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Abstract:  
Detailed characterization of the cell types comprising the highly complex human brain is 
essential to understanding its function. Such tasks require highly scalable experimental 
approaches to examine different aspects of the molecular state of individual cells, as well as the 
computational integration to produce unified cell state annotations. Here we report the 
development of two highly scalable methods (snDrop-Seq and scTHS-Seq), that we have used 
to acquire nuclear transcriptome and DNA accessibility maps for thousands of single cells from 
the human adult visual and frontal cortex. This has led to the best-resolved human neuronal 
subtypes to date, identification of a majority of the non-neuronal cell types, as well as the cell-
type specific nuclear transcriptome and DNA accessibility maps. Integrative analysis allowed us 
to identify transcription factors and regulatory elements shaping the state of different brain cell 
types, and to map genetic risk factors of human brain common diseases to specific pathogenic 
cell types and subtypes.  
 
Main Text 
 
Introduction. Our brain is an enormously complex network consisting of 100 billion spatially 
organized and functionally connected neurons embedded in an even larger population of glia 
and non-neural cells. Producing a complete cell atlas of the human brain would require highly 
scalable and unbiased approaches. Recent advances in droplet-based technologies has greatly 
enhanced the throughput of single-cell RNA-sequencing (RNA-seq)1-3, enabling simultaneous 
transcriptomic profiling on the order of tens of thousands of single cells.  While these 
methodologies limit depth of coverage, they enable extensive cell type and state classification, 
providing unique expression signatures to resolve functional heterogeneity existing within 
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tissues.  However, a reliance on live intact cells impedes the goal of generating comprehensive 
maps of transcriptionally defined cell states for all tissues and organs that would be needed to 
build a complete cell atlas of the human body.  Many complex tissues are not amenable to 
cellular dissociation nor are they readily available from fresh biopsies.  Nuclear isolates are 
readily accessible from fresh or achieved tissues and provide sufficient RNA for accurate 
prediction of cellular expression levels4-7 without artefactual signatures associated with tissue 
dissociation8, and are highly amenable to single-cell genomic studies 9, 10.  We have recently 
demonstrated that Single-nucleus transcriptome Sequencing (SNS) can resolve neuronal 
subtype diversity across multiple human cortical brain regions 7, at a relative high sequencing 
depth (~8 million reads per cell). However, scaling these studies was limited by the throughput 
(up to 96 cells per microfluidic chip) and high cost. In addition, non-neuronal nuclei are smaller 
and difficult to capture with Fluidigm C1 microfluidic chips. Therefore, there is not only a growing 
need for more efficient methods for nuclear RNA sequencing of various cell types in human 
archived tissues, but also for co-profiling genomic attributes, such as epigenetic state, in order 
to build a more comprehensive picture of a cell’s overall phenotypic potential.  While methods 
for characterizing chromatin accessibility have been reported11-13, they remain to be 
demonstrated on highly heterogeneous archived human tissues, like the brain, at scale.  Here 
we report two highly scalable methods for quantifying nuclear transcripts and measuring DNA 
accessibility at the single-cell level on human archived tissues, and have applied both methods 
to the first integrative analysis of single-nucleus transcriptomes and chromatin maps of human 
tissues.  
 
