise P < 0.05) has relatively high test-retest 
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reliability and replicability, but it has unacceptably high FWER. On the other hand, PT with 

voxel-wise correction can control FWER at a low level (< 5%), but results in the lowest 

test-retest reliability and replicability, thus it is also not an appropriate strategy to correct for 

multiple comparisons. Fortunately, PT with TFCE provides a good balance between FWER 

and reproducibility. PT with TFCE can maintain the FWER under 5%, while yielding moderate 

test-retest reliability and replicability, e.g., 0.68 test-retest reliability for ALFF on sex 

differences. Of note, test-retest reliability (sex differences) and replicability (both sex 

differences and EOEC differences) of PT with TFCE were not significantly lower than for the 

liberal GRF threshold (e.g., with voxel wise P < 0.01 and cluster wise P < 0.05).  

 

In considering both FWER as well as test-retest reliability and replicability in both 

between-subject and within-subject design studies, we recommend using PT with TFCE. As 

an approach for defining a cluster-like voxel-wise statistic, TFCE avoids the limitation of 

defining the initial cluster-forming threshold as do other common cluster-based strategy 

thresholding strategies (Smith and Nichols, 2009). TFCE uses the height parameter (H) and 

the extent parameter (E) to enhance cluster-like features in a statistical image. Although 

tweaking of these two parameters is possible, we found the default parameters (H = 2, E = 

0.5) already perform well. Of note, PT with TFCE can be easily performed for many different 

kinds of statistical tests in DPABI, which integrated functions from PALM (Winkler, et al., 

2016). 

 

4.3. Are R-fMRI Findings Reproducible? 
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Concerns regarding the reproducibility of R-fMRI findings are increasing (Poldrack et al., 

2017). Assessing reproducibility is highly sensitive to the statistical threshold used to define 

significance (Rombouts, et al., 1998). After identifying the appropriate statistical approach 

(PT with TFCE), we could evaluate two important aspects of reproducibility, test-retest 

reliability and replicability, in common R-fMRI metrics. We found most R-fMRI metrics 

demonstrated moderate test-retest reliability in between-subject contrasts of sex differences 

(Table 3). Specifically, when computed without GSR, fALFF reached the highest test-retest 

reliability (0.75), followed by ALFF (0.68) and ReHo (0.54), under the correction of PT with 

TFCE. DC (0.48) and VMHC (0.44) had the lowest test-retest reliabilities in between-subject 

comparisons of sex differences. This is consistent with prior studies which reported test-retest 

reliabilities of R-fMRI networks localized by either seed based analysis (Kristo, et al., 2014) or 

independent component analysis (Meindl, et al., 2010; Pinter, et al., 2016), showing moderate 

to high test-retest reliability (between 0.29 and 0.76 in most regions).  

 

Beyond test-retest reliability, a unique contribution of our study is the investigation of 

replicability. That is, to what extent can a finding in one dataset (usually one study) be 

replicated in another dataset (another study)? We found the between-subject replicability of 

sex differences was much lower than test-retest reliability: replicability of all the R-fMRI 

metrics was below 0.3. ALFF had the best balance between test-retest reliability (0.68) and 

replicability (0.25), outperforming the other R-fMRI metrics. Although fALFF reached a high 

test-retest reliability, its replicability was poor (0.06), possibly because it is sensitive to 

variations in repetition time (TR) used in different datasets. Such low replicability should not 
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be surprising, given the substantial differences between two different datasets, e.g., variation 

in ethnicity, sequence type, coil type, scanning parameters, participant instructions and 

head-motion restraint techniques. In evaluating replicabilities of within-subject EOEC 

contrasts, we found better replicability than for between-subject sex differences, likely 

reflecting the much larger effect sizes of within-subject EOEC differences than 

between-subject sex differences (Figure 6). However, this was still not adequate as all 

replicabilities were below 0.5. The best replicability that could be achieved was 0.49 for 

EOEC differences of ALFF under PT correction with TFCE. The present results question the 

generalizability of both between-subject and within-subject results reported in R-fMRI studies, 

and support the suggestion that future studies incorporate advanced data standardization 

techniques (Yan, et al., 2013b) to improve replicability. 

