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Abstract 

Variability in red blood cell volumes (distribution width, RDW) increases with age and is strongly 

predictive of mortality, incident coronary heart disease and cancer. We investigated inherited 

genetic variation associated with RDW in 116,666 UK Biobank human volunteers. 

A large proportion RDW is explained by genetic variants (29%), especially in the older group (60+ 

year olds, 33.8%, <50 year olds, 28.4%). RDW was associated with 194 independent genetic signals; 

71 are known for conditions including autoimmune disease, certain cancers, BMI, Alzheimer’s 

disease, longevity, age at menopause, bone density, myositis, Parkinson’s disease, and age-related 

macular degeneration. Pathways analysis showed enrichment for telomere maintenance, ribosomal 

RNA and apoptosis. The majority of RDW-associated signals were intronic (119 of 194), including SNP 

rs6602909 located in an intron of oncogene GAS6; the SNP is also an eQTL for this gene in whole 

blood. RDW-associated exonic genetic signals included a missense variant in PNPLA3, which codes 

for a triacylglycerol lipase, and a rare (1% frequency) deletion in SMIM1, involved in red blood cell 

formation. 

Although increased RDW is predictive of cardiovascular outcomes, this was not explained by known 

CVD or related lipid genetic risks. The predictive value of RDW for a range of negative health 

outcomes may in part be due to variants influencing fundamental pathways of aging. 
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Introduction 

Increased variation in a person’s Red Blood Cell (RBC) volumes (RBC distribution width (RDW), also 

termed anisocytosis) is strongly predictive of a range of incident cardiovascular conditions, cancers 

and mortality [1]–[3]. Although RDW is routinely measured in clinical hematology reporting – it is 

calculated by dividing the standard deviation of mean cell volume (MCV) by the MCV and multiplying 

by 100, to yield a RDW percentage [4] – it is only used clinically for diagnosis of anemia subtypes. 

Understanding the mechanisms involved in the links between increased RDW and negative health 

outcomes could provide clues to potential interventions to improve prognosis in those with high 

RDW who are not anemic, particularly in older people. 

Established clinical causes of increased RDW include anemia and other iron or folate deficiencies [5], 

dyslipidemia [6] and other metabolic abnormalities, and inflammation [7]. Proposed mechanisms for 

increased RDW also include impaired erythropoiesis (the generation of new RBC) perhaps due to 

effects of inflammation or senescence of erythropoietic cells in the bone marrow, plus variations in 

RBC survival [8]. A previous analysis of 36 blood cell traits identified genetic variants [9], but the 

genetic signals for RDW were not investigated in depth in relation to the mechanisms that might 

explain the predictive value of RDW for negative health outcomes in people with normal hemoglobin 

levels.  

We aimed to investigate RDW (overall and excluding anemia) using genetic analysis in a large 

population cohort, to identify underlying mechanisms. This involved genome-wide analysis of 

associations to find independent signals, investigations of biological pathways implicated by the 

results, and overlap with known risk alleles. We also examined associations between RDW and 

known variant genetic risk score analysis for conditions predicted by RDW, including cardiovascular 

disease. For this analysis, we used the exceptionally large UK Biobank volunteer sample with 

standardized measures of RDW across the cohort.   
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Results 

We included 116,666 UK Biobank participants of white/British descent with complete hematology 

measures, covariate data, and genetics data from the interim data release (May 2015) in our 

analyses. The mean age was 57 years (SD: 7.9, min=40, max=70), with 52,541 aged 60 to 70 years 

old, and the majority (52.6%) were female: Table 1.  

 

Variance explained by genotypes 

We estimated that 29.3% (SE = 0.5%) of the variance in RDW was accounted for by 457,643 directly 

genotyped variants with MAF>0.1%. In a secondary analysis we estimated the proportion explained 

in two groups: those aged ≥60 years (n=52,541), and those aged <50 years (n=24,988). The 

proportion of variance in RDW explained by the genetic variants was greater in the older group 

(33.8%, SE = 1.0%) compared to the younger group (28.4%, SE = 2.0%). 