Results. To overcome the limitations associated with single-nucleus RNA sequencing, we have 
adapted a droplet-based methodology2 to analyze single nuclei, termed snDrop-seq, that we 
find can provide a higher-scale assessment of neuronal and non-neuronal diversity in human 
post-mortem brain samples.  The application of this methodology to isolated nuclei necessitated 
certain modifications (see Methods) that included coating all inner surfaces with bovine serum 
albumen (BSA) to prevent non-specific binding by nuclei, and heat treatment of droplet-
encapsulated nuclei to ensure complete lysis without introducing excessive RNA degradation 
(Fig. S1a).  Subsequently, we applied the snDrop-seq pipeline (Fig. 1A) to both the human 
adult visual cortex (Brodmann Area 17 (BA17) or V1) and frontal cortex samples (BA10 and 
BA6) from four different individuals (Table S1). We generated 16,262 visual cortex single-
nucleus data sets and 9,794 frontal cortex data sets, of which 15,819 and 8,755, respectively, 
were resolved into neuronal and non-neuronal cell types (Fig. 1B-E, Table S2).  These libraries 
were sequenced to a median of 5,247 usable reads (2,483 for frontal cortex), with the majority 
of mapped reads falling within intronic regions (Fig. S1D-E), and predominantly to the 3’ ends of 
transcripts (Fig. S1F), consistent with poly-A capture and 3’-end counting for not only mRNA 
transcripts, but also the pre-mRNA abundant in nuclei14.  In comparison with other RNA-seq 
methodologies (Fig. S2), both snDrop-seq and scDrop-seq2 methods showed highly 
comparable, albeit lower, median UMI counts and gene detection rates.  However, nuclear data 
was slightly biased for longer genes (Fig. S2Q-R), likely reflecting differential transcript 
processing and export rates associated with genic length and intron fraction14. Overall, we 
detected a median of 1,072 unique transcripts and 826 genes per visual cortex nucleus (Fig. 
S2) and 7,422 total genes detected on average per cell type (Table S2). Analysis of 
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transcriptional heterogeneity (see Methods) resolved 30 distinct cellular clusters representing 
10 excitatory (Ex) and 14 inhibitory (In) neuronal subtypes, and six non-neuronal cells, 
including: endothelial cells (End), smooth muscle cells or pericytes (Per), astrocytes (Ast), 
oligodendrocytes (Oli) and their precursor cells (OPCs) and microglia (Mic) (Fig. 1B, Fig. S3).  
These subpopulations showed cell-type or subtype specific expression profiles (Fig. 1C, Table 
S3), expected marker genes (Fig. 1D), and were highly consistent with pooled cell populations 
from the mouse15 and human (temporal lobe)16 cerebral cortex (Fig. 1F).  Comparison with 
single-cell data generated from the mouse visual cortex17 and human temporal lobe18 confirmed 
broad cell type classification and the consistency between nuclear and whole cell data (Fig. 
1G).  Neuronal clusters were annotated based on their correlation values with subtypes 
previously identified from SNS in six cortical regions7 (Fig. 1H).  In addition to the high 
correspondence, snDrop-seq permitted finer resolution into sub-populations (e.g. Ex1 to Ex1a,b 
of the visual cortex) while showing little representation from subtypes not previously observed in 
these regions (e.g. rostral-specific Ex2 found only in frontal cortex and caudal-specific Ex3 
found only in visual cortex)7.  Otherwise, subtypes resolved were found to be highly consistent 
between these two cortical regions (Fig. 1I).  This demonstrates the high accuracy of snDrop-
seq in resolving neuronal subtype diversity in the cerebral cortex though profiling a larger cell 
cohort compared with our previous SNS efforts, albeit with ~1500-fold lower per cell sequencing 
depth.   
 
