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Abstract8

Mapping gene expression as a quantitative trait using whole genome-sequencing and transcrip-9

tome analysis allows to discover the functional consequences of genetic variation. We developed10

a novel method and ultra-fast software Findr for higly accurate causal inference between gene11

expression traits using cis-regulatory DNA variations as causal anchors, which improves current12

methods by taking into account hidden confounders and weak regulations. Findr outperformed13

existing methods on the DREAM5 Systems Genetics challenge and on the prediction of microRNA14

and transcription factor targets in human lymphoblastoid cells, while being nearly a million times15

faster. Findr is publicly available at https://github.com/lingfeiwang/findr.16

Author summary17

Understanding how genetic variation between individuals determines variation in observable traits18

or disease risk is one of the core aims of genetics. It is known that genetic variation often affects19

gene regulatory DNA elements and directly causes variation in expression of nearby genes. This20

effect in turn cascades down to other genes via the complex pathways and gene interaction net-21

works that ultimately govern how cells operate in an ever changing environment. In theory, when22

genetic variation and gene expression levels are measured simultaneously in a large number of23

individuals, the causal effects of genes on each other can be inferred using statistical models24

similar to those used in randomized controlled trials. We developed a novel method and ultra-fast25
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software Findr which, unlike existing methods, takes into account the complex but unknown net-26

work context when predicting causality between specific gene pairs. Findr’s predictions have a27

significantly higher overlap with known gene networks compared to existing methods, using both28

simulated and real data. Findr is also nearly a million times faster, and hence the only software in29

its class that can handle modern datasets where the expression levels of ten-thousands of genes30

are simultaneously measured in hundreds to thousands of individuals.31

1 Introduction32

Genetic variation in non-coding genomic regions, including at loci associated with complex traits33

and diseases identified by genome-wide association studies, predominantly plays a gene-regulato-34

ry role1. Whole genome and transcriptome analysis of natural populations has therefore be-35

come a common practice to understand how genetic variation leads to variation in phenotypes2.36

The number and size of studies mapping genome and transcriptome variation has surged in37

recent years due to the advent of high-throughput sequencing technologies, and ever more ex-38

pansive catalogues of expression-associated DNA variants, termed expression quantitative trait39

loci (eQTLs), are being mapped in humans, model organisms, crops and other species1,3–5.40

Unravelling the causal hierarchies between DNA variants and their associated genes and pheno-41

types is now the key challenge to enable the discovery of novel molecular mechanisms, disease42

biomarkers or candidate drug targets from this type of data6,7.43

It is believed that genetic variation can be used to infer the causal directions of regulation between44

coexpressed genes, based on the principle that genetic variation causes variation in nearby gene45

expression and acts as a causal anchor for identifying downstream genes8,9. Although numerous46

statistical models have been proposed for causal inference with genotype and gene expression47

data from matching samples10–15, no software implementation in the public domain is efficient48

enough to handle the volume of contemporary datasets, hindering any attempts to evaluate their49

performances. Moreover, existing statistical models rely on a conditional independence test which50

assumes that no hidden confounding factors affect the coexpression of causally related gene51

pairs. However gene regulatory networks are known to exhibit redundancy16 and are organized52

into higher order network motifs17, suggesting that confounding of causal relations by known or53

unknown common upstream regulators is the rule rather than the exception. Moreover, it is also54
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known that the conditional independence test is susceptible to variations in relative measurement55

errors between genes8,9, an inherent feature of both microarray and RNA-seq based expression56

data18.57

To investigate and address these issues, we developed Findr (Fast Inference of Networks from Di-58

rected Regulations), an ultra-fast software package that incorporates existing and novel statistical59

causal inference tests. The novel tests were designed to take into account the presence of un-60

known confounding effects, and were evaluated systematically against multiple existing methods61

using both simulated and real data.62

2 Results63

2.1 Findr incorporates existing and novel causal inference tests64

Findr performs six likelihood ratio tests involving pairs of genes (or exons or transcripts)A, B, and65

an eQTL E of A (Table 1, Section 4.3). Findr then calculates Bayesian posterior probabilities of66

the hypothesis of interest being true based on the observed likelihood ratio test statistics (denoted67

Pi, i = 0 to 5, 0 ≤ Pi ≤ 1, Section 4.5). For this purpose, Findr utilizes newly derived analytical68

formulae for the null distributions of the likelihood ratios of the implemented tests (Section 4.4,69

Figure S1). This, together with efficient programming, resulted in a dramatic speedup compared70

to the standard computationally expensive approach of generating random permutations. The six71

posterior probabilities are then combined into the traditional causal inference test, our new causal72

inference test, and separately a correlation test that does not incorporate genotype information73

(Section 4.6). Each of these tests verifies whether the data arose from a specific subset of (E,74

A, B) relations (Table 1) among the full hypothesis space of all their possible interactions, and75

results in a probability of a causal interaction A → B being true, which can be used to rank76

predictions according to significance or to reconstruct directed networks of gene regulations by77

keeping all interactions exceeding a probability threshold.78
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2.2 Traditional causal inference fails in the presence of hidden confounders and79

weak regulations80

Findr’s computational speed allowed us to systematically evaluate traditional causal inference81

methods for the first time. We obtained five datasets with 999 samples simulated from synthetic82

gene regulatory networks of 1,000 genes with known genetic architecture from the DREAM583

Systems Genetics Challenge (Section 4.1), and subsampled each dataset to observe how per-84

formance depends on sample size (Section 4.7). The correlation test (P0) does not incorporate85

genotype information and was used as a benchmark for performance evaluations in terms of86

areas under the receiver operating characteristic (AUROC) and precision-recall (AUPR) curves87

(Section 4.7). The traditional method11 combines the secondary (P2) and independence (P3)88

tests sequentially (Table 1, Section 4.6), and was evaluated by comparing P2 and P2P3 sep-89

arately against the correlation test. Both the secondary test alone and the traditional causal90

inference test combination were found to underperform the correlation test (Figure 1A,B). More-91

over, the inclusion of the conditional independence test worsened inference accuracy, more92

so with increasing sample size (Figure 1A,B) and increasing number of regulations per gene93

(Supplementary Material S2.3). Similar performance drops were also observed for the Causal94

Inference Test (CIT)13,15 software, which also is based on the conditional independence test95

(Figure S3).96

We believe that the failure of traditional causal inference is due to an elevated false negative rate97

