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1 Abstract

Motivation: Output from high throughput sequenc-
ing instruments often exceeds what is necessary to
assay a single sample. To better utilize this capacity,
multiple samples are independently tagged with a
unique “barcode” sequence and are then pooled, or
“multiplexed”, and sequenced together. Classifying,
or “demultiplexing”, the reads involves decoding the
barcode sequence. Although instruments estimate
the probability of incorrectly calling each nucleobase,
available demultiplexers do not consult those estimates
or report classification error probabilities.
Results: We present Pheniqs, a fast and flexible
sequence demultiplexer and quality analyzer. In ad-
dition to providing an efficient implementation of the
widespread minimum distance decoder, Pheniqs intro-
duces a novel Phred-adjusted maximum likelihood decoder
that consults base calling quality scores and estimates
the probability of a barcode decoding error. Setting
an upper bound on the permissible error provides an
intuitive way to control demultiplexing confidence and
directly influence precision and recall. Pheniqs supports
FASTQ and multiple Sequence Alignment/Map formats
and uses auxiliary SAM tags to report both library
classification and demultiplexing error probability. Eval-
uation on both real and semi-synthetic data indicates
that Pheniqs is faster than existing demultiplexers,
substantially when demultiplexing longer reads, and
achieves greater accuracy by correctly reflecting quality
measurements.
Availability and Implementation: Imple-
mented in multithreaded C++ and available under
the terms of the AGPL-3.0 license agreement at
http://github.com/biosails/pheniqs. Manual and ex-
amples are available at http://biosails.github.io/pheniqs.

*kcg1@nyu.edu

2 Introduction

Sequencing platforms cycle through nucleic acid poly-
mers one nucleobase at a time, convert technology-
specific raw data formats into DNA sequence “reads”,
and then report the identity of the observed nucleobase
at each position along with an estimated probability of an
incorrect assignment. This process, commonly referred
to as “base calling”, is often bundled by commercial anal-
ysis pipelines with demultiplexing in a single black-box
procedure. From both a scientific and a software en-
gineering perspective, it is preferable to separate these
two tasks since base calling is platform-dependent, but
demultiplexing is not and would benefit from the trans-
parency provided by peer review and open access to al-
gorithms and code. Although errors introduced during
library preparation or sequencing can affect base call-
ing fidelity and hence proper barcode identification, cur-
rently available tools do not consult base calling quality
scores or estimate decoding error probabilities; thus, re-
searchers typically rely on simple heuristics to estimate
library cross-contamination during downstream analy-
sis (Yang et al., 2015). Control of classification errors
in multiplexed sequence data is important both to help
maximize yield, minimize sequencing costs and improve
the quality of reported results, particularly for applica-
tions that require comparisons between samples such as
differential gene expression analysis. Sequencing cen-
ters are usually interested in assessing instrument per-
formance and yield, while researchers are also concerned
with read assignment confidence. Quality control tra-
ditionally involves assessing Phred score distributions
across cycles and along the reads, and then removing or
masking potentially erroneous base calls and technical
sequences in a subsequent step.

Ideally, a general purpose tool would address the basic
requirements for functionality and be designed around a
consistent API to simplify integration with other utili-
ties; however, traditional tools that are the current stan-
dard in high-throughput sequence analysis fall short of
this ideal in various ways. The fastx toolkit has not
been updated since early 2010 and produces only very ba-
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sic analysis in comma separated format; fastqc produces
more elaborate analysis but is mostly human readable
and requires more work to integrate the analysis into a
pipeline; and Rqc will only operate on a subset of the
reads (10% by default) to mitigate R’s sluggish IO han-
dling. Recently developed tools like MultiQC (Ewels et
al., 2016) create an integrated report and can visual-
ize results from multiple tools and across many samples,
making global trends and biases more easily apparent.
Such tools are designed to be extended and can benefit
from an efficient analysis engine that collects statistics
during demultiplexing and makes them available in an
easily consumable format.