Excitatory neurons of the visual cortex marked by expression of SLC17A7 (Fig. 1D) were 
resolved into 10 distinct subtypes, showing enriched marker gene profiles (Fig. S4A, Table S4) 
and that could be distinguished by their spatial orientation within the cortex19 (Fig. 2A, B).  In 
addition, we identified specific subpopulations located within cortical layers, including the 
CARTPT+RASGRF2+ Ex1b of upper layer 2; the distinct HS3ST5+PCP4- (Ex5b) and 
HTR2C+PCP4+TLE4+ (Ex6a) subpopulations in layer 5, the latter bordering on a HTR2C-TLE4+ 
(Ex6b) layer 6 population; and the NR4A2+SYNPR+ Ex8 subpopulation in layer 6b (Fig. 2B). 
Inhibitory neurons of the VC, marked by shared expression of GAD1 (Fig. 1D), were resolved 
into 14 subtypes showing enriched marker gene expression (Fig. S4B, Table S5), distinct 
profiles of canonical interneuron markers (e.g. VIP, RELN, PVALB, SST) as well as sub-type 
restricted expression (e.g. SHISA8, CA3, CA8) (Fig. 2C).  We were further able to resolve 
spatially distinct inhibitory neuron subpopulations, including: layer 1 RELN+CCK+CNR1+ In1a; 
upper layer VIP+CALB2+TAC3+ In1d; PVALB+CA8+ In6a concentrated around layer 4, as well as 
the more peripheral PVALB+TAC1+ In6b; and two distinct SST positive subtypes, including the 
upper layer SST+CALB1+ (In7) and lower layer SST+CALB1- (In8) subpopulations (Fig. 2D).  
Furthermore, given the strand-specificity of snDrop-Seq, we characterized the expression 
patterns of natural antisense transcripts (NATs), which was not possible with SNS7. We 
identified 26 NATs to be differentially expressed across cell clusters (Table S7, Fig. S5), 
including inhibitory neuron-specific expression of DLX6-AS1 potentially involved in interneuron 
specification during development20, 21 (Fig. S5B).  Furthermore, we detect a higher proportion of 
neuronal data sets in the visual over frontal cortex consistent with a higher neuronal density in 
this region (Fig. 2E)22.  Cell type proportions detected by snDrop-seq were somewhat consistent 
with those from single-cell analyses on the temporal cortex, with the exception of astrocytes and 
endothelial cells which appear under-represented.  This may reflect a bias in sample processing 
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or a potential limited detection based on lower transcript levels for these cell types (Fig. S3L-O).  
Therefore, snDrop-seq provides not only a more comprehensive cellular profile of human 
postmortem tissues (Fig. 2E), but also insights into region-specific cell-type proportion 
differences and strand-specific transcriptomic dynamics, attributes not achievable using 
previous methodologies7.     
 
The epigenetic state of a cell can provide valuable information about its overall phenotypic 
potential, and reveal gene regulatory processes responsible for establishing and maintaining its 
function. To investigate the epigenetic configuration of different cells in the human adult cortex 
at scale, we developed a single-cell DNA accessibility assay by integrating THS-Seq23, which 
uses in vitro transcription and an engineered super-mutant of Tn5 transposase24 to achieve 
higher sensitivity and better coverage of distal enhancers than ATAC-seq25, with combinatorial 
cellular indexing11 based on a set of 384 customized barcoded transposomes (Fig. 3A, Fig. S6). 
scTHS-seq, confirmed to have a low doublet rate and generating high quality data (Fig. S7-8, 
Table S8), identified 287,381 peaks associated with DNA accessibility regions in combined data 
sets, covering 144 million base pairs with unique genomic alignments, at the clonal rate of 
~60% and doublet rate of 11.7%. In total, we generated 14,870 quality-filtered single-nucleus 
data sets having a median of 11,889 unique reads per cell that, from comparison with merged 
datasets, were confirmed to detect accessible regions (Fig. S9-10).  To identify epigenetically-
distinct subpopulations within this scTHS-seq dataset, we first used an unbiased approach. We 
modeled the probability of observing reads from a genomic site in a given cell as a censored 
Poisson process (see Methods), which accounts for the fact that the scTHS-seq signal from 
even the most accessible site will saturate after only a few reads. This approach revealed 
multiple distinct subpopulations in both the visual and frontal cortex (Fig. 3B-D, Fig. S11), with 
proportions that are more favorable to non-neuronal cell types than snDrop-seq (Fig. 2E), 
suggesting that snDrop-Seq is less efficient in sampling non-neuronal cells, either due to data 
quality filtering that is biased against cells transcribing fewer transcripts or lower efficiency in 
packaging smaller nuclei into droplets. Characterizing the identity of epigenetically-defined 
subpopulations, however, is more challenging than in the case of transcriptionally-defined 
subsets, as functional roles of most regulatory sequences remains poorly annotated. Based on 
the functional annotation of the genes neighboring differentially-accessible sites, we could 
distinguish five glial cell populations and three neuronal cell populations having 97,672 
differential accessibility peaks (Table S8) that when aggregated into accessibility profiles could 
be used to identify putative regulatory regions within a given locus (Fig. 3D). 
 