(FNR) coming from two sources. First, the secondary test is less powerful in identifying weak98

interactions than the correlation test. In a true regulation E → A → B, the secondary linkage99

(E → B) is the result of two direct linkages chained together, and is harder to detect than either of100

them. The secondary test hence picks up fewer true regulations, and consequently has a higher101

FNR. Second, the conditional independence test is counter-productive in the presence of hidden102

confounders (i.e. common upstream regulators). In such cases, even if E → A→ B is genuine,103

the conditional independence test will find E and B to be still correlated after conditioning on104

A due to a collider effect (Figure S5)19. Hence the conditional independence test only reports105

positive on E → A→ B relations without confounder, further raising the FNR. This is supported106

by the observation of worsening performance with increasing sample size (where confounding107

effects become more distinguishable) and increasing number of regulations per gene (which leads108
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to more confounding).109

To further support this claim, we examined the inference precision among the top predictions110

from the traditional test, separately for gene pairs directly unconfounded or confounded by at111

least one gene (Section 4.7). Compared to unconfounded gene pairs, confounded ones resulted112

in significantly more false positives among the top predictions (Figure 1C). Furthermore, the113

vast majority of real interactions fell outside the top 1% of predictions (i.e. had small posterior114

probability) [92% (651/706) for confounded and 86% (609/709) for unconfounded interactions,115

Figure 1C]. Together, these results again showed the failure of the traditional test on confounded116

interactions and its high false negative rate overall.117

2.3 Findr accounts for weak secondary linkage, allows for hidden confounders,118

and outperforms existing methods on simulated data119

To overcome the limitations of traditional causal inference methods, Findr incorporates two addi-120

tional tests (Table 1 and Section 4.3). The relevance test (P4) verifies that B is not independent121

from A and E simultaneously and is more sensitive for picking up weak secondary linkages than122

the secondary linkage test. The controlled test (P5) ensures that the correlation between A and123

B cannot be fully explained by E, i.e. excludes pleiotropy. The same subsampling analysis re-124

vealed that P4 performed best in terms of AUROC, and AUPR with small sample sizes, whilst125

the combination P2P5 achieved highest AUPR for larger sample sizes (Figure 1A,B). Most impor-126

tantly, both tests consistently outperformed the correlation test (P0), particularly for AUPR. This127

demonstrates conclusively in a comparative setting that the inclusion of genotype data indeed can128

improve regulatory network inference. These observations are consistent across all five DREAM129

datasets (Figure S2).130

We combined the advantages of P4 and P2P5 by averaging them in a composite test (P ) (Section131

4.6), which outperformed P4 and P2P5 at all sample sizes (Figure 1 and Figure S2) and hence132

was appointed as Findr’s new test for causal inference. Findr’s new test (P ) obtained consistently133

higher levels of local precision (i.e. one minus local FDR) on confounded and unconfounded gene134

pairs compared to Findr’s traditional causal inference test (PT ) (Figure 1C,D), and outperformed135

the traditional test (PT ), correlation test (P0), CIT, and every participating method of the DREAM5136

Systems Genetics Challenge (Section 4.1) in terms of AUROC and AUPR on all 15 datasets137
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(Figure 1E,F, Table S1, Figure S4).138

Specifically, Findr’s new test was able to address the inflated FNR of the traditional method due139

to confounded interactions. It performed almost equally well on confounded and unconfounded140

gene pairs and, compared to the traditional test, significantly fewer real interactions fell outside141

the top 1% of predictions (55% vs. 92% for confounded and 45% vs. 86% for unconfounded142

interactions, Figure 1D, Figure S6).143

2.4 The conditional independence test incurs false negatives for unconfounded144

regulations due to measurement error145

The traditional causal inference method based on the conditional indepedence test results in146

false negatives for confounded interactions, whose effect was shown signficant for the simulated147

DREAM datasets. However, the traditional test surprisingly reported more confounded gene pairs148

than the new test in its top predictions (albeit with lower precision), and correspondingly fewer149

unconfounded gene pairs (Figure 1C,D, Figure S6).150

We hypothesized that this inconsistency originated from yet another source of false negatives,151

where measurement error can confuse the conditional independence test. Measurement error in152

an upstream variable (called A in Table 1) does not affect the expression levels of its downstream153

targets, and hence a more realistic model for gene regulation is E → A(t) → B with A(t) → A,154

where the measured quantities are E, A, and B, but the true value for A, noted A(t), remains155

unknown. When the measurement error (in A(t) → A) is significant, conditioning on A instead156

of A(t) cannot remove all the correlation between E and B and would therefore report false157

negatives for unconfounded interactions as well. This effect has been previously studied, for158

example in epidemiology as the “spurious appearance of odds-ratio heterogeneity”20.159

We verified our hypothesis with a simple simulation (Section 4.8). In a typical scenario with 300160

samples from a monoallelic species, minor allele frequency 0.1, and a third of the total variance161

of B coming from A(t), the conditional independence test reported false negatives (likeilihood162

ratio p-value � 1, i.e. rejecting the null hypothesis of conditional indepencence, cf. Table 1) as163

long as measurement error contributed more than half of A’s total unexplained variance (Figure164

2B). False negatives occurred at even weaker measurement errors, when the sample sizes were165

larger or when stronger A→ B regulations were assumed (Figure S7).166
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This observation goes beyond the well-known problems that arise from a large measurement167

error in all variables, which acts like a hidden confounder9, or from a much larger measurement168

error in A than B, which can result in B becoming a better measurement of A(t) than A itself8. In169

this simulation, the false negatives persisted even if E → A was observationally much stronger170

than E → B, such as when A’s measurement error was only 10% (σ2A1 = 0.1) compared to up to171

67% for B (Figure 2B). This suggested a unique and mostly neglected source of false negatives172

that would not affect other tests. Indeed, the secondary, relevance, and controlled tests were173

much less sensitive to measurement errors (Figure 2A,C,D).174

2.5 Findr outperforms traditional causal inference and machine learning methods175

on microRNA target prediction176

In order to evaluate Findr on a real dataset, we performed causal inference on miRNA and mRNA177

sequencing data in lymphoblastoid cell lines from 360 European individuals in the Geuvadis178

study3 (Section 4.1). We first tested 55 miRNAs with reported significant cis-eQTLs against179