 

It is noteworthy that we found convergent sex differences and EOEC differences across all 

metrics and all datasets, despite low replicability. The most replicable sex difference was 

located in PCC. Greater activity in females versus males was found in PCC, which is similar 

to previous studies (Allen, et al., 2011; Biswal, et al., 2010). As this phenomenon replicated in 

two sessions of the same dataset, and was reproduced in two different datasets, we believe 

this reflects a true sex difference that should be reproducible in future studies. PCC has been 

shown to be more active in females than in males in several fMRI activation experiments of 

working and episodic memory (Filippi, et al., 2013). It has been suggested that the PCC is 

associated with self-referential thoughts, emotions relating to others, remembering the past 

and thinking about the future (Fransson and Marrelec, 2008; Leech and Sharp, 2014; 
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Maddock, et al., 2001), thus our results are consistent with more inward thinking and empathy 

in women compared to men. As for EOEC differences, we found greater activity in EC versus 

EO in precentral and postcentral gyrus and weaker activity in bilateral occipital cortex. Our 

results were in line with previous studies (Marx, et al., 2004; Yang, et al., 2007), indicating a 

subtle and important difference in brain activities between these two states. 

 

4.4. What Can Be Done for Small Sample Size R-fMRI Studies? 

A recent theoretical analysis (Button et al., 2013) highlighted the detrimental effect of low 

statistical power induced by small sample size on reproducibility. We confirmed that the 

reliability of results from small sample size studies was very low. For example, under PT with 

TFCE correction, test-retest reliability was only 0.08�0.17 when k=60 (30 subjects per group), 

which is a “classical” sample size in the R-fMRI field. According to the mathematical model of 

bias in scientific research (Button, et al., 2013), studies with a small sample size not only 

have a reduced chance to detect true effects, but they also reduce the likelihood that a 

statistically significant result reflects a true effect. The current study used empirical data 

(R-fMRI metrics) to confirm that the power (sensitivity) of small sample size comparisons is 

extremely low (around 0.01 when k=60), which is consistent with the finding that the median 

statistical power across 461 neuroimaging studies was 8% (Button, et al., 2013). Further, 

small, underpowered samples are more likely to provide positive results through selective 

analysis and outcome reporting, which are prevalent in R-fMRI studies across a broad range 

of experimental design and data analytic strategies (Carp, 2012a; Poldrack, et al., 2017). 

Thus, our results add to the growing consensus in the field calling for larger sample sizes. 
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Indeed, as sample size increased from k=30 to 200, we found reliability increased steadily 

from 0.02�0.08 to 0.46�0.07, and sensitivity increased from 0.0007�0.0004 to 0.43�0.07. 

Although PPV reached a plateau at k = 80, it increased from 0.02�0.09 (k=30) to 0.30�0.02 

(k=200). Our results quantify the insufficiency of the present classical sample size in the 

R-fMRI field. For studies examining effect sizes similar to or even less than those of sex 

differences, results from a sample size less than 80 (40 per group) should be considered 

preliminary, given their low reliability (< 0.23), sensitivity (< 0.02) and PPV (< 0.26). 

Alternatively, researchers could prefer within-subject design to between-subject design if it’s 

possible, as larger effect size in within-subject design can increase reproducibility in small 

sample size studies, as we demonstrated here in the EOEC difference results. 

 

Another consideration is smoothing kernel in preprocessing. Large smoothing kernels may 

systematically bias or even obscure evidence of underlying difference at the cost of 

anatomical specificity (Friston, et al., 1994; Sacchet and Knutson, 2013), thus we chose a 

relatively small smoothing kernel (4mm FWMH) for preprocessing in the main analyses. We 

have re-analyzed our data with 8mm FWHM smoothing kernel in preprocessing, which 

verified our main conclusions in FWER (Figure S1 and Table S12) and the superiority of PT 

with TFCE (Figure S2 and Tables S16~S18). Interestingly, we found higher smoothness 

(8mm in preprocessing) increased test-retest reliability and replicability. For example, for 

ALFF without GSR under PT with TFCE, replicability of EOEC difference increased from 0.49 

to 0.58 (Table 7). Regarding to sample size effect, PPV kept increasing to 0.4 until k = 180 

(Figure S3 and Table S19). This indicates larger smoothing kernel (8mm) improves 
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reproducibility and is more likely reflecting true effect. However, finding the optimal smoothing 

kernel to balance anatomical specificity and reproducibility is out of the scope of the current 

study, thus needs to be addressed in the future. 