With regard to base calling and demultiplexing, Illu-
mina’s bcl2fastq tool follows different workflows for dif-
ferent instruments and relies on poorly documented and
untunable quality assessment procedures. The Picard
toolkit from the Broad Institute provides a much more
uniform approach for base calling that applies to all Il-
lumina sequencers, but similarly relies on a minimum
distance decoder. Both bcl2fastq and Picard can be chal-
lenging to integrate into a pipeline and are exclusively
geared toward demultiplexing Illumina data. Other stan-
dalone demultiplexers include the C program fastq-multx
(Aronesty, 2013), fastx barcode splitter (a perl script and
part of the FASTX-toolkit) and the Java package Je (Gi-
rardot et al., 2016). However fastq-multx does not allow
for addressing fragments of the read and so requires pre-
processing to demultiplex when the barcode is not ex-
actly present in a separate file. fastx barcode splitter
takes a single FASTQ (Cock et al., 2010) from standard
input and so can only demultiplex single-end reads with
an inline barcode on either the 5’ or 3’ end and is signif-
icantly slower than other tools. Je is a wrapper around
several Picard tools that enables direct demultiplexing of
FASTQ files. It offers additional flexibility for locating
barcodes and the ability to extract and place directly
flanking molecular barcodes (UMI or Unique Molecu-
lar Identifier) into the FASTQ read identifier comment.
None of those tools consults the base calling quality
scores, provides confidence estimates or supports SAM
metadata manipulation. Since no generic standardized
tool that can easily be integrated into pipelines is avail-
able to handle unconventional experimental designs, se-
quencing centers often deliver multiplexed FASTQ files,
forcing researchers to rely on their own home-brewed de-
multiplexers that are often inefficient, overly simplistic
and potentially buggy.

Pheniqs (PHilology ENcoder wIth Quality Statistics,
pronounced “phoenix”) overcomes the limitations of
other available tools described above. Pheniqs can read,
write and manipulate FASTQ files as well as the Sequence
Alignment/Map format (Li, Handsaker, et al., 2009) en-
coded in a SAM file or one of its binary compressed vari-
ants BAM and CRAM. Using a powerful yet simple syn-
tax, Pheniqs can extract fragments of read segments by

addressing either the 5’ end, 3’ end or both. The frag-
ments are then used to construct output template seg-
ments, multiplex barcodes and/or molecular barcodes.
This generic approach will scale well as experimental de-
signs continue to evolve. Since Pheniqs analyzes read
quality during demultiplexing, when the reads are al-
ready present in computer memory, quality assessment
incurs only a negligible overhead. Moreover, Pheniqs
produces a quality report of both inputs and outputs
that exhaustively consults all the reads and is encoded
in JSON, which can be easily consumed by many pro-
gramming languages. We propose that making available
an efficient, Open Source and peer-reviewed implemen-
tation that can handle unconventional experimental de-
signs and the latest file formats will greatly benefit the
field (Eklund, Nichols, and Knutsson, 2016). Pheniqs
thus provides an efficient, Open Source implementation
that can handle unconventional experimental designs and
the latest file formats; in addition it enables demulti-
plexing error probabilities to percolate down the analy-
sis pipeline, making them available for future hypothesis
testing.

3 Approach

Pheniqs offers two demultiplexing strategies: the tradi-
tional minimum distance decoder, previously described
in detail in the context of sequencing (Mir et al., 2013),
and a novel Phred-adjusted maximum likelihood decoder
that not only outperforms the former but also consults
base calling quality scores and reports a decoding er-
ror probability. The minimum distance decoder bun-
dled with Pheniqs can produce results identical to tra-
ditional demultiplexers and relies on the minimal pair-
wise mismatch distance between the barcode sequences
(defined as the number of corresponding positions with
non-identical bases) to provide a worst-case scenario es-
timate for an unambiguous error correction threshold
(Shannon, 1948). Pheniqs will automatically establish
the maximum number of mismatches that each defined
barcode set can tolerate when using minimum distance
decoding by inspecting the pairwise barcode Hamming
distance matrix. It will also report the matrix, which
can be insightful when designing a barcode set, during
input validation.

The Phred-adjusted maximum likelihood decoder uses
an error model that takes into account the Phred-
encoded base calling error probabilities provided by the
sequencing instrument. By examining the match proba-
bility of the read segment spanning an expected barcode
position with each multiplexing barcode in a given set,
it takes advantage of the uneven barcode mismatch dis-
tance distribution to improve recovery, while flagging as
ambiguous any demultiplexing decisions supported pri-
marily by low quality cycles. Match probability esti-
mates provide a classification confidence for each read
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— much the same way that mapping quality, introduced
by BWA (Li and Durbin, 2009), provides an estimate for
a mapping confidence. Setting a threshold on the con-
fidence provides a reportable upper bound for the error
probability of cross-library read contamination for each
sample, an essential measurement in some experimental
designs.