23,722 genes. Since miRNA target predictions from sequence complimentarity alone result in180

high numbers of false positives, prediction methods based on correlating miRNA and gene ex-181

pression profiles are of great interest21. Although miRNA target prediction using causal inference182

from genotype and gene expression data has been considered22, it remains unknown whether183

the inclusion of genotype data improves existing expression-based methods. To compare Findr184

against the state-of-the-art for expression-based miRNA target prediction, we used miRLAB, an185

integrated database of experimentally confirmed human miRNA target genes with a uniform inter-186

face to predict targets using twelve methods, including linear and non-linear, pairwise correlation187

and multivariate regression methods23. We were able to infer miRNA targets with 11/12 miRLAB188

methods, and also applied the GENIE3 random forest regression method24, CIT, and the three189

tests in Findr: the new (P ) and traditional (PT ) causal inference tests and the correlation test (P0)190

(Supplementary Material S2.4). Findr’s new test achieved highest AUROC and AUPR among191

the 16 methods attempted. In particular, Findr’s new test significantly outperformed the traditional192

test and CIT, the two other genotype-assisted methods, while also being over 500,000 times faster193

than CIT (Figure 3, Table S2, Figure S8). Findr’s correlation test outperformed all other methods194

not using genotype information, including correlation, regression, and random forest methods,195

and was 500 to 100,000 times faster (Figure 3, Table S2, Figure S8). This further illustrates the196
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power of the Bayesian gene-specific background estimation method implemented in all Findr’s197

tests (Section 4.5).198

2.6 Findr predicts transcription factor targets with more accurate FDR estimates199

We considered 3,172 genes with significant cis-eQTLs in the Geuvadis data3 (Section 4.1) and200

inferred regulatory interactions to the 23,722 target genes using Findr’s traditional (PT ), new (P )201

and correlation (P0) tests, and CIT. Groundtruths of experimentally confirmed causal gene inter-202

actions in human, and mammalian systems more generally, are of limited availability and mainly203

concern transcription or transcription-associated DNA-binding factors (TFs). Here we focused on204

a set of 25 TFs in the set of eQTL-genes for which either differential expression data following205

siRNA silencing (6 TFs) or TF-binding data inferred from ChIP-sequencing and/or DNase foot-206

printing (20 TFs) in a lymphoblastoid cell line (GM12878) was available25 (Section 4.1). AUPRs207

and AUROCs did not exhibit substantial differences, other than modest improvement over random208

predictions (Figure S9). To test for enrichment of true positives among the top-ranked predictions,209

which would be missed by global evaluation measures such as AUPR or AUROC, we took ad-210

vantage of the fact that Findr’s probabilities are empirical local precision estimates for each test211

(Section 4.5), and assessed how estimated local precisions of new, traditional, and correlation212

tests reflected the actual precision. Findr’s new test correctly reflected the precision values at213

various threshold levels, and was able to identify true regulations at high precision control levels214

(Figure 4). However, the traditional test significantly underestimated precision due to its elevated215

FNR. This lead to a lack of predictions at high precision thresholds but enrichment of true regula-216

tions at low thresholds, essentially nullifying the statistical meaning of its output probability PT . On217

the other hand, the correlation test significantly overestimated precisions because it is unable to218

distinguish causal, reversed causal or confounded interactions, which raises its FDR. The same219

results were observed when alternative groundtruth ChIP-sequencing networks were considered220

(Figure S9, Figure S10).221
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3 Discussion222

We developed a highly efficient, scalable software package Findr (Fast Inference of Networks223

from Directed Regulations) implementing novel and existing causal inference tests. Application224

of Findr on real and simulated genome and transcriptome variation data showed that our novel225

tests, which account for weak secondary linkage and hidden confounders at the potential cost of226

an increased number of false positives, resulted in a significantly improved performance to predict227

known gene regulatory interactions compared to existing methods, particularly traditional methods228

based on conditional independence tests, which had highly elevated false negative rates.229

Causal inference using eQTLs as causal anchors relies on crucial assumptions which have been230

discussed in-depth elsewhere8,9. Firstly, it is assumed that genetic variation is always causal231

for variation in gene expression, or quantitative traits more generally, and is independent of any232

observed or hidden confounding factors. Although this assumption is valid for randomly sampled233

individuals, caution is required when this is not the case (e.g. case-control studies). Secondly,234

measurement error is assumed to be independent and comparable across variables. Correlated235

measurement error acts like a confounding variable, whereas a much larger measurement error236

in the source variable A than the target variable B may lead to an inversion of the inferred causal237

direction. The conditional independence test in particular relies on the unrealistic assumptions238

that hidden confounders and measurement errors are absent, the violation of which incurs false239

negatives and a failure to correctly predict causal relations, as shown throughout this paper.240

Although the newly proposed test avoids the elevated FNR from the conditional independence241

test, it is not without its own limitations. Unlike the conditional independence test, the relevance242

and controlled tests (Table 1) are symmetric between the two genes considered. Therefore the243

direction of causality in the new test arises predominantly from using a different eQTL when testing244

the reverse interaction, potentially leading to a higher FDR as a minor trade-off. About 10% of245

cis-regulatory eQTLs are linked (as cis-eQTLs) to the expression of more than one gene26. In246

these cases, it appears that the shared cis-eQTL regulates the genes independently26, which247

in Findr is accounted for by the ‘controlled’ test (Table 1). When causality between genes and248

phenotypes or among phenotypes is tested, sharing or linkage of (e)QTLs can be more common.249

Resolving causality in these cases may require the use of Findr’s conservative, traditional causal250

inference test, in conjunction with the new test.251
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In this paper we have addressed the challenge of pairwise causal inference, but to reconstruct252

the actual pathways and networks that affect a phenotypic trait, two important limitations have253

to be considered. First, linear pathways propagate causality, and may thus appear as densely254

connected sets of triangles in pairwise causal networks. Secondly, most genes are regulated by255

multiple upstream factors, and hence some true edges may only have a small posterior probability256

unless they are considered in an appropriate multivariate context. The most straightforward way257

to address these issues would be to model the real directed interaction network as a Bayesian258

network with sparsity constraints. A major advantage of Findr is that it outputs probability val-259

ues which can be directly incorporated as prior edge probabilities in existing network inference260

softwares.261

In conclusion, Findr is a highly efficient and accurate open source software tool for causal infer-262

ence from large-scale genome-transcriptome variation data. Its nonparametric nature ensures263

robust performances across datasets without parameter tuning, with easily interpretable output264

in the form of accurate precision and FDR estimates. Findr is able to predict causal interactions265

in the context of complex regulatory networks where unknown upstream regulators confound266

traditional conditional independence tests, and more generically in any context with discrete or267

continuous causal anchors.268

4 Methods269

4.1 Datasets270

We used the following datasets/databases for evaluating causal inference methods:271