 

Many suggestions have been proposed to address the challenges of reproducibility, e.g., 

establishing large-scale consortia to accumulate big data, sharing custom analysis code, 

following accepted standards for reporting methods, and encouraging replication studies 

(Button, et al., 2013; Poldrack, et al., 2017). Recently, data-sharing initiatives (e.g., 

grassroots efforts such as FCP/INDI, openfMRI, fMRIDC and coordinated efforts such as 

ADNI, HCP, PING and UKBiobank) enable big data research models to address the 

reproducibility challenge. However, raw data sharing requires intensive coordinating efforts, 

huge manpower demands and large-capacity data storing/management facilities. 

Furthermore, sharing raw data entails privacy concerns arising from the possibility of being 

able to identify participants from high dimensional raw data. These concerns, together with 

the demands of data organization and the limitation of large data uploading, prevents the 

wider imaging community from publically sharing valuable brain imaging datasets. The 

R-fMRI Maps project (http://rfmri.org/maps) was proposed to address the above concerns by 

only sharing the final maps of various R-fMRI indices, which only need light data 

storing/uploading requirements and remove the privacy concerns regarding raw data sharing. 

All of the R-fMRI metric maps of the current study have been made available through the 

R-fMRI Maps project, thus readers can easily confirm/reanalyze this data with our shared 

analysis code (https://github.com/Chaogan-Yan/PaperScripts/tree/master/Chen_2017_HBM). 
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Different from efforts to collect and share unthresholded statistical maps of the human brain 

(e.g. NeuroVault.org, Gorgolewski, et al., 2015), the metric maps available through the 

R-fMRI Maps project can be statistically reanalyzed or fed into machine learning algorithms. 

Through the R-fMRI Maps project, we hope to build an unprecedented big data repository of 

brain imaging analyses across a wide variety of individuals: including different neurological 

and psychiatric diseases and disorders, as well as healthy people with different traits. We 

hope the availability of such a big data repository will help to address the challenge of 

reproducibility. 

 

CONCLUSIONS 

To our knowledge, this was the first effort to comprehensively evaluate the impact of different 

strategies to correct for multiple comparisons as well as of sample size on the reproducibility 

of group differences in R-fMRI metrics. Our results revealed that PT with TFCE, a strict 

multiple comparison correction strategy, reached the best balance between FWER and 

test-retest reliability / replicability. We found moderate test-retest reliability of the R-fMRI 

metrics we assessed. By contrast, replicability was low, bringing into question the 

generalizability of results reported in R-fMRI studies. Finally, the present research 

demonstrated that reliability, sensitivity and PPV increase steadily as sample sizes grow. Of 

note, findings from R-fMRI studies with small sample sizes are poorly reliable, as well as 

yielding low sensitivity and PPV, which reinforces calls for increasing sample size in future 

R-fMRI studies. 
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TABLES 
Table 1. Family wise error rate and cluster size of ALFF (smoothness: 7.94×7.31×6.86) without GSR under corrections of Gaussian Random Field 
Theory, AFNI 3dClustSim and DPABI AlphaSim. 
 