To establish more precise correspondence between transcriptional and epigenetic states of 
different subpopulations, we sought to identify cells corresponding to transcriptional 
subpopulations in the scTHS-seq data as well as cells corresponding to epigenetic 
subpopulations in the snDrop-seq data. We trained a gradient boosting model (GBM) to predict 
differentially accessible genomic sites based on the differential expression patterns (Fig. 4A, 
Fig. S12) and a separate GBM to predict differential expression based on differential 
accessibility (Fig. S12-13) using features such as the distance of a site to a gene, degree of 
differential expression or accessibility of the site or gene, among others (see Methods). While 
the ability to predict differential expression or differential accessibility of any individual gene or 
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site is limited (Fig. S12B,E), joint consideration of multiple genes or sites allows for confident 
cell type classifications (Fig. 4B,C, Fig. S12C,F, Fig. S13B,C). Applying such models to classify 
scTHS-seq cells based on the differentially expressed genes between major cell types, we were 
able to resolve astrocytes, oligodendrocytes, inhibitory and excitatory neurons with high 
sensitivity and precision in both the visual cortex (Fig. 4B) and frontal cortex (Fig. S13D). 
Similarly, applying such models to classify snDrop-seq cells based on the differentially 
accessible sites between major cell types, we were likewise able to resolve these cell types with 
high sensitivity and precision in both the visual cortex (Fig. S13B,C) and frontal cortex (Fig. 
S13E). Although layer 4 excitatory neurons (L4 = Ex2-4) were not distinguishable from layer 5 
and 6 excitatory neurons (L5/6 = Ex5-8) from an unbiased analysis of scTHS-seq data alone 
(ExB in Fig 3B), integrating differential expression information from the higher resolution 
snDrop-seq data allowed us to identify relevant differentially accessible sites to further partition 
scTHS-seq clusters (Fig. 4D). Similarly, such integrated analysis allowed us to identify 
epigenetic differences relevant to inhibitory neuron subtypes that appear distinguished by their 
developmental origin from subcortical regions of the medial or lateral/caudal ganglionic 
eminences7, 26, 27 (Fig. 4E). Thus, despite lower intrinsic cell type resolution of accessibility data 
compared to transcription, computational integration of both scTHS-seq and snDrop-seq 
allowed us to reconstruct detailed epigenetic profiles of fine-grained cell types within the brain, 
enabling investigations of the regulatory processes active within each cell type. 
 
Having established the cell-type identity of each epigenetically-distinct subpopulation, we sought 
to identify the transcription factors (TFs) relevant to the regulatory state of each cell type.  
To do so, we looked for TFs whose predicted binding sites are over-represented within regions 
of differential chromatin accessibility distinguishing a given cell type. Screening a set of 379 TFs 
(Table S9) with position weight matrices from the JASPAR database28, we identified 195 TFs 
factors showing statistically significant (FDR <10-5) association with at least one of the cell types 
(Fig. 5A-B, Table S10). As expected, TFs associated with the neuronal subpopulations (ExA, 
ExB, and In) are distinct from TFs with binding relevant to non-neuronal subpopulations (Oli, 
Ast, OPCs, Mic, and End) (Fig. 5B). We also recover TFs with known relevance of cell 
subtypes. For instance OLIG1, an oligodendrocyte progenitor marker29, 30,  showed enriched 
binding within the Oli cluster. As an independent validation, we integrated snDrop-seq data to 
confirm that the TFs showing significant association with a particular cell type also tend to show 
higher expression levels within that cell type (Fig. S14). Some of TFs achieve positive feedback 
by targeting their endogenous loci. For instance, PKNOX2 has 8 of such binding sites within its 
own locus, 5 of which are differentially accessible, mostly in neuronal subpopulations compared 
to glia (Fig. 5C), highlighting the potential of this approach to identify positive self-regulation. 
 