1. Simulated genotype and transcriptome data of synthetic gene regulatory networks from the272

DREAM5 Systems Genetics challenge A (DREAM for short)27, generated by the SysGen-273

SIM software28. DREAM provides 15 sub-datasets, obtained by simulating 100, 300, and274

999 samples of 5 different networks each, containing 1000 genes in every sub-dataset275

but more regulations for sub-datasets with higher numbering. In every sub-dataset, each276

gene has exactly one matching genotype variable. 25% of the genotype variables are cis-277

expression Quantitative Trait Loci (eQTL), defined in DREAM as: their variation changes278

the expression level of the corresponding gene directly. The other 75% are trans-eQTLs,279
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defined as: their variation affects the expression levels of only the downstream targets of280

the corresponding gene, but not the gene itself. Because the identities of cis-eQTLs are un-281

known, we calculated the P-values of genotype-gene expression associations with kruX29,282

and kept all genes with a P-value less than 1/750 to filter out genes without cis-eQTL. For283

the subsampling analysis (detailed in Section 4.7), we restricted the evaluation to the pre-284

diction of target genes from these cis-genes only, in line with the assumption that Findr285

and other causal inference methods require as input a list of genes whose expression is286

significantly associated with at least one cis-eQTL. For the full comparison of Findr to the287

DREAM leaderboard results, we predicted target genes for all genes, regardless of whether288

they had a cis-eQTL.289

2. Genotype and transcriptome sequencing data on 465 human lymphoblastoid cell line sam-290

ples from the Geuvadis project3 consisting of the following data products:291

• Genotype data (ArrayExpress accession E-GEUV-1)30.292

• Gene quantification data for 23722 genes from nonredundant unique samples and293

after quality control and normalization (ArrayExpress accession E-GEUV-1)31.294

• Quantification data of miRNA, with the same standard as gene quantification data295

(ArrayExpress accession E-GEUV-2)32.296

• Best eQTLs of mRNAs and miRNAs (ArrayExpress accessions E-GEUV-1 and E-297

GEUV-2)33,34.298

We restricted our analysis to 360 European samples which are shared by gene and miRNA299

quantifications. Excluding invalid eQTLs from the Geuvadis analysis, such as single-valued300

genotypes, 55 miRNA-eQTL pairs and 3172 gene-eQTL pairs were retained.301

3. For validation of predicted miRNA-gene interactions, we extracted the “strong” ground-truth302

table from miRLAB23,35, which contains experimentally confirmed miRNA-gene regulations303

from the following databases: TarBase36, miRecords37, miRWalk38, and miRTarBase39.304

The intersection of the Geuvadis and ground-truth table contains 20 miRNAs and 1054305

genes with 1217 confirmed regulations, which are considered for prediction validation. In-306

teractions that are present in the ground-truth table are regarded as true while others as307

false.308
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4. For verification of predicted gene-gene interactions, we obtained differential expression data309

following siRNA silencing of 59 transcription-associated factors (TFs) and DNA-binding data310

of 201 TFs for 8872 genes in a reference lymphoblastoid cell line (GM12878) from25. Six311

siRNA-targeted TFs, 20 DNA-binding TFs, and 6,790 target genes without missing differ-312

ential expression data intersected with the set of 3172 eQTL-genes and 23722 target genes313

in Geuvadis and were considered for validation. We reproduced the pipeline of25 with the314

criteria for true targets as having a False Discovery Rate (FDR) < 0.05 from R package315

qvalue for differential expression in siRNA silencing, or having at least 2 TF-binding peaks316

within 10kb of their transcription start site. We also obtained the filtered proximal TF-target317

network from40, which had 14 TFs and 7,000 target genes in common with the Geuvadis318

data.319

4.2 General inference algorithm320

Consider a set of observations sampled from a mixture distribution of a null and an alternative321

hypothesis. For instance in gene regulation, every observation can correspond to expression322

levels of a pair of genes wich are sampled from a bivariate normal distribution with zero (null323

hypothesis) or non-zero (alternative hypothesis) correlation coefficient. In Findr, we predict the324

probability that any sample follows the alternative hypothesis with the following algorithm (based325

on and modified from11):326

1. For robustness against outliers, we convert every continuous variable into standard nor-327

mally distributed N(0, 1) values using a rank-based inverse normal transformation across328

all samples. We name this step as supernormalization.329

2. We propose a null and an alternative hypothesis for every likelihood ratio test (LRT) of inter-330

est where, by definition, the null hypothesis space is a subset of the alternative hypothesis.331

Model parameters are replaced with their maximum likelihood estimators (MLEs) to obtain332

the log likelihood ratio (LLR) between the alternative and null hypotheses (Section 4.3).333

3. We derive the analytical expression for the probablity density function (PDF) of the LLR334

when samples follow the null hypothesis (Section 4.4).335
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4. We convert LLRs into posterior probabilities of the hypothesis of interest with the empirical336

estimation of local FDR (Section 4.5).337

Implementational details can be found in Findr’s source code.338

4.3 Likelihood ratio tests339

Consider correlated genesA,B, and a third variableE upstream ofA andB, such as a significant340

eQTL of A. The eQTLs can be obtained either de novo using eQTL identification tools such as341

matrix-eQTL41 or kruX29, or from published analyses. Throughout this article, we assume that E342

is a significant eQTL of A, whereas extension to other data types is straightforward. We use Ai343

and Bi for the expression levels of gene A and B respectively, which are assumed to have gone344

through the supernormalization in Section 4.2, and optionally the genotypes of the best eQTL345

of A as Ei, where i = 1, . . . , n across samples. Genotypes are assumed to have a total of na346

alleles, so Ei ∈ {0, . . . , na}. We define the null and alternative hypotheses for a total of six tests,347

as shown in Table 1. LLRs of every test are calculated separately as follows:348

0. Correlation test: Define the null hypothesis as A and B are independent, and the alterna-349

tive hypothesis as they are correlated:350

H(0)
null = A B, H(0)

alt = A B. (1)

The superscript (0) is the numbering of the test. Both hypotheses are modeled with gene351

expression levels following bivariate normal distributions, as352

 Ai

Bi

 ∼ N
 0

0

 ,

 σ2A0 ρ σA0σB0

ρ σA0σB0 σ2B0

 ,

for i = 1, . . . , n. The null hypothesis corresponds to ρ = 0.353

Maximum likelihood estimators (MLE) for the model parameters ρ, σA0, and σB0 are354