Voxel Threshold Cluster 

Threshold 

AFNI 3dClustSim  DPABI AlphaSim  Gaussian Random Field 

（One Tailed Twice） 
Family Wise 

Error Rate 

Cluster Size  Family Wise 

Error Rate 

Cluster Size  Family Wise Error 

Rate 

Cluster Size 

P < 0.01 (Z > 2.33) P < 0.05 
40.0% 66.05±0.73  48.3% 60.24±1.68  36.5% 69.35±1.09 

P < 0.005 (Z > 2.58) P < 0.05 
27.6% 43.59±0.42  34.9% 39.45±1.13  24.5% 46.70±0.75 

P < 0.001 (Z > 3.09) P < 0.05 
11.5% 19.98±0.34  15.8% 18.40±0.61  10.6% 21.29±0.46 

P < 0.0005 (Z > 3.29) P < 0.05 
9.6% 14.53±0.25  12.5% 13.93±0.54  8.2% 15.82±0.39 

P < 0.01 (Z > 2.33) P < 0.025 
30.8% 74.50±1.14  39.0% 67.72±2.36  27.7% 78.96±1.24 

P < 0.005 (Z > 2.58) P < 0.025 
23.7% 47.01±0.59  27.1% 44.48±1.60  18.3% 53.48±0.85 

P < 0.001 (Z > 3.09) P < 0.025 
8.6% 22.63±0.25  10.6% 21.00±0.87  6.8% 24.94±0.41 

P < 0.0005 (Z > 3.29) P < 0.025 
5.8% 17.33±0.22  7.9% 16.03±0.71  5.1% 18.51±0.50 
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Table 2. Family wise error rate under correction of 3 kinds of cluster-based correction with the strictest threshold, 6 versions of Permutation Test 
(PT) based correction as well as False Discovery Rate (FDR) correction. The smoothness in the second row is the estimated effective 
smoothness of the final metric maps feed to statistical analysis, and was different form the applied smoothness (4mm FWHM) in preprocessing. 
The effective smoothness was used in 3 versions of cluster-based correction (i.e., Gaussian Random Field theory correction, AFNI 3dClustSim 
and DPABI AlphaSim). 
 

 Voxel Threshold 
Cluster 

Threshold 

Family Wise Error Rate 

ALFF fALFF ReHo DC VMHC 
ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

ALFF (8mm 

smoothed) 

Smoothness (mm, x×y×z) 
7.94×7.31

×6.86 

7.34×7.42

×7.20 

9.36×8.72

×8.39 

7.86×7.97

×7.81 

6.31×6.87

×6.61 

7.99×7.31

×6.84 

7.32×7.41

×7.19 

9.24×8.56

×8.18 

8.06×8.16

×8.09 

6.11×6.61

×6.37 

11.88×11.53

×11.68 

AFNI 3dClustSim 

(One Tailed) 

P < 0.0005 (Z > 3.29) P < 0.025 

5.8% 6.1% 7.3% 8.5% 6.0% 5.3% 6.6% 6.9% 6.8% 6.4% 5.5% 

DPABI AlphaSim 

(One Tailed) 
7.9% 8.3% 8.5% 10.2% 9.0% 7.8% 7.7% 7.8% 8.3% 9.6% 6.9% 

Gaussian Random 

Field (One Tailed) 
  5.1% 5.5% 4.9% 7.4% 5.2% 4.8% 5.9% 5.3% 5.1% 6.4% 4.4% 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 5.8% 3.6% 5.8% 4.6% 5.2% 4.8% 3.9% 5.5% 5.2% 4.3% 5.3% 

P < 0.01 (Z > 2.58) P < 0.05 5.4% 4.0% 5.7% 4.6% 5.5% 5.3% 3.8% 5.3% 5.0% 4.5% 5.4% 
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P < 0.002 (Z > 3.09) P < 0.05 4.5% 4.1% 5.3% 4.8% 4.2% 4.5% 5.0% 5.1% 4.7% 4.3% 4.4% 

P < 0.001 (Z > 3.29) P < 0.05 4.8% 4.5% 4.5% 4.9% 3.4% 4.3% 4.8% 5.4% 4.2% 3.9% 4.1% 

PT Threshold-Free Cluster Enhancement (TFCE) 4.6% 3.9% 5.7% 5.0% 4.3% 5.3% 4.2% 5.5% 4.7% 4.8% 4.6% 

PT Voxel-Wise Correction (VOX) 4.9% 4.9% 5.7% 3.9% 4.7% 6.0% 4.5% 5.6% 4.0% 4.6% 3.9% 

FDR Correction 3.1% 3.4% 4.4% 2.4% 3.9% 4.1% 2.8% 3.6% 2.4% 3.5% 1.6% 

 
 
 
Table 3. Test-retest reliability of sex differences for all R-fMRI metrics with and without Global Signal Regression (GSR) under correction of 3 
kinds of cluster-based correction with the strictest threshold, 6 kinds of Permutation Test (PT) based correction and False Discovery Rate (FDR) 
correction, calculated between the first and second sessions in the CORR dataset. For test-retest reliability for all the 31 kinds of multiple 
comparison correction strategies, please see Table S13. 
 