Cell-type specific epigenomics information has been highly valuable for identifying pathogenic 
cell types and specific regulatory mechanisms underlying many common genetic diseases29-31, 
yet brain diseases remained inadequately understood due to the lack of epigenomic maps with 
any cell-type resolution.  To fill this gap, we obtained NIH GRASP database SNPs that were 
identified from genome-wide association studies (GWAS) as significant (p-values < 10-6) in ten 
brain related disorders, as well as seven additional diseases unrelated to the brain for controls.  
Given that causal variants are often located at different positions in linkage disequilibrium with 
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the GWAS SNPs, we searched for enrichment of DNA accessibility regions in 100kb windows 
centered on all GWAS SNPs of a given disease, and assessed the significance by random 
permutations (Fig 6A, see Methods). This analysis identified strong enrichments in multiple cell 
types or sub-types, contrasting with an alternative possibility of uniformity (Fig. 6B-C, Fig. S15, 
Table S13), including: highly significant enrichment for common risk variants linked to 
Alzheimer’s Disease in Mic and Oli cells, Schizophrenia in ExB and In neurons, Mic and Oli 
cells; ALS in In and Ast cells; Parkinson’s Disease for the ExB and In neurons; Bipolar disorder 
for all Ex neurons and Mic; Autism for all Ex and In neurons; ADHD for al Ex and In neurons, 
Oli and Opc; ALS in In and Ast cells; with significant associations for Epilepsy for all Ex and In 
neurons and Oli, and for Depression for all Ex neurons and Mic. Significant enrichment for Oli 
was found in glaucoma, and similarly in the other non-brain diseases significant enrichments 
were not found in any neurons. However enrichments were found in the most closely related cell 
types to those implicated in the disease. For the autoimmune diseases Crohns, Celiac and Type 
I diabetes, Mic and End were enriched, while in lung disease Mic was enriched. No enrichment 
was found for the two non-brain related diseases (Chronic kidney disease and prostate cancer), 
demonstrating the specificity of these analyses. While further validation is required, our 
chromatin maps provide a new framework through which new aspects of brain diseases can be 
understood at the level of specific cell types or subtypes. 
 
Discussions. Reconstruction of cellular composition is an important aim towards understanding 
the human brain. Our study provides a first demonstration of an integrative single-cell analysis 
on the human adult brain, utilizing two highly scalable methods for acquiring transcriptional and 
epigenetic information from post-mortem tissues:  snDrop-Seq and scTHS-seq. Using nuclei 
isolation to overcome challenges associated with processing of post-mortem tissues, we 
recovered all known non-neuronal and most neuronal subtypes in human adult cortex. These 
assays rely on a much shallower sampling of many more cells than our previous efforts, yet we 
were able to resolve these cell subpopulations and provide informative aggregate profiles for 
each subtype. Our results underscore the power of sparse sampling of single cells in complexed 
tissues at a massive scale: as long as the data from the single cells are informative enough for 
clustering and “virtual sorting” into different groups32, 33, they can be combined into aggregate 
profiles that are as rich as bulk sequencing of different cell populations.  
 