ρ̂ =
1

n

n∑
i=1

AiBi, σ̂A0 = σ̂B0 = 1, (2)
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and the LLR is simply355

LLR(0) = −n
2

ln(1− ρ̂2). (3)

In the absence of genotype information, we use nonzero correlation between A and B as356

the indicator for A→ B regulation, giving the posterior probability357

P (A B) = P (H(0)
alt | LLR(0)).

false negative358

1. Primary (linkage) test: Verify thatE regulatesA fromH(1)
alt ≡ E → A andH(1)

null ≡ E A.359

For H(1)
alt , we model E → A as A follows a normal distribution whose mean is determined360

by E categorically, i.e.361

Ai | Ei ∼ N(µEi , σ
2
A). (4)

From the total likelihood p(A | E) =
∏n

i=1 p(Ai | Ei), we find MLEs for model parameters362

µj , j = 0, 1, . . . , na, and σA, as363

µ̂j =
1

nj

n∑
i=1

AiδEij , σ̂2A = 1−
na∑
j=0

nj
n
µ̂2j ,

where nj is the sample count by genotype category,364

nj ≡
n∑

i=1

δEij .

The Kronecker delta function is defined as δxy = 1 for x = y, and 0 otherwise. When365

summing over all genotype values (j = 0, . . . , na), we only pick those that exist (nj >366

0) throughout this article. Since the null hypothesis is simply that Ai is sampled from a367

genotype-independent normal distribution, with MLEs of mean zero and standard deviation368

one due to the supernormalization (Section 4.2), the LLR for test 1 becomes369

LLR(1) = −n
2

ln σ̂2A. (5)
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By favoring a large LLR(1), we select H(1)
alt and verify that E regulates A, with370

P (E → A) = P (H(1)
alt | LLR(1)).

2. Secondary (linkage) test: The secondary test is identical with the primary test, except371

it verifies that E regulates B. Hence repeat the primary test on E and B and obtain the372

MLEs:373

ν̂j =
1

nj

n∑
i=1

BiδEij , σ̂2B = 1−
na∑
j=0

nj
n
ν̂2j ,

and the LLR as374

LLR(2) = −n
2

ln σ̂2B.

H(2)
alt is chosen to verify that E regulates B.375

3. (Conditional) independence test: Verify that E andB are independent when conditioning376

on A. This can be achieved by comparing H(3)
alt ≡ B ← E → A ∧ (A correlates with B)377

against H(3)
null ≡ E → A → B. LLRs close to zero then prefer H(3)

null, and ensure that E378

regulates B only through A:379

P (E ⊥ B | A) = P (H(3)
null | LLR(3)).

For H(3)
alt , the bivariate normal distribution dependent on E can be represented as380

 Ai

Bi

∣∣∣∣∣∣ Ei ∼ N

( µEi

νEi

)
,

(
σ2A ρσAσB

ρσAσB σ2B

) .

For H(3)
null, the distributions follow Eq 4, as well as381

Bi | Ai ∼ N(ρAi, σ
2
B).

Substituting parameters µj , νj , σA, σB, ρ of H(3)
alt and µj , ρ, σA, σB of H(3)

null with their MLEs,382
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we obtain the LLR:383

LLR(3) = −n
2

ln
(
σ̂2Aσ̂

2
B − (ρ̂+ σAB − 1)2

)
+
n

2
ln σ̂2A +

n

2
ln(1− ρ̂2), (6)

where384

σAB ≡ 1−
na∑
j=0

nj
n
µ̂j ν̂j ,

and ρ̂ is defined in Eq 2.385

4. Relevance test: Since the indirect regulation E → B tends to be weaker than any of its386

direct regulation components (E → A or A → B), we propose to test E → A → B with387

indirect regulation E → B as well as the direct regulationA→ B for stronger distinguishing388

power on weak regulations. We define H(4)
alt ≡ E → A ∧ E → B ← A and H(4)

null ≡ E →389

A B. This simply verifies that B is not independent from both A and E simultaneously.390

In the alternative hypothesis, B is regulated by E and A, which is modeled as a normal391

distribution whose mean is additively determined by E categorically and A linearly, i.e.392

Bi | Ei, Ai ∼ N(νEi + ρAi, σ
2
B).

We can hence solve its LLR as393

LLR(4) = −n
2

ln
(
σ̂2Aσ̂

2
B − (ρ̂+ σAB − 1)2

)
+
n

2
ln σ̂2A.

5. Controlled test: Based on the positives of the secondary test, we can further distinguish394

the alternative hypothesisH(5)
alt ≡ B ← E → A∧A→ B from the nullH(5)

null ≡ B ← E → A395

to verify that E does not regulate A and B independently. Its LLR can be solved as396

LLR(5) = −n
2

ln
(
σ̂2Aσ̂

2
B − (ρ̂+ σAB − 1)2

)
+
n

2
ln σ̂2Aσ̂

2
B.
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4.4 Null distributions for the log-likelihood ratios397

The null distribution of LLR, p(LLR | Hnull), may be obtained either by simulation or analytically.398

Simulation, such as random permutations from real data or the generation of random data from399

statistics of real data, can deal with a much broader range of scenarios in which analytical expres-400

sions are unattainable. However, the drawbacks are obvious: simulation can take hundreds of401

times longer than analytical methods to reach a satisfiable precision. Here we obtained analytical402

expressions of p(LLR | Hnull) for all the tests introduced above.403

0. Correlation test: H(0)
null = A B indicates no correlation between A and B. Therefore,404

we can start from405

B̃i ∼ i.i.d N(0, 1). (7)

In order to simulate the supernormalization step, we normalize B̃i into Bi with zero mean406

and unit variance as:407

Bi ≡
B̃i − ¯̃Bi

σB̃
, ¯̃B ≡ 1

n

n∑
i=1

B̃i, σ2
B̃
≡ 1

n

n∑
i=1

(
B̃i − ¯̃B

)2
. (8)

Transform the random variables {B̃i} by defining408

X1 ≡ 1√
n

n∑
i=1

AiB̃i, (9)

X2 ≡ 1√
n

n∑
i=1

B̃i, (10)

X3 ≡

(
n∑

i=1

B̃2
i

)
−X2

1 −X2
2 . (11)

Since B̃i ∼ i.i.d N(0, 1) (according to Eq 7), we can easily verify that X1, X2, X3 are409

independent, and410

X1 ∼ N(0, 1), X2 ∼ N(0, 1), X3 ∼ χ2(n− 2). (12)

Expressing Eq 3 in terms of X1, X2, X3 gives411

LLR(0) = −n
2

ln(1− Y ), (13)
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in which412

Y ≡ X2
1

X2
1 +X3

∼ Beta
(1

2
,
n− 2

2

)
(14)

follows the Beta distribution.413

We define distribution D(k1, k2) as the distribution of a random variable Z = −1
2 ln(1− Y )414

for Y ∼ Beta(k1/2, k2/2), i.e.415

Z = −1

2
ln(1− Y ) ∼ D(k1, k2).