   Test-retest Reliability (Dice Coefficient) 

 Voxel Threshold 
Cluster 

Threshold 
ALFF fALFF ReHo DC VMHC 

ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

AFNI 3dClustSim 

(One Tailed) 

P < 0.0005 (Z > 3.29) P < 0.025 

0.65 0.51 0.50 0.34 0.39 0.64 0.48 0.44 0.28 0.24 

DPABI AlphaSim 

(One Tailed) 0.65 0.51 0.49 0.34 0.39 0.64 0.48 0.45 0.27 0.27 

GRF (One Tailed) 0.64 0.51 0.50 0.35 0.39 0.65 0.48 0.43 0.28 0.24 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 0.65 0.70 0.56 0.45 0.40 0.62 0.68 0.45 0.30 0.40 

P < 0.01 (Z > 2.58) P < 0.05 0.67 0.66 0.52 0.32 0.33 0.60 0.63 0.46 0.27 0.32 

P < 0.002 (Z > 3.09) P < 0.05 0.63 0.55 0.51 0.36 0.38 0.63 0.52 0.47 0.23 0.32 

P < 0.001 (Z > 3.29) P < 0.05 0.64 0.51 0.48 0.37 0.38 0.64 0.48 0.44 0.28 0.26 

PT Threshold-Free Cluster Enhancement (TFCE) 0.68 0.75 0.54 0.48 0.44 0.66 0.74 0.44 0.31 0.42 

PT Voxel-Wise Correction (VOX) 0.66 0.34 0.48 0.37 0.22 0.65 0.31 0.38 0.11 0.14 

FDR Correction 0.64 0.67 0.54 0.39 0.37 0.63 0.64 0.47 0.23 0.29 
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Table 4. Replicability of sex differences for all R-fMRI metrics with and without Global Signal Regression (GSR) under correction of 3 kinds of 
cluster-based correction with the strictest threshold, 6 kinds of Permutation Test (PT) based correction and False Discovery Rate (FDR) correction, 
calculated using significant results in both sessions in the CORR dataset and those significant in the FCP dataset. For replicability for all the 31 
kinds of multiple comparison correction strategies, please see Table S14. 
 

   Replicability (Dice Coefficient) 

 Voxel Threshold 
Cluster 

Threshold 
ALFF fALFF ReHo DC VMHC 

ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

AFNI 3dClustSim 

(One Tailed) 

P < 0.0005 (Z > 3.29) P < 0.025 

0.12 0.10 0.07 0.07 0.01 0.10 0.11 0.02 0.08 0.02 

DPABI AlphaSim 

(One Tailed) 
0.13 0.09 0.07 0.07 0.02 0.10 0.11 0.02 0.08 0.02 

GRF (One Tailed) 0.13 0.10 0.07 0.07 0.01 0.10 0.11 0.02 0.08 0.02 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 0.21 0.13 0.14 0.17 0.05 0.21 0.06 0.12 0.22 0.10 

P < 0.01 (Z > 2.58) P < 0.05 0.19 0.11 0.11 0.16 0.02 0.17 0.09 0.08 0.24 0.08 

P < 0.002 (Z > 3.09) P < 0.05 0.14 0.10 0.08 0.11 0.02 0.12 0.10 0.03 0.05 0.03 

P < 0.001 (Z > 3.29) P < 0.05 0.12 0.10 0.07 0.07 0.01 0.10 0.11 0.02 0.08 0.02 

PT Threshold-Free Cluster Enhancement (TFCE) 0.25 0.06 0.13 0.20 0.01 0.25 0.03 0.09 0.26 0.02 

PT Voxel-Wise Correction (VOX) 0.02 0.00 0.01 0.00 0.00 0.01 0.05 0.00 0.00 0.00 
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FDR Correction 0.15 0.06 0.11 0.09 0.02 0.13 0.04 0.05 0.08 0.00 

 

 

 

 

Table 5. Replicability of eyes-open eyes-closed (EOEC) differences for all R-fMRI metrics with and without Global Signal Regression (GSR) under 
correction of 3 kinds of cluster-based correction with the strictest threshold, 6 kinds of Permutation Test (PT) based correction and False 
Discovery Rate (FDR) correction, calculated using significant results in Beijing EOEC1 and EOEC2 datasets. For replicability for all the 31 kinds 
of multiple comparison correction strategies, please see Table S15. 