We demonstrate a computational strategy for mapping between transcriptional and 
corresponding epigenetic states that can be used to reconstruct aggregate epigenetic profiles 
for fine-grained cell types. Such profiles provide valuable insights into the regulatory processes 
and elements shaping the identity of different cell types, as well as their relevance to human 
disease. While previous studies have identified pathogenic cell types for many human common 
diseases, our analysis enabled an assessment of the relative impacts by common genetic risk 
alleles to multiple cell types in an organ. It provides a coherent framework to consolidate 
previous findings, such as the relative contributions of glia, microglia and neurons to sporadic 
Alzheimer’s disease34. Such information is critical for identifying effective therapeutic targets. 
Generating multiple types of –omics maps from single cells en mass also enabled us to 
leverage the strength of each method to improve the confidence of cell type assignment, greatly 
enriching cell annotations. This combined approach thus represents a highly scalable strategy 
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for systematic construction of atlases composed of single-cell data for human organs like the 
brain and eventually, for the full human body. 
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Figure Legends: 
Fig. 1. Transcriptional profiling with snDrop-seq resolves major cell types of the visual and 
frontal cortices.  A. Overview of single nucleus isolation from the visual cortex (occipital lobe, 
BA17) and frontal cortex (BA6 and BA10) and subsequent snDrop-seq procedure.  B. Single 
nucleus visual cortex data sets (16,262) showed distinct clustering, visualized here using t-
distributed Stochastic Neighbor Embedding (t-SNE).  Unannotated data sets are shown in gray.  
C. Heatmap of expression of top differentially expressed genes identified across cell types and 
subtypes of the visual cortex (Table S3).  D. Violin plots of expression values for type-specific 
marker genes for the visual cortex.  Number of data sets contributing to each cluster is listed.  E. 
Distinct clustering of the frontal cortex data sets using t-SNE. Unannotated data sets are shown 
in gray. F. Correlation heatmaps comparing averaged visual cortex snDrop-seq data with 
average expression values from RNA-seq data from: mouse pooled cortical cell types (12) (left, 
nf = newly formed); human pooled temporal lobe cell types (13) (right).  G. Correlation 
heatmaps comparing average visual cortex data with average expression values from single-cell 
RNA-seq data from the mouse visual cortex (14) (left) and human temporal lobe (15) (right).  H. 
Correlation heatmap of snDrop-seq-identified neuronal subtypes (visual cortex or frontal cortex) 
compared with subtypes previously identified using the C1 single nucleus Smart-seq+ pipeline 
(SNS, across cortical regions) (7).  Star indicates distinct region-specific Ex2 and Ex3 sub-
populations.  I. Correlation of average expression values for cell types and subtypes resolved 
from the visual and frontal cortices.  
 
Fig. 2. snDrop-seq identifies molecularly and spatially distinct neuronal subtypes.  A. Violin plots 
showing gene expression values of layer specific (7, 16) and subtype-enriched markers for 
excitatory neuronal subtypes.  B. RNA in situ hybridization (ISH) stains (Table S6) of the visual 
cortex for select marker genes shown in (A).  C. Violin plots showing expression values for 
classical interneuron marker genes (7) and subtype-enriched transcripts.  D. RNA ISH stains 
(Table S6) of the visual cortex showing select stains for markers in (C) and predicted spatial 
distribution of associated inhibitory neuron subtypes. E. Proportion of cell types and subtypes 
detected from snDrop-seq interrogation of the human visual cortex compared with the frontal 
cortex. 
 