The probability density function (PDF) for Z ∼ D(k1, k2) can be derived as: for z > 0,416

p(z | k1, k2) =
2

B(k1/2, k2/2)

(
1− e−2z

)(k1/2−1) e−k2z, (15)

and for z ≤ 0, p(z | k1, k2) = 0. Here B(a, b) is the Beta function. Therefore the null417

distribution for the correlation test is simply418

LLR(0)/n ∼ D(1, n− 2). (16)

1. Primary test: H(1)
null = E A indicates no regulation from E to A. Therefore, similarly419

with the correlation test, we start from Ãi ∼ i.i.d N(0, 1) and normalize them to Ai with420

zero mean and unit variance.421

The expression of LLR(1) then becomes:422

LLR(1) = −n
2

ln

1−
na∑
j=0

nj
n

(
ˆ̃µj − ¯̃A

)2
σ2
Ã

 ,

where423

ˆ̃µj ≡
1

nj

n∑
i=1

ÃiδEij .

For now, assume all possible genotypes are present, i.e. nj > 0 for j = 0, . . . , na. Trans-424
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form {Ãi} by defining425

Xj ≡
√
nj ˆ̃µj , for j = 0, . . . , na,

Xna+1 ≡

(
n∑

i=1

Ã2
i

)
−

(
na∑
j=0

X2
j

)
. (17)

Then we can similarly verify that {Xi} are pairwise independent, and426

Xi ∼ N(0, 1), for i = 0, . . . , na,

Xna+1 ∼ χ2(n− na − 1). (18)

Again transform {Xi} by defining independent random variables427

Y1 ≡
na∑
j=0

√
nj
n
Xj ∼ N(0, 1),

Y2 ≡

 na∑
j=0

X2
j

− Y 2
1 ∼ χ2(na),

Y3 ≡ Xna+1 ∼ χ2(n− na − 1).

Some calculation would reveal428

LLR(1) = −n
2

ln

(
1− Y2

Y2 + Y3

)
,

i.e.429

LLR(1)/n ∼ D(na, n− na − 1).

To account for genotypes that do not show up in the samples, define nv ≡
∑

j∈{j|nj>0} 1430

as the number of different genotype values across all samples. Then431

LLR(1)/n ∼ D(nv − 1, n− nv). (19)

2. Secondary test: Since the null hypotheses and LLRs of primary and secondary tests are432

identical, LLR(2) follows the same null distribution as Eq 19.433
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3. Independence test: The independence test verifies if E and B are uncorrelated when434

conditioning on A, with H(3)
null = E → A → B. For this purpose, we keep E and A intact435

while randomizing B̃i according to B’s correlation with A:436

B̃i ≡ ρ̂Ai +
√

1− ρ̂2Xi, Xi ∼ i.i.d N(0, 1).

Then B̃i is normalized to Bi according to Eq 8. The null distribution of LLR(3) can be437

obtained with similar but more complex computations from Eq 6, as438

LLR(3)/n ∼ D(nv − 1, n− nv − 1). (20)

4. Relevance test: The null distribution of LLR(4) can be obtained similarly by randomizing439

Bi according to Eq 7 and Eq 8, as440

LLR(4)/n ∼ D(nv, n− nv − 1).

5. Controlled test: To compute the null distribution for the controlled test, we start from441

B̃i = ν̂Ei + σ̂BXi, Xi ∼ N(0, 1), (21)

and then normalize B̃i into Bi according to Eq 8. Some calculation reveals the null distri-442

bution as443

LLR(5)/n ∼ D(1, n− nv − 1).

We verified our analytical method of deriving null distributions by comparing the analytical null444

distribution v.s. null distribution from permutation for the relevance test in Section S2.2.445

4.5 Bayesian inference of posterior probabilities446

After obtaining the PDFs for the LLRs from real data and the null hypotheses, we can convert LLR447

values into posterior probabilities P (Halt | LLR). We use a similar technique as in11, which itself448

was based on a more general framework to estimate local FDRs in genome-wide studies42. This449

framework assumes that the real distribution of a certain test statistic forms a mixture distribution450
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of null and alternative hypotheses. After estimating the null distribution, either analytically or by451

simulation, it can be compared against the real distribution to determine the proportion of null452

hypotheses, and consequently the posterior probability that the alternative hypothesis is true at453

any value of the statistic.454

To be precise, consider an arbitrary likelihood ratio test. The fundamental assumption is that in455

the limit LLR→ 0+, all test cases come from the null hypothesis (Hnull), whilst as LLR increases,456

the proportion of alternative hypotheses (Halt) also grows. The mixture distribution of real LLR457

values is assumed to have a PDF as458

p(LLR) = P (Hnull)p(LLR | Hnull) + P (Halt)p(LLR | Halt).

The priors P (Hnull) and P (Halt) sum to unity and correspond to the proportions of null and459

alternative hypotheses in the mixture distribution. For any test i = 0, . . . , 5, Bayes’ theorem then460

yields its posterior probability as461

P (H(i)
alt | LLR(i)) =

p(LLR(i) | H(i)
alt)

p(LLR(i))
P (H(i)

alt). (22)

Based on this, we can define the posterior probabilities of the selected hypotheses according to462

Table 1, i.e. the alternative for tests 0, 1, 2, 4, 5 and the null for test 3 as463

Pi ≡


P (H(i)

alt | LLR(i)), i = 0, 1, 2, 4, 5,

P (H(i)
null | LLR(i)), i = 3.