 

   Replicability (Dice Coefficient) 

 Voxel Threshold 
Cluster 

Threshold 
ALFF fALFF ReHo DC VMHC 

ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

AFNI 3dClustSim 

(One Tailed) 

P < 0.0005 (Z > 3.29) P < 0.025 

0.15 0.11 0.26 0.03 0.10 0.14 0.11 0.31 0.07 0.10 

DPABI AlphaSim 

(One Tailed) 
0.15 0.11 0.26 0.03 0.10 0.14 0.11 0.31 0.07 0.09 

GRF (One Tailed) 0.15 0.11 0.27 0.04 0.10 0.14 0.11 0.30 0.05 0.10 

PT Cluster Extent 

Correction (Two 

Tailed) 

P < 0.02 (Z > 2.33) P < 0.05 0.46 0.27 0.44 0.24 0.21 0.41 0.30 0.49 0.28 0.17 

P < 0.01 (Z > 2.58) P < 0.05 0.39 0.24 0.40 0.20 0.16 0.35 0.21 0.48 0.18 0.21 

P < 0.002 (Z > 3.09) P < 0.05 0.22 0.16 0.32 0.06 0.14 0.19 0.16 0.35 0.09 0.12 

P < 0.001 (Z > 3.29) P < 0.05 0.15 0.11 0.27 0.04 0.10 0.14 0.11 0.30 0.05 0.09 

PT Threshold-Free Cluster Enhancement (TFCE) 0.49 0.31 0.45 0.29 0.20 0.46 0.32 0.47 0.30 0.20 
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PT Voxel-Wise Correction (VOX) 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

FDR Correction 0.09 0.00 0.29 0.03 0.08 0.12 0.00 0.34 0.12 0.10 

 

 

 

Table 6. Test-retest reliability, sensitivity and positive predictive value (PPV) on ALFF (without GSR) across different sample sizes (k). Both mean 
and standard deviation (SD) across 100 randomizations were listed. 

 

Sample Size (k) 
Test-retest Reliability 

(Dice Index) 
Sensitivity PPV 

30 0.02±0.08 0.001±0.004 0.02±0.09 

40 0.03±0.11 0.001±0.01 0.07±0.21 

50 0.05±0.13 0.004±0.01 0.07±0.19 

60 0.08±0.17 0.01±0.02 0.12±0.22 

70 0.16±0.21 0.01±0.02 0.17±0.22 

80 0.23±0.22 0.02±0.03 0.26±0.24 

90 0.28±0.21 0.04±0.04 0.25±0.16 

100 0.32±0.19 0.05±0.04 0.28±0.14 

120 0.36±0.14 0.10±0.06 0.29±0.08 

140 0.39±0.11 0.17±0.08 0.29±0.04 

160 0.39±0.09 0.23±0.09 0.30±0.03 

180 0.42±0.08 0.32±0.09 0.30±0.02 

200 0.46±0.07 0.43±0.07 0.30±0.02 
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Table 7. Test-retest reliability and replicability of sex differences, as well as replicability of eyes-open eyes-closed (EOEC) differences under 

correction of Permutation Test (PT) with Threshold-Free Cluster Enhancement (TFCE), when smoothing kernel in preprocessing was set to 8mm 

FWMH.  

 

 

 

 

 

 

 

 

 

 ALFF fALFF ReHo DC VMHC ALFF 

with GSR 

fALFF 

with GSR 

ReHo 

with GSR 

DC with 

GSR 

VMHC 

with GSR 

Test-retest Reliability (Sex difference) 0.70 0.83 0.63 0.54 0.40 0.69 0.82 0.48 0.27 0.46 

Replicability (Sex difference) 0.35 0.50 0.22 0.20 0.00 0.33 0.54 0.16 0.05 0.00 

Replicability (EOEC difference) 0.58 0.46 0.45 0.33 0.17 0.55 0.49 0.53 0.32 0.18 
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FIGURE LEGENDS 

Figure 1. Family wise error rates of ALFF (without GSR) under 31 kinds of different multiple comparison correction strategies. AFNI 3dClustSim 

and DPABI AlphaSim are two versions of Monte Carlo simulation based correction implemented in AFNI and DPABI, separately. GRF, PT and 

FDR are Gaussian Random Field correction, Permutation Test and False Discovery Rate correction implemented in DPABI, separately. TFCE 

stands for Threshold-Free Cluster Enhancement and VOX stands for Voxel-Wise Correction. Both of them are correction approaches 

accompanied with PT. The red solid line shows the nominal 5% positive false positive rate, and the gray dashed line shows its approximate 

theoretical 95% confidence interval, 3.65%~6.35%.  