We estimated the proportion of variance in CHD (10,280 cases in 116,666 participants) accounted 

for by the variants to be 5.95% (SE = 0.45%). The proportion of the variance shared between RDW 

and CHD attributable to genetics is 6.62% (SE = 2.69%: 95% CIs = 1.35 to 11.9%). 

 

Genome-Wide Association Study 

Of the 16,832,071 genetic variants included in this GWAS, 30,988 were significantly (p<5x10-8) 

associated with RDW (Figure 1; full results available to download here: 

http://www.t2diabetesgenes.org/data) after adjustment for age, sex, assessment center and array 

type (genetic relatedness is accounted for in the linear mixed models approach so no PCs are 

included – see methods). The 30,988 variants were mapped to 141 loci (runs of variants separated 

by <2Mb) on the genome, and included 194 independent signals after conditional analysis 

(“conditional SNPS”) (Supplementary Table 1).  

After excluding 17,795 participants with anemia the GWAS of RDW was repeated on the 98,871 

remaining participants; all 194 conditional SNPs remained nominally associated with RDW (p<0.001), 

but 24 were no longer genome-wide significant (p<5x10-8), possibly due to reduced power in the 

smaller sample size. 
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Functional Implications of RDW-associated Genetic Variants 

We utilized the UCSC Variant Annotation Integrator (http://www.genome.ucsc.edu/cgi-bin/hgVai) 

and the Ensembl Variant Effect Predictor (http://grch37.ensembl.org/Homo_sapiens/Tools/VEP) to 

interrogate a number of genomic annotation databases for the conditional SNPs. The majority (119 

out of 194 total) were intronic, and 12 were located in the 3’ or 5’ un-translated regions (see 

Supplementary Table 2 for complete variant annotation output). We found that 37 of 194 

independent RDW-associated signals are known eQTLs (i.e. affect the expression of a gene) in whole 

blood (http://genenetwork.nl/bloodeqtlbrowser): 15 of these affect the gene predicted by the 

variant annotation integrator, including rs6602909, located in an intron of oncogene GAS6 [10] (see 

Supplementary Table 3 for complete matching of RDW-associated signals to eQTL data). SNP 

rs7775698 is an trans-eQTL for more than 30 genes. 

Fifteen of the RDW-associated signals were exonic: 11 missense, 3 synonymous, and a 17 base-pair 

exonic deletion in gene SMIM1. The missense and deletion variants are shown in Table 2. PolyPhen-

2 predicted that three missense variants are “probably damaging” to the protein function of genes 

TRIM58, PLD1 and PNPLA3. Variant rs2075995 was predicted to be “possibly damaging” to the 

protein function of gene E2F2. TRIM58 is a ubiquitin ligase induced during late erythropoiesis [10]; 

PLD1 is a phospholipase implicated in processes including membrane trafficking [10]; PNPLA3 is a 

triacylglycerol lipase in adipocytes and variant rs738409 is associated with susceptibility to Non-

alcoholic Fatty Liver Disease [11]. Gene SMIM1 is involved in RBC formation [10] and a 17 base-pair 

deletion (rs566629828) causing an exonic frameshift is strongly associated with increased RDW. 

 

GWAS Catalogue of Known Genetic Associations 

Of the 194 conditional SNPs associated with RDW, 77 mapped to at least one trait in the catalogue of 

published GWAS (downloaded 13th March 2017). This was arrived at by; filtering the 33,005 SNP-trait 

associations to those with p<5x10-8 (leaving 14,148 SNP-trait pairs for analysis); matching the 

positions to the UK Biobank results (13,146); filtering to those with significant RDW association in 

our analysis (p<5x10-8), leaving 923 SNP-trait pairs (420 unique SNPs; some SNPs are associated with 

multiple traits). These 420 unique SNPs mapped to 77 of the 194 conditional SNPs associated with 

RDW. These are shown in Figure 1; see Supplementary Table 4 for further detail. 