(23)

After obtaining the LLR distribution of the null hypothesis [p(LLR | Hnull)], we can determine its464

proportion [P (Hnull)] by aligning p(LLR | Hnull) with the real distribution p(LLR) at the LLR →465

0+ side. This provides all the prerequisites to perform Bayesian inference and obtain any Pi from466

Eq 23.467

In practice, PDFs are approximated with histograms. This requires proper choices of histogram468

bin widths, P (Hnull), and techniques to ensure the conversion from LLR to posterior probability469

is monotonically increasing and smooth. Implementational details can be found in Findr package470

and in Section S1.1. Distributions can be estimated either separately for every (E,A) pair or by471

pooling across all (E,A) pairs. In practice, we test on the order of 103 to 104 candidate targets472
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(“B”) for every (E,A) such that a separate conversion of LLR values to posterior probabilities is473

both feasible and recommended, as it accounts for different roles of every gene, especially hub474

genes, through different rates of alternative hypotheses.475

Lastly, in a typical application of Findr, inputs of (E,A) pairs will have been pre-determined as476

the set of significant eQTL-gene pairs from a genome-wide eQTL associaton analysis. In such477

cases, we may naturally assume P1 = 1 for all considered pairs, and skip the primary test.478

4.6 Tests to evaluate479

Based on the six tests in Section 4.3, we use the following tests and test combinations for the480

inference of genetic regulations, and evalute them in the results.481

• The correlation test is introduced as a benchmark, against which we can compare other482

methods involving genotype information. Pairwise correlation is a simple measure for the483

probability of two genes being functionally related either through direct or indirect regulation,484

or through coregulation by a third factor. Bayesian inference additionally considers different485

gene roles. Its predicted posterior probability for regulation is P0.486

• The traditional causal inference test, as explained in11, suggested that the regulatory re-487

lation E → A → B can be confirmed with the combination of three separate tests: E488

regulates A, E regulates B, and E only regulates B through A (i.e. E and B become489

independent when conditioning on A). They correspond to the primary, secondary, and490

independence tests respectively. The regulatory relation E → A → B is regarded pos-491

itive only when all three tests return positive. The three tests filter the initial hypothesis492

space of all possible relations between E, A, and B, sequentially to E → A (primary test),493

E → A ∧E → B (secondary test), and E → A→ B ∧ (no confounder for A and B) (con-494

ditional independence test). The resulting test is stronger than E → A→ B by disallowing495

confounders for A and B. So its probability can be broken down as496

PT ≡ P1P2P3. (24)

Trigger43 is an R package implementation of the method. However, since Trigger integrates497

eQTL discovery with causal inference, it is not practical for use on modern datasets. For498
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this reason, we reimplemented this method in Findr, and evaluated it with P2 and P2P3499

separately, in order to assess the individual effects of secondary and independence tests.500

As discussed above, we expect a set of significant eQTLs and their associated genes as501

input, and therefore P1 = 1 is assured and not calculated in this paper or the package Findr.502

Note that PT is the estimated local precision, i.e. the probability that tests 2 and 3 are both503

true. Correspondinly, its local FDR (the probability that one of them is false) is 1− PT .504

• The novel test, aimed specifically at addressing the failures of the traditional causal infer-505

ence test, combines the tests differently:506

P ≡ 1

2
(P2P5 + P4). (25)

Specifically, the first term in Eq 25 accounts for hidden confounders. The controlled test re-507

places the conditional independence test and constrains the hypothesis space more weakly,508

only requiring the correlation between A and B is not entirely due to pleiotropy. Therefore,509

P2P5 (with P1 = 1) verifies the hypothesis that B ← E → A ∧ (A 6⊥ B | E), a superset of510

E → A→ B.511

On the other hand, the relevance test in the second term of Eq 25 addresses weak in-512

teractions that are undetectable by the secondary test from existing data (P2 close to 0).513

This term still grants higher-than-null significance to weak interactions, and verifies that514

E → A∧ (E → B ∨A B), also a superset of E → A→ B. In the extreme undetectable515

limit where P2 = 0 but P4 6= 0, the novel test Eq 25 automatically reduces to P = 1
2P4,516

which assumes equal probability of either direction and assigns half of the relevance test517

probability to A→ B.518

The composite design of the novel test aims not to miss any genuine regulation whilst dis-519

tinguishing the full spectrum of possible interactions. When the signal level is too weak for520

tests 2 and 5, we expect P4 to still provide distinguishing power better than random predic-521

tions. When the interaction is strong, P2P5 is then able to pick up true targets regardless of522

the existence of hidden confounders.523
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4.7 Evaluation methods524

• Evaluation metrics:525

Given the predicted posterior probabilities for every pair (A,B) from any test, or more gener-526

ically a score from any inference method, we evaluated the predictions against the direct527

regulations in the ground-truth tables (Section 4.1) with the metrics of Receiver Operating528

Characteristic (ROC) and Precision-Recall (PR) curves, as well as the Areas Under the529

ROC (AUROC) and Precision-Recall (AUPR) curves44. In particular, AUPR is calculated530

with the Davis-Goadrich nonlinear interpolation45 with R package PRROC.531

• Subsampling:532

In order to assess the effect of sample size on the performances of inference methods,533

we performed subsampling evaluations. This is made practically possible by the DREAM534

datasets which contain 999 samples with sufficient variance, as well as the computational535

efficiency from Findr which makes subsampling computationally feasible. With a given536

dataset and ground-truth table, the total number of samples n, and the number of samples537

of our actual interest N < n, we performed subsampling by repeating following steps k538

times:539

1. Randomly select N samples out of the total n samples without replacement.540

2. Infer regulations only based on the selected samples.541

3. Compute and record the evaluation metrics of interest (e.g. AUROC and AUPR) with542

the inference results and ground-truths.543

Evaluation metrics are recorded in every loop, and their means, standard deviations, and544

standard errors over the k runs, are calculated. The mean indicates how the inference545

method performs on the metric in average, while the standard deviation reflects how every546

individual subsampling deviates from the average performance.547

• Local precision of top predictions separately for confounded and unconfounded548

gene pairs:549

In order to demonstrate the inferential precision among top predictions for any inference550

test (here the traditional and novel tests separately), we first ranked all (ordered) gene pairs551
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(A,B) according to the inferred significance for A → B. All gene pairs were split into552

groups according to their relative significance ranking (9 groups in Figure 1C,D, as top 0%553

to 0.01%, 0.01% to 0.02%, etc). Each group was divided into two subgroups, based on554

whether each gene pair shared at least one direct upstream regulator gene (confounded)555

or not (unconfounded), according to the gold standard. Within each subgroup, the local556

precision was computed as the number of true directed regulations divided by the total557

number of gene pairs in the subgroup.558

4.8 Simulation studies on causal models with measurement error559

We investigated how each statistical test tolerates measurement errors with simulations in a con-560

trolled setting. We modelled the causal relation A → B in a realistic setup as E → A(t) → B561

with A(t) → A. E remains as the accurately measured genotype values as the eQTL for the562

primary target gene A. A(t) is the true expression level of gene A, which is not observable. A is563

the measured expression level for gene A, containing measurement errors. B is the measured564

expression level for gene B.565

For simplicity, we only considered monoallelic species. Therefore the genotype E in each sample566

followed the Bernoulli distribution, parameterized by the predetermined minor allele frequency.567