4 Methods

4.1 Theoretical Model

Demultiplexing involves extracting an observed sub-
sequence r from the read and decoding b, the bar-
code sequence, from r. Let r ∈ {A,C,G, T,N}n be
an observed sequence of length n extracted from the
read and B a given set of non-identical barcodes from
{A,C,G, T,N}n of size |B| identifying the multiplexed
samples. A decoder is denoted as a decision function
φ(r) : {A,C,G, T,N}n 7→ B ∪ ε where ε denotes a de-
coding failure. The probability that r is observed given
that b was sequenced is P (r|b) and the probability that
b was sequenced given r was observed is P (b|r),

Intuitively, we want a maximum likelihood estimator
b̂, so a good decoder should select a b̂ which maximizes
the posterior probability

b̂ = arg max
b∈B

P (b|r) (1)

Applying Bayes’ rule to Equation 1 gives

P (b|r) =
P (r|b)P (b)

P (r)
(2)

P (b) is the expected fraction of the pooled sample iden-
tified by b after accounting for the rate of occurrence of
foreign sequences Pε, and P (r) is independent of decod-
ing and given by the law of total probability

P (r) = PεP (r|b is foreign) +
∑
b∈B

P (b)P (r|b) (3)

Since foreign sequences are assumed to produce random
observations P (r|b is foreign) = 1

4n and

P (r) =
Pε

4n
+
∑
b∈B

P (b)P (r|b) (4)

Equation 2 can be written as

P (b|r) =
P (r|b)P (b)

Pε

4n +
∑

b′∈B P (b′)P (r|b′)
(5)

Since the denominator of Equation 2 is constant for
any given r and B, for the purpose of estimating b̂ it is
sufficient to solve

b̂ = arg max
b∈B

P (r|b)P (b) (6)

which is also faster and more numerically stable.

4.2 Phred-adjusted maximum likelihood decod-
ing

Our novel Phred-adjusted maximum likelihood decoder
solves Equation 6 by directly estimating P (r|b) for each
b ∈ B from the Phred scores and additionally uses the
sample pooling composition and foreign sequence proba-
bility as estimators for the priors P (b). Once b̂ has been

identified it proceeds to compute P (b̂|r) using Equation
5 so that the decision function φ(r) becomes

φ(r) =

{
b̂ P (b̂|r) > C

ε P (b̂|r) ≤ C
(7)

where C is a user provided confidence threshold for the
minimum acceptable probability of a correct decoding.
To compute P (r|b) from the Phred score, assuming errors
on base calls are unrelated, we take the product over the
bases (Edgar and Flyvbjerg, 2015)

P (r|b) =
n∏

i=0

P (ri|bi) (8)

where p(ri|bi) is defined to be

P (ri|bi) =


1− pi ri = bi

pi ri 6= bi, ri 6= N
1
4 ri 6= bi, ri = N

(9)

and pi is the base calling error probability for base call ri
decoded from the Phred value qi by applying pi = 10

−qi
10

for each position i in r.
Estimating P (b̂|r) directly enjoys the benefit that the

confidence of classifying r as b̂ is a highly desirable re-
portable statistic and the probability of a decoding error
becomes

Pdecoding error(b̂, r) = 1− P (b̂|r) (10)

Phred is a log-scaled encoding and as such loses accuracy
as the values becomes smaller. When all the probabili-
ties produced by Equation 8 are extremely small the b̂
produced by Equation 6 can be misleading. This can
occur when the observed sequence r is relatively high
quality but very poorly matches all barcodes in B, or
when the overall quality of the barcode is very low. To
control for such cases, we introduce a second threshold
that compares P (r|b̂) to the probability of observing a
random sequence of length n:

Trandom =
1

4n
(11)

Reads with P (r|b̂) < Trandom should probably be con-
sidered a decoding failure without further consideration
since the initial evidence supporting their classification
is inferior to that provided by a random sequence.

Directly estimating P (b̂|r) allows Pheniqs to report
a demultiplexing quality for every read. Exposing a
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tunable threshold C allows researchers to choose be-
tween assignment confidence and yield depending on
the application, and to factor the reported confidence
into downstream analysis. This high precision estima-
tion of the assignment probability takes advantage of the
non-uniform pairwise Hamming distance distribution be-
tween the pooled barcodes to recover additional reads
that would otherwise be considered a decoding failure by
minimum distance decoders. Factoring the instrument-
reported error probabilities provides better control for
false classifications when critically informative bases on
the barcode have low confidence.