Traits also associated with the individual RDW variants included iron metabolism and several other 

red cell measures. Variants present were also associated with BMI, several lipids, hemoglobin A1C 

and metabolic syndrome, as well as height. Autoimmune associated conditions included 
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autoimmune thyroid disease, type 1 diabetes, Crohn’s disease, inflammatory bowel disease, 

rheumatoid arthritis, systemic lupus erythematosus and ulcerative colitis.  Variants linked to Lung, 

ovary and nasopharyngeal cancers were present. In addition, conditions associated with aging were 

represented, including variants linked to Alzheimer’s disease, age at menopause, bone density, 

Myositis, Parkinson’s disease, macular degeneration, C-reactive protein levels and longevity. For 

Alzheimer’s and longevity these were known SNPs in the APOE gene region.  

 

Gene Ontology Enrichment 

MAGENTA software [12] identified pathways enriched in the genes mapped to variants significantly 

associated with RDW, including telomere maintenance, ribosomal RNA transcription and histone 

modifications (Table 3; Supplementary Table 5), plus apoptosis. In addition, pathways related to 

lipid metabolism (in particular chylomicrons) were also enriched.  

 

Genetic Risk Score associations 

We tested 20 Genetic Risk Scores (GRS) for potentially explanatory traits for the predictive value of 

RDW for negative health outcomes; 7 were significant after adjustment for multiple testing 

(p<0.0025). Three were associated with raised RDW (HDL, type-1 diabetes, and BMI); four were 

associated with lower RDW (triglycerides, LDL, systolic blood pressure, and Alzheimer’s disease) 

(Figure 2; Supplementary Table 6). After exclusion of the ApoE locus the HDL GRS remained 

significant (p=0.003), but the AD GRS was no longer significant (p=0.84). 

Genetic risks for Crohn’s disease and inflammatory bowel disease were nominally associated with 

increased RDW (Beta=0.009: 95% CIs=0.003 to 0.015; Beta=0.009: 95% CIs=0.003 to 0.014; 

respectively). Risk scores for coronary artery disease were not associated with RDW, including after 

removal of the lipid related variants (Beta=0.00: 95% CIs=-0.006 to 0.005). A genetic risk score for 

telomere length was not significantly associated with RDW. 
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Discussion 

Variation in RBC size (RBC Distribution Width, RDW) increases markedly with age [13] and high RDW 

values are strongly predictive of increased mortality, plus incident cardiovascular disease and certain 

cancers  [3], [14]. However, RDW is not generally considered as being a clinically useful measure 

outside the assessment of anemia sub-type, perhaps because the mechanisms explaining its 

prognostic value in people without anemia are unclear. In this study we investigated RDW using 

genetic analysis to understand the molecular mechanisms underpinning variation in RBC size. 

A large proportion of RDW variation (29.3%) was attributable to common genetic variants in this 

analysis, and the variation explained by genetic variants appeared to increase with age, contrary to 

common assumptions that genetic effects decrease with advancing age. This could be due to effects 

accumulating over a time. Many of the “hallmarks of aging” also have this property [15]. 

Additionally, many of the RDW-associated genetic variants (in 71 of 194 conditionally independent 

signals) have previously been associated with other traits including metabolic syndrome, certain 

cancers, and autoimmune disease as well as aging related conditions including menopausal age.  

Our analysis of genetic risk scores (GRS) showed that participants with genetically-increased risk for 

coronary artery disease or cancer did not have significantly higher RDW. Consistent with this, the 

proportion of the variance shared between RDW and coronary heart disease (CHD) attributable to 

genetics was only 6.6%; therefore the majority of genetically influenced red cell variation is 

independent of CHD.  