Each regulatory relation (of E → A(t), A(t) → A, and A(t) → B) correponded to a normal568

distribution whose mean was linearly dependent on the regulator variable. In particular, for sample569

i:570

A
(t)
i ∼ N(Ẽi, σ

2
A1), (26)

Ai ∼ N(A
(t)
i , σ2A2), (27)

Bi ∼ N(Ã
(t)
i , σ2B), (28)

in which σA1, σA2, and σB are parameters of the model. Note that σ2B is B’s variance from571

all unknown sources, including expression level variations and measurement errors. The tilde572

normalizes the variable into zero mean and unit variance, as:573

X̃i ≡
Xi − X̄√
Var(X)

, (29)
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where X̄ and Var(X) are the mean and variance of X ≡ {Xi} respectively.574

Given the five parameters of the model (the number of samples, the minor allele frequency, σA1,575

σA2, and σB), we could simulate the observed data for E, A, and B, which were then fed into576

Findr for tests 2-5 and their p-values of the respective null hypotheses. Supernormalization step577

was replaced with normalization which merely shifted and scaled variables into zero mean and578

unit variance.579

We then chose different configurations on the number of samples, the minor allele frequency, and580

σB . For each configuration, we varied σA1 and σA2 in a wide range to obtain a 2-dimensional581

heatmap plot for the p-value of each test, thereby exploring how each test was affected by mea-582

surement errors of different strengths. Only tiles with a significant E → A eQTL relation were583

retained. The same initial random seed was employed for different configurations to allow for584

replicability.585
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Table 1: Six likelihood ratio tests are performed to test the regulation A→ B, numbered, named,
and defined as shown. E is the best eQTL of A. Arrows in a hypothesis indicate directed regula-
tory relations. Genes A and B each follow a normal distribution, whose mean depends additively
on its regulator(s), as determined in the corresponding hypothesis. The dependency is categorical
on discrete regulators (genotypes) and linear on continuous regulators (gene expression levels).
The undirected line represents a multi-variate normal distribution between the relevant variables.
In order to identify A → B regulation, we select either the null or the alternative hypothesis
depending on the test, as shown.

Test ID Test name
Null

(hypothesis)
Alternative

(hypothesis)
Selected

hypothesis

0 Correlation A B A B Alternative

1
Primary

(Linkage)
E A E A Alternative

2
Secondary
(Linkage)

E B E B Alternative

3
(Conditional)

Independence
A B

E

A B

E

Null

4 Relevance
A B

E

A B

E

Alternative

5 Controlled
A B

E

A B

E

Alternative
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Figure 1: Findr achieves best prediction accuracy on the DREAM5 Systems Genetics Chal-
lenge. (A, B) The mean AUROC (A) and AUPR (B) on subsampled data are shown for traditional
(P2, P2P3) and newly proposed (P4, P2P5, P ) causal inference tests against the baseline corre-
lation test (P0). Every marker corresponds to the average AUROC or AUPR at specific sample
sizes. Random subsampling at every sample size was performed 100 times. Half widths of the
lines and shades are the standard errors and standard deviations respectively. Pi corresponds to
test i numbered in Table 1; P is the new composite test (Section 4.6). This figure is for dataset
4 of the DREAM challenge. For results on other datasets of the same challenge, see Figure S2.
(C, D) Local precision of top predictions for the traditional (C) and novel (D) tests for dataset 4 of
the DREAM challenge. Numbers next to each bar (x/y) indicate the number of true regulations
(x) and the total number of gene pairs (y) within the respective range of prediction scores. For
results on other datasets, see Figure S6. (E, F) The average AUROC (E) and AUPR (F) over 5
DREAM datasets with respectively 100, 300 and 999 samples are shown for Findr’s new (Findr-
P ), traditional (Findr-PT ), and correlation (Findr-P0) tests, for CIT and for the best scores on the
DREAM challenge leaderboad. For individual results on all 15 datasets, see Table S1.
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Figure 2: The conditional independence test yields false negatives for unconfounded reg-
ulations in the presence of even minor measurement errors. Null hypothesis p-values of the
secondary linkage (A), conditional independence (B), relevance (C), and controlled (D) tests are
shown on simulated data from the ground truth model E → A(t) → B with A(t) → A. A(t)’s
variance coming from E is set to one, σ2A1 is A(t)’s variance from other sources and σ2A2 is the
variance due to measurement noise. A total of 100 values from 10−2 to 102 were taken for σ2A1

and σ2A2 to form the 100× 100 tiles. Tiles that did not produce a significant eQTL relation E → A
with p-value ≤ 10−6 were discarded. Contour lines are for the log-average of smoothened tile
values. Note that for the conditional independence test (B), the true model corresponds to the
null hypothesis, i.e. small (purple) p-values correspond to false negatives, whereas for the other
tests the true model corresponds to the alternative hypothesis, i.e. small (purple) p-values corre-
spond to true positives (cf. Table 1). For details of the simulation and results from other parameter
settings, see Section 4.8 and Figure S7 respectively.
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Figure 3: Findr achieves highest accuracy and speed on the prediction of miRNA target
genes from the Geuvadis data. Shown are the AUROC (A), AUPR (B) and runtime (C) for 16
miRNA target prediction methods. Methods are colored by type: blue, genotype-assisted causal
inference methods; red, pairwise correlation methods; yellow, multivariate regression methods;
purple, other methods. Dashed lines are the AUROC and AUPR from random predictions. For
method details, see Supplementary Material S2.4.
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Figure 4: Findr predicts TF targets with more accurate FDR estimates from the Geuvadis
data. The precision (i.e. 1-FDR) of TF target predictions is shown at probability cutoffs 0.1 to 0.9
(blue to yellow) with respect to known functional targets from siRNA silencing of 6 TFs (A) and
known TF-binding targets of 20 TFs (B). The number above each bar indicates the number of
predictions at the corresponding threshold. Dashed lines are precisions from random predictions.
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