4.3 Minimum distance decoding

By contrast, we show that the assumptions made by min-
imum distance decoding lead to inaccurate estimates of
P (b|r) when applied to sequencing. If samples are pooled
uniformly, than P (b) = 1−Pε

|B| for all b ∈ B, and Equa-

tion 5 is simplified to

P (b|r) =
P (r|b)

Pε|B|
4n(1−Pε)

+
∑

b′∈B P (r|b′)
(12)

Further minimum distance decoding assumes that Pε →
0 and

∑
b′∈B P (r|b′) is constant, so P (b|r) is proportional

to P (r|b) and the same b̂ that solves Equation 1 also
solves

b̂ = arg max
b∈B

P (r|b) (13)

which is often referred to in coding theory as the maxi-
mum likelihood decoding rule. Minimum distance decod-
ing solves Equation 13 by minimizing the Hamming
distance to the observed sequence r:

b̂ = arg min
b∈B

dHamming(r, b) (14)

where the Hamming distance dHamming(r, b) between r
and b is defined as the number of corresponding positions
with non-identical bases. A lower bound on the number
of correctable substitution errors is given by the seminal
1948 mathematical theory of communication (Shannon,
1948) to be

emax = bdmin − 1

2
c (15)

where dmin is the minimum pairwise barcode Hamming
distance and d(r, b̂) > emax indicates a decoding failure,
so the decision function φ(r) becomes

φ(r) =

{
b̂ dHamming(r, b̂) ≤ emax

ε dHamming(r, b̂) > emax

(16)

Currently available demultiplexers use minimum dis-
tance decoding and rely on Equation 14 coupled with
a user provided threshold, even though any value higher
than emax is not guaranteed to yield unambiguous assign-
ments in any non-trivial scenario. The minimum distance

decoder implemented within Pheniqs takes the extra step
to compute and use emax as an upper bound to the dis-
tance threshold for minimum distance decoding.

Minimum distance decoding is suboptimal, as it ig-
nores many properties specific to sequencing. First, it
relies on Equation 7 to decode b̂, so assumes a uniform
pooling concentration and ignores Pε, the presence of for-
eign sequences in the solution (such as PhiX174 virus,
which is used by all illumina sequencers for instrument
calibration and can sometimes constitute as much as 50%
of total DNA in applications with low expected base di-
versity). Second, it ignores instrument-reported error
probabilities and computes a biased estimator for P (r|b),
effectively assuming the confidence is always 1. Third,
it uses emax but that is an overly pessimistic threshold
for declaring a decoding failure: when the pairwise Ham-
ming distance distribution is uneven, as often occurs, it
results in an uneven increase in the number of decoding
failures across the barcode set in a way that can bias
studies that rely on quantification.

5 Implementation

Pheniqs can demultiplex sequencing reads with barcodes
located at arbitrary locations. Pheniqs extracts frag-
ments of read segments by addressing either the 5’ end,
3’ end or both and optionally reverse complements them.
It can then use the fragments to construct both output
template segments, multiplex barcodes, and/or molec-
ular barcodes, providing a completely generic approach
that can accommodate any potential barcoding scheme
and experimental design. Pheniqs performs an exhaus-
tive quality assessment during demultiplexing and emits
a report suitable for further integration. Pheniqs can
read, write, and manipulate FASTQ files as well as the
commonly used Sequence Alignment/Map (SAM) file for-
mat or one of its binary compressed variants BAM and
CRAM. It can annotate SAM encoded files with user-
specified Read Group metadata corresponding to the
multiplexed libraries. The facilities provided by HTSlib
allow demultiplexing results to be written to a single,
smaller file and at the same time support richer anno-
tation, which significantly simplifies pipelines. Pheniqs
reports the decoded barcode and its corresponding qual-
ity scores in the standardized BC and QT SAM aux-
iliary tags. It also reports the estimated error statis-
tics in two new SAM auxiliary fields, which we propose
to be standardized in the SAM specification: DQ, the
demultiplexing error probability, and EE, the expected
number of erroneous bases (Edgar and Flyvbjerg, 2015).
Inclusion of these statistics in a standard report format
will enable users to easily assess the distribution of de-
multiplexing quality scores across sample datasets. The
ability to both consume from and produce to a single
file, coupled with flexible read layout manipulation, en-
ables Pheniqs to be used with POSIX standard streams.
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Figure 1: Runtime benchmarks (supplementary Table 1) comparing Picard IlluminaBasecallsToFastq, Picard IlluminaBasecallsToSam,
fastq-multx, and several Pheniqs configurations. Dark stacked bars represent the additional processing time when collecting quality
statistics during demultiplexing. Three lanes were used: 1. a dual-indexed paired-end HiSeq 2500 RapidRun v2 flowcell with a
250,8,8,250 configuration containing 182,198,212 reads and 21 multiplexed libraries; 2. a dual-indexed paired-end NextSeq 500 flowcell
with a 75,8,8,75 configuration containing 42,681,647 reads and 48 multiplexed libraries; 3. a dual-indexed paired-end NextSeq 500
flowcell with a 36,9,9,36 configuration containing 93,209,096 reads and 96 multiplexed libraries. Benchmarking was conducted on a dual
socket Intel Xeon E5-2650 v2 @ 2.60GHz for a total of 16 hyper-threaded cores and 64GB of RAM running Ubuntu 14.04.5 with linux
kernel 3.13.0-101. Kernel virtual memory was flushed before every run.