As higher RDW is associated with CVD, we might have hypothesized that genetic risks for adverse 

lipid levels or blood pressures affect RDW, but instead we found associations in the opposite 

directions:  GRS analysis showed that participants with genetically lower LDL levels, triglyceride 

levels, or systolic blood pressure, had higher RDW, and genetically higher HDL was associated with 

greater RDW. Published observational associations between lipids and RDW are only partially 

consistent with our findings here: Lippi et al found that LDL and HDL cholesterol were both 

negatively related to RDW, and triglyceride levels were positively related [6]. It is known that RBC 

have a role in cholesterol homeostasis by transporting cholesterol in the plasma membranes, with 

significant inter-individual differences not entirely explained by age or cholesterol levels [16]. The 

relationship between lipids and RDW is complex and requires further investigation. We also 

observed that genetically increased risk of type-1 diabetes was associated with increased RDW – 

further evidence for autoimmune involvement, in addition to the overlap in significant SNPs in the 

GWAS catalogue – and that genetically increased BMI is associated with increased RDW.  
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Genetic variants associated with RDW were enriched in expected pathways, including iron 

homeostasis, but we also found evidence for telomere maintenance, ribosomal RNA production, and 

a number of nucleosome and histone pathways. Short telomere length is a hallmark of cellular aging 

to senescence [15] and is associated with many risk factors of disease, however the causal direction 

is still uncertain [17], and longer telomeres have been linked to risk of cancer [18]. Kozlitina et al 

reported in 2012 that increased RDW is associated with shorter telomeres in leukocytes [19]. We 

created a genetic risk score for telomere length but it was not associated with RDW (Beta=0.004: 

95% CIs=-0.002 to 0.010); further work is required to clarify this association.  

We also found enrichment of RNA polymerase I (which transcribes ribosomal RNA) and RNA 

polymerase III (which transcribes transfer RNA); both are required for protein synthesis, including 

hemoglobin, and can even function as regulators of gene expression in their own right [20], 

suggesting these are key factors for consistent production of RBC. Deregulation of transcription and 

proteostasis are hallmarks of aging [15], and we have previously reported deregulation of gene 

expression of the transcriptional machinery with advancing age [21]. 

Four of the conditionally independent genetic variants associated with RDW are exonic and affect 

the amino-acid sequence of the protein products. Most others are intronic or intergenic, and may be 

regulatory; this is supported by published eQTL data [22], in which 37 of the RDW-associated signals 

have been reported to affect the expression of a gene in whole blood. These will be useful targets 

for future research to determine how these variants ultimately affect consistency in red blood cell 

size. 

 

Limitations 

The UK Biobank is a volunteer study which achieved only a 5% response rate, so at assessment the 

participants were healthier than the general population. However, there was substantial variation in 

RDW within the participants so the results can still be generalized to the wider population [23].  

More work is needed to establish the effects in other populations. No data have been released 

regarding the UK Biobank participant’s lipid and other blood assays; once this is available, further 

investigations into the complex relationship between RDW and lipids can be performed. 

The GWAS catalogue does not contain every published GWAS, especially the most recent studies, 

but contains many of the largest meta-analyses for traits such as cardiovascular disease and cancer. 

It is therefore likely we have missed some studies using this method, therefore our results present 

an approximation of the overlap between RDW signals and other traits. 
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Conclusions 

Variation in RDW has a substantial genetic component, and this increases with increasing age. 

Although increased RDW is predictive of cardiovascular outcomes, this was not explained by known 

CVD or related lipid genetic risks. The predictive value of RDW for a range of negative health 

outcomes may in part be due to variants influencing fundamental pathways of aging.  
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Methods 

The UK Biobank study recruited 503,325 volunteers aged 40-70 who were seen between 2006 and 

2010. Data includes RBC distribution width (RDW) and other clinical hematology measures, extensive 

questionnaires including smoking behavior and education history, and follow-up using electronic 

medical records. Currently one third of the participants have available genotype information. We 

utilized data from 116,666 participants of white/British descent with all available data. 