Fig. 3. Chromatin accessibility profiling resolves major cell types of the visual cortex. A. 
Implementation of scTHS-seq with a Tn5 supermutant and cellular combinatorial indexing. First, 
384 uniquely barcoded transposomes are added to 500,000 to 1 million mixed mouse and 
human nuclei that have been aliquoted into a 384 well plate, with one uniquely barcoded 
transposon added per well. Species nuclei are mixed to reduce and calculate collision rates, 
and for quality control. Next, high efficiency tagmentation is performed, followed by EDTA 
inactivation, pooling, and FACS redistribution of 100 nuclei/well into 96 well plates. scTHS-seq 
RNA-seq is performed with each well treated as one reaction, followed by PCR indexing, 
pooling and high throughput sequencing of libraries. Optimally ~25,000 total single cell datasets 
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are recovered per run, the sum of mouse and human nuclei recovered. B. tSNE plot of major 
subpopulations of visual cortex nuclei, clustered based on the overall similarity of the chromatin 
accessibility profiles. C. Pie chart depicting major visual cortex subpopulations identified in B. D. 
Identification of cell specific DNA accessibility peaks over the promoter and regulatory region of 
Alzheimer’s disease associated gene PICALM. Glial specific peaks are over-represented. The 
top tract is all cells merged to generate peaks. Each cell subpopulation tract is represented by 
100 randomly selected single cells of cells that had reads in the depicted region, where each 
row represents a single cell and each dot is a read. The color of highlighted peak regions 
corresponds to the cell type specificity of the peak, with each subpopulation tract title a specific 
color. Boxed regions highlight specific cell type specific peaks. The gray box highlights a glial 
cell specific peak. Nonspecific peaks are not highlighted. 
 
Fig. 4. Differential gene expression predicts differential chromatin accessibility to map 
corresponding transcriptional and epigenetic subtypes. A. Average expression genes 
significantly upregulated (Z > 1.96) in each major cell type in the visual cortex are shown, with 
red corresponding to high expression of blue for low expression. A GBM model predicts 
differential accessibility of sites observed in scTHS-seq based on the predicted association of 
sites with the differentially expressed genes (see Methods). Predicted differentially accessible 
sites are visualized with red corresponding to high accessibility and blue for low accessibility. B. 
Predicted cell type identities are assigned based on the cell type with the maximal joint score on 
predicted differentially accessible sites. C. Prediction performance is measured by ROC curves 
and AUC comparing joint scores and previously inferred cell type identities identified from 
scTHS-seq analysis alone. D. Differential expression among excitatory neuronal subtypes 
predicts differentially accessible regions to further divide excitatory neuronal subtypes in the 
scTHS-seq data. E. Differential expression among inhibitory neuronal subtypes predicts 
differentially accessible regions to further divide inhibitory neuronal subtypes in the scTHS-seq 
data.  
 
Fig. 5. Mapping of transcription factor binding status and disease risk variants to specific 
brain cell types. A. Schematic of TF analysis. Briefly, putative TF binding sites (TFBS) were 
identified within all hypersensitive sites based on PWMs matching. To identify relevant factors 
for a given cell type, sites showing differential accessibility within that cell type were tested for 
statistical enrichment of different TFBS. B. Heatmap of TF association to epigenetic 
subpopulations. Each column is a TF. Each row is an epigenetic subpopulation. Select TFs are 
annotated. C. PKNOX2 transcription factor shows potential for self-regulation. The IGV view of a 
representative region for tracks corresponding to 5 subpopulations highlights patterns of 
differential accessibility in the PKNOX2 gene. Differentially-accessible sites within PKNOX2 are 
noted with blue boxes. Putative binding sites for PKNOX2 based on PWM sequence similarity 
within PKNOX2 are noted with red boxes.  
 
Fig. 6. Mapping of common disease risk variants to specific brain cell types. A. Method used to 
map disease risk variants to specific cell types. Briefly, GWAS SNPs were obtained for each 
disease, extended to 100KB, merged, the top 50 most significant SNPs selected, number of 
peaks in overlaps counted, peaks permuted and the number of peaks counted in each region for 
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each permutation, then lastly Z-scores were calculated. B. Heat map representing the 
enrichment Z-scores across 8 cell clusters (rows) for 10 brain diseases (columns) and 7 
unrelated diseases. Dark purple and purple represent a significant Z-score over 1.96, where 
light purple, gray and light green represent an insignificant Z-score, and green represents a 
significant negative association with a Z-score less than -1.96. C. Z-scores for the enrichment of 
GWAS SNPs in the open chromatin of ExB, In, ExA, Oli, Opc, Ast, End, Mic, populations were 
overlaid onto the cell clusters. Six brain disorders are shown. 
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