This can significantly reduce disk usage or IO limitation
in some applications while at the same time allow re-
searchers to more interactively experiment with different
confidence thresholds.

6 Discussion and results

6.1 Benchmarking and comparing to other tools

Pheniqs can arrange read segments in arbitrary layouts.
To be able to compare its performance to other tools
we benchmarked three commonly used layouts: split,
interleaved, and combined (Figure 1 and supplemen-
tary Table 1). We refer to a layout as split when each
segment of the read in each multiplexed library is written
to a separate file; as interleaved when all segments are
written consecutively to the same file but different mul-
tiplexed libraries are still written to separate files; and as
combined when all segments of all reads in all libraries
are written to the same file.

For a dual indexed paired end configuration Pheniqs
requires all 4 raw read segments with their corresponding
quality scores in either FASTQ or HTSlib formats. The
Picard IlluminaBasecallsToFastq command was used to
generate 4 multiplexed FASTQ files as input for pheniqs.
All lanes were base called using Picard version 2.7.1.

Results of demultiplexing with the Picard Il-
luminaBasecallsToFastq and IlluminaBasecallsToSam
commands are reported here for completeness but are dif-
ficult to compare since both commands take raw Illumina
intensity files and perform base calling and demultiplex-
ing in a single step. The Picard demultiplexer otherwise
relies on a standard minimum distance decoder that does
not consider the Phred error probabilities except for op-

tionally masking base calls below a user-specified thresh-
old. IlluminaBasecallsToFastq could not produce inter-
leaved FASTQ files, IlluminaBasecallsToSam could not
produce a combined output, and fastq-multx only pro-
duces split FASTQ files. fastx barcode splitter and Je
were not included in the benchmark but are both re-
ported (Girardot et al., 2016) to be 17 and 4.5 times
respectively slower than fastq-multx. Pheniqs is slightly
faster than both fastq-multx and Picard when processing
short reads but is 2.7 times faster when processing 250
nucleotide paird-end reads in FASTQ format and 3 times
faster when processing CRAM.

6.2 Comparing PAMLD and MDD with biolog-
ical data

Comparing the accuracy of different demultiplexers is
challenging for biological data since the ground truth is
unknown. Here we show how to create an approximation
to the ground truth and use that to compare methods.

We used Pheniqs to demultiplex 366,573,792 paired-
end reads with 2 36-nucleotide segments and 2 8-
nucleotide index segments from an Illumina NextSeq
500 flowcell with both decoders (Figure 2). The
reads contained wild isolates of the Saccharomyces cere-
visiae, Naumovia castelli, and Candida orthopsilosis
yeast strains. The libraries were multiplexed with two
barcode sequences containing 8 nucleotides each. The
PAMLD confidence threshold defaults to 0.99, corre-
sponding to an error probability lower than 1%.

30 libraries containing very few reads or predominantly
reads that failed to align to any of the yeast strains were
removed. 286,326,757 reads from the remaining 66 li-
braries were broken into three sets: 281,339,717 con-
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Figure 2: Alignment classification of 286,326,757 reads in 66 libraries. Top three rows: demultiplexed libraries classified by alignment
to reference sequences and separated into three sets: 281,339,717 consensus (98.26%), 4,980,484 Ponly (1.74%), and 6,556 Monly

(0.00229%). Consensus and Ponly reads are more similar in composition. Bottom two rows: the residual sum of squares, expressed
as the R value, between the alignment distributions of Ponly and Monly reads against consensus reads. Comparisons within each
library (red dots) or against all other libraries (grey distributions) show that Ponly reads generally show a stronger correlation (lower
R) with consensus reads from the same library.
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sensus (98.26%), 4,980,484 Ponly (1.74%), and 6,556
Monly (0.00229%) . The consensus set contains reads
that both MDD and PAMLD successfully decoded as
the same barcode. The Ponly set contains reads that
MDD failed to decode but were successfully decoded by
PAMLD. The Monly set contains reads that MDD suc-
cessfully decoded but PAMLD rejected and classified as
undetermined. Since the majority of currently available
data has been demultiplexed with MDD, we used the
consensus set to estimate the ground truth. We would
hope that reads from the Ponly set present a distribution
of biological alignments similar to reads from the same
library in the consensus set, which should be the case
if they do indeed form a subset of that library, while we
expect Monly reads to present a dissimilar distribution.