 

Figure 2. Results of the Friedman Test of both test-retest reliabilities and replicabilities regarding between-subject sex differences and 

within-subject eyes-open eyes-closed (EOEC) differences on 5 metrics by 2 preprocessing strategies (with and without GSR) among 3 kinds of 

cluster-based correction with the strictest threshold, 6 kinds of Permutation Test (PT) based correction and False Discovery Rate (FDR) 

correction (A: test-retest reliability regarding between-subject sex differences B: replicability regarding between-subject sex differences C: 

replicability regarding within-subject EOEC differences). Larger median rank numbers represent the better reproducibility compared with other 

statistical threshold approaches. PT with TFCE is outlined with red, and those are significantly different from PT with TFCE in reproducibility are 

outlined with yellow (multiple comparison corrected by Tukey's honest significant difference criterion). GRF, PT and FDR stand for Gaussian 
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Random Field correction, Permutation Test and False Discovery Rate correction, separately. All versions of cluster-based corrections are 

one-tailed P values while all versions of PT are two tailed P values. 

 

Figure 3. Sex differences those are significant in both sessions in the CORR dataset as well as significant in the FCP dataset (“gold standard”), 

under the correction of Permutation Test (PT) with Threshold-Free Cluster Enhancement (TFCE). 

 

Figure 4. Eyes-open eyes-closed (EOEC) differences those are significant in 2 EOEC datasets, under the correction of Permutation Test (PT) 

with Threshold-Free Cluster Enhancement (TFCE). Different colors indicate voxels’ EOEC differences are significant in only one dataset (dark 

color) or in both datasets (bright color). 

 

Figure 5. Test-retest reliability (Dice index), sensitivity and positive predictive value (PPV) on ALFF (without GSR) as functions of sample size.  

 

Figure 6. Effect sizes (Cohen’s f2) of between-subject sex differences (A: calculated with the first session from CORR dataset, n = 420) and 

within-subject EOEC differences (B: calculated with the Beijing EOEC1 dataset, n = 48). Cohen’s f2 were thresholded at f2 > 0.02 (small effect 

size). 
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Figure S1. Family wise error rates (when smoothing kernel in preprocessing was set to 8mm FWMH) of ALFF (without GSR) under 31 kinds of 

different multiple comparison correction strategies. AFNI 3dClustSim and DPABI AlphaSim are two versions of Monte Carlo simulation based 

correction implemented in AFNI and DPABI, separately. GRF, PT and FDR are Gaussian Random Field correction, Permutation Test and False 

Discovery Rate correction implemented in DPABI, separately. TFCE stands for Threshold-Free Cluster Enhancement and VOX stands for 

Voxel-Wise Correction. Both of them are correction approaches accompanied with PT. The red solid line shows the nominal 5% positive false 

positive rate, and the gray dashed line shows its approximate theoretical 95% confidence interval, 3.65%~6.35%.  

 

Figure S2. Results (when smoothing kernel in preprocessing was set to 8mm FWMH) of the Friedman Test of both test-retest reliabilities and 

replicabilities regarding between-subject sex differences and within-subject eyes-open eyes-closed (EOEC) differences on 5 metrics by 2 

preprocessing strategies (with and without GSR) among 3 kinds of cluster-based correction with the strictest threshold, 6 kinds of Permutation 

Test (PT) based correction and False Discovery Rate (FDR) correction (A: test-retest reliability regarding between-subject sex differences B: 

replicability regarding between-subject sex differences C: replicability regarding within-subject EOEC differences). Larger median rank numbers 

represent the better reproducibility compared with other statistical threshold approaches. PT with TFCE is outlined with red, and those are 

significantly different from PT with TFCE in reproducibility are outlined with yellow (multiple comparison corrected by Tukey's honest significant 

difference criterion). GRF, PT and FDR stand for Gaussian Random Field correction, Permutation Test and False Discovery Rate correction, 
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separately. All versions of cluster-based corrections are one-tailed P values while all versions of PT are two tailed P values. 

 

Figure S3. Test-retest reliability (Dice index), sensitivity and positive predictive value (PPV) on ALFF (without GSR) as functions of sample size, 

when smoothing kernel in preprocessing was set to 8mm FWMH. 
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