Reads were first processed with dustmasker 1.0.0
(Morgulis et al., 2006) to mask out low complexity se-
quences and classified as PhiX Control, Bacteria, Virus,
and Phage using kraken 0.10.6 (Wood and Salzberg,
2014). The remaining reads were aligned using BWA
0.7.8-r455 to the relevant yeast references as well as the
Saccharomyces cerevisiae 2µ plasmid. To validate the
Ponly and Monly sets we estimated the correlation of
the their biological alignment distribution to the con-
sensus sets. For each multiplexed library we computed
the residual sum of squares for the distributions within
the same library and between each library and all other
libraries.

Phred-adjusted maximum likelihood decoding failures
are less sensitive to base-calling errors, which easily
throw off the minimum distance decoder. Since we ex-
pect the Ponly and Monly sets to contain more reads
with a higher expected error rate that are more likely to
fail to align, we excluded from this computation reads
that failed all alignment attempts.

All sets recovered by PAMLD are more highly cor-
related with the consensus set from their respective
library than from one of the other libraries, while the
Monly sets with sufficient data rarely show a better cor-
relation with their MDD classification (Figure 2).

6.3 Comparing PAMLD and MDD with semi-
synthetic data

Error patterns on barcode sequences vary depending on
the sequencing instrument used and its underlying er-
ror rate, the number of nucleotides in the barcode, the
barcode sequence position along the read, and the li-
brary preparation protocol. Since PAMLD does not con-
sider the error probabilities on different nucleotides to
be related and indel errors occur at a much lower rate
than substitutions, we simulated position-independent
errors using a simple model based on the substitution
rates observed for the same Illumina NextSeq flowcell
as in Figure 2. Given that an expected nucleobase b ∈
{A,C,G, T} is sequenced with a Phred quality score q,
we computed a maximum likelihood estimator P̂ (r|b, q)

for the probability that a nucleobase r ∈ {A,C,G, T,N}
is base-called by counting the relative number of times
such an event was observed within the 16-nucleotide bar-
codes of the classified consensus reads.

To simulate a barcode we selected one at random from
a given collection, and to simulate noise we picked a ran-
dom sequence from a pool of 100,000 reads simulated
from the PhiX174 genome using the short read simu-
lator wgsim 0.3.2. We then paired the simulated bar-
code sequence with the sequence of Phred quality scores
for a random observed barcode from the run. 1% of
the simulated reads were picked from the PhiX174 pool
while the remainder were uniformly picked from the set of
known barcodes in the collection. To simulate sequenc-
ing substitution errors we iterated over the base-quality
score pairs (b, q) and, using the distribution implied by
P̂ (r|b, q), assigned a corresponding r to each position in
the barcode. We simulated two datasets of 100 million
reads each: one with a collection of 96 16-base barcodes
and the other with a collection of 10 6-base barcodes.
Each library was evaluated as a binary classifier, so a
correct assignment was counted as a true positive (TP )
while an incorrect assignment was counted as a false
negative (FN) for the correct library and a false posi-
tive (FP ) for the incorrectly assigned library. We then
summed up the values from all libraries and computed
a false discovery rate and miss rate (where false discov-
ery rate is FP

FP+TP and miss rate is FN
FN+TP ). Results

for MDD and PAMLD with different values for the con-
fidence parameter are reported in Figure 3 and supple-
mentary Table 2.
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Figure 3: Comparison of decoding performance for PAMLD at
varying confidence thresholds versus MDD (dashed line) in two
demultiplexing scenarios using 100 million simulated reads. The
PAMLD confidence parameter provides an easy way to choose be-
tween false positives and false negatives.

Six-base barcodes provide little room for error and thus
false positive rates are much higher overall than for 16-
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base barcodes. At a confidence setting of 95%, PAMLD
achieved a 10% improvement in false discovery rate while
still improving miss rate by 20% over MDD. At the de-
fault 99% confidence level, PAMLD was able to reduce
the number of false positives 7.5-fold, but at the expense
of a 3.7-fold increase in false negatives. Using 16-base
barcodes, false positives are sufficiently low to be con-
sidered insignificant, but any confidence threshold lower
than 99.99% yielded a significant improvement in miss
rate relative to MDD. Using the default 99% confidence
yielded a 17.6-fold improvement in miss rate while adding
only 150 false positive reads.

Ultimately, the choice of controlling for false posi-
tives or false negatives depends on the application, and
PAMLD effectively provides researchers with a disci-
plined method to choose between the two.

6.4 Future work

Several additional features are planned for future soft-
ware releases. These include quality-based and adapter
trimming (in order to provide an integrated solution for
preprocessing and quality control) as well as support
for decoding of reads produced by sequencing platforms
other than Illumina. Pheniqs already provides facilities
to extract molecular barcodes and their corresponding
quality scores into the non-standard RX and QX tags
already adopted by the community, which we also rec-
ommend to be standardized; however, estimating the de-
coding error probability for random tags whose a priori
distribution is unknown will require further development
of the decoding model. Future work will expand Phred-
adjusted maximum likelihood decoding to estimate a cor-
rected molecular barcode and encode it in the BX tag
together with the corresponding decoding error proba-
bility in the PX tag. Internally Pheniqs can already
handle IUPAC ambiguity encoding (Nomencl, 1970) and
support for this, by adjusting Equation 9, is pending
further investigation. It should be noted here that the
CRAM binary format, which is vastly superior to BAM
both in terms of decoding and encoding speed and disk
utilization, does not support IUPAC ambiguity encoding.

The comprehensive JSON-encoded quality report pro-
vides a unique opportunity to compile a composite report
of reads instead of their constituent segments, as most ex-
isting tools do, which would be more intuitive for paired-
end reads. Compiling the report during demultiplexing
will also enable facile comparison of technical or biologi-
cal replicates in different samples. A graphical tool that
leverages the report produced by Pheniqs is currently in
the works.

7 Conclusion

Pheniqs is a multithreaded, portable, efficient, robust,
and flexible demultiplexer for high-throughput sequenc-
ing applications. It is highly configurable, easily inte-

grated into existing pipelines, and offers numerous conve-
nient features including common preprocessing tasks and
versatile handling of barcode designs and input/output
formats. In addition to the standard minimum distance
decoder — the sole demultiplexing regime implemented
by all other existing tools — Pheniqs uniquely offers an
innovative probabilistic decoder that provides enhanced
performance and introduces, for the first time, the ability
to report estimates of demultiplexing error probabilities
in standard output formats based on read quality scores
emitted by all major sequencing platforms. Pheniqs fills
a major gap in existing bioinformatics pipelines, and we
anticipate that its adoption will greatly facilitate a wide
range of sequence analysis applications.

Acknowledgments

We are grateful to Alan Twaddle from the New York Uni-
versity Center for Genomics and Systems Biology for his
support in benchmark analysis and to Giuseppe Saldi,
Jillian Rowe, and Nizar Drou from the NYU Abu Dhabi
Center for Genomics and Systems Biology for their in-
sightful comments on the initial draft. We also thank Dr.
David Gresham for allowing us to use data from his se-
quencing runs as a test case for highly multiplexed data
and Or Biran and Kapil Thadani for their comments on
the statistical evaluation and notation.

Funding

This work was supported by a grant from the New York
University Abu Dhabi (NYUAD) Research Institute to
the NYUAD Center for Genomics and Systems Biology
and by other research funding from NYUAD to KCG.

References

Aronesty, Erik (2013). “Comparison of Sequencing Util-
ity Programs”. In: The Open Bioinformatics Journal
7.11, pp. 1–8. doi: 10.2174/1875036201307010001.
url: http://benthamopen.com/ABSTRACT/TOBIOIJ-
7-1.

Cock, Peter J A et al. (2010). “The Sanger FASTQ
file format for sequences with quality scores, and
the Solexa/Illumina FASTQ variants.” English. In:
Nucleic acids research 38.6, pp. 1767–1771. doi:
10 . 1093 / nar / gkp1137. url: http : / / nar .

oxfordjournals.org/lookup/doi/10.1093/nar/

gkp1137.
Edgar, Robert C and Henrik Flyvbjerg (2015). “Er-

ror filtering, pair assembly and error correction for
next-generation sequencing reads”. In: Bioinformat-
ics (Oxford, England) 31.2121, pp. 3476–3482. doi:
10.1093/bioinformatics/btv401. url: http://

bioinformatics . oxfordjournals . org / lookup /

doi/10.1093/bioinformatics/btv401.

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/128512doi: bioRxiv preprint 

https://doi.org/10.1101/128512
http://creativecommons.org/licenses/by-nc/4.0/


Eklund, Anders, Thomas E Nichols, and Hans Knutsson
(2016). “Cluster failure: Why fMRI inferences for spa-
tial extent have inflated false-positive rates.” In: Pro-
ceedings of the National Academy of Sciences of the
United States of America 113.2828, pp. 7900–7905.
doi: 10.1073/pnas.1602413113. url: http://www.
pnas.org/cgi/content/abstract/113/28/7900.

Ewels, Philip et al. (2016). “MultiQC: summarize anal-
ysis results for multiple tools and samples in a single
report.” In: Bioinformatics (Oxford, England) 32.1919,
pp. 3047–3048. doi: 10 . 1093 / bioinformatics /

btw354. url: https : / / academic . oup . com /

bioinformatics/article- lookup/doi/10.1093/

bioinformatics/btw354.
Girardot, Charles et al. (2016). “Je, a versatile suite

to handle multiplexed NGS libraries with unique
molecular identifiers”. In: BMC bioinformatics 17.11,
p. 121. doi: 10.1186/s12859- 016- 1284- 2. url:
http://bmcbioinformatics.biomedcentral.com/

articles/10.1186/s12859-016-1284-2.
Li, Heng and Richard Durbin (2009). “Fast and

accurate short read alignment with Burrows-
Wheeler transform.” In: Bioinformatics (Ox-
ford, England) 25.1414, pp. 1754–1760. doi:
10 . 1093 / bioinformatics / btp324. url: http :

//bioinformatics.oxfordjournals.org/content/

25/14/1754.full.
Li, Heng, Bob Handsaker, et al. (2009). “The Sequence

Alignment/Map format and SAMtools.” In: Bioinfor-
matics (Oxford, England) 25.1616, pp. 2078–2079. doi:
10.1093/bioinformatics/btp352. url: http://

bioinformatics . oxfordjournals . org / content /

25/16/2078.full.
Mir, Katharina et al. (2013). “Short Barcodes for Next

Generation Sequencing”. In: PloS one 8.1212, e82933.
doi: 10.1371/journal.pone.0082933. url: http:
//dx.plos.org/10.1371/journal.pone.0082933.

Morgulis, Aleksandr et al. (2006). “A fast and symmetric
DUST implementation to mask low-complexity DNA
sequences.” In: Journal of computational biology : a
journal of computational molecular cell biology 13.55,
pp. 1028–1040. doi: 10.1089/cmb.2006.13.1028.
url: http://www.liebertonline.com/doi/abs/10.
1089/cmb.2006.13.1028.

Nomencl, IUPAC-IUB Comm on Biochem (1970). “Ab-
breviations and symbols for nucleic acids, polynu-
cleotides, and their constituents”. In: Biochemistry
9.2020, pp. 4022–4027. doi: 10.1021/bi00822a023.
url: http://pubs.acs.org/doi/abs/10.1021/

bi00822a023.
Shannon, C E (1948). “A mathematical theory of com-

munication”. In: The Bell System Technical Journal
27.33, pp. 379–423. doi: 10 . 1002 / j . 1538 - 7305 .

1948.tb01338.x. url: http://ieeexplore.ieee.
org / lpdocs / epic03 / wrapper . htm ? arnumber =

6773024.

Wood, Derrick E and Steven L Salzberg (2014). “Kraken:
ultrafast metagenomic sequence classification using ex-
act alignments”. In: Genome Biology 15.33, R46. doi:
10 . 1186 / gb - 2014 - 15 - 3 - r46. url: http : / /

genomebiology.biomedcentral.com/articles/10.

1186/gb-2014-15-3-r46.
Yang, Yang et al. (2015). “Distinct mechanisms define

murine B cell lineage immunoglobulin heavy chain
(IgH) repertoires”. In: eLife 4, p. 13700. doi: 10 .

7554/eLife.09083. url: http://elifesciences.
org/lookup/doi/10.7554/eLife.09083.

9

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2017. ; https://doi.org/10.1101/128512doi: bioRxiv preprint 

https://doi.org/10.1101/128512
http://creativecommons.org/licenses/by-nc/4.0/