 

Phenotypes 

RDW is a measure of the variability in the mean size of the RBC in each participant (in % units). It was 

measured using four Beckman Coulter LH750 instruments within 24 hours of blood draw, with 

extensive quality control performed by UK Biobank [24]. RDW is a continuous, highly skewed trait, 

therefore we used quantile normalization of the continuous measure to create a Gaussian 

distribution, so that the normality assumption of the linear regression models were not violated. 

Anemia was determined both using self-reported diagnosis, electronic medical records (ICD10: D64* 

and D5* categories), or by low hemoglobin levels at the baseline assessment (<120g/L in females, 

<130g/L in males: from WHO definition [25]). 

Coronary heart disease (CHD) was defined using self-reported myocardial infarction or angina, or 

diagnosis in the electronic medical records (ICD10: I20-I25). 

 

Variance explained and genetic correlation 

We used BOLT-REML to determine the variance in RDW explained by the common, genotyped 

variants (n= 457,643 directly genotyped variants with MAF>0.1%, HWE p>1x10-6 and missingness 

<1.5%) using restricted maximum likelihood estimation [26]. BOLT-REML was also used to estimate 

the genetic correlation between RDW and CHD. 

 

Genome-wide association study  

We performed a GWAS in 116,666 white/British participants (those with currently available 

genotyping from the 503,325 total UK Biobank participants), with complete genetic data to 

determine genetic variants associated with RDW. Over 800,000 genetic variants were directly 

genotyped using an Affymetrix Axiom array. After imputation, quality control, and filtering (we 
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included autosomal variants with minor allele frequency (MAF) ≥0.1%, missingness <1.5%, 

imputation quality >0.4 and with Hardy-Weinberg equilibrium (HWE) p>1x10-6 within the 

white/British participants) 16,889,199 genetic variants were available for GWAS analysis: methods 

described in detail previously [27]–[29]. We also utilized data directly from the microarrays for 

variants on the X (n=19,381) and Y (n=284) chromosomes, and on the mitochondrial genome 

(n=135), which were unavailable in the imputed dataset. 

GWAS was performed using BOLT-LMM, a software that uses linear mixed-effect models to 

determine associations between each variant and the outcome, incorporating genetic relatedness 

[26]. RDW residuals from a linear model adjusted for age, sex and assessment center were quantile-

normalized prior to analysis. Models were adjusted for array type (two different Affymetrix arrays 

were used, which are >95% identical) at run time. Variants were classed as significant if the p-value 

for the association with RDW was less than 5x10-8.  

 

Identifying Conditionally Independent GWAS Signals 

Many of the identified variants are correlated and may therefore not be independent; we used 

conditional analysis to determine independent signals by adjusting each variant in a locus for the 

most significant variant in that locus (loci defined as runs of SNPs separated by <2Mb on a 

chromosome). This process was repeated until only “conditional SNPs” remained that were 

significantly associated with RDW independent of one another.  

Conditional SNPs were checked for their consistency of association with RDW in two sensitivity 

analyses: once excluding participants with prevalent anemia (either clinical diagnosis, self-report, or 

raised hemoglobin), and in a separate analysis excluding participants <60 years of age.  

 

GWAS-significant SNPs follow-up 

The determine the gene-locations and possible functional consequences of the conditionally 

independent SNPs we submitted them to the UCSC Variant Annotation Integrator 

(https://genome.ucsc.edu/cgi-bin/hgVai), which combines information from several sources to 

determine the probable effect of a genetic variant, including on specific genes (for example intronic, 

missense, splice site, intergenic etc.) and PolyPhen-2 (a tool for predicting the impact of amino acid 

substitutions on the protein product). We used data from the “Blood eQTL browser” 

(http://genenetwork.nl/bloodeqtlbrowser) published by Westra et al. which reports associations 
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between genetic variants and gene expression in whole blood [22] to determine whether the 

independent SNPs affect gene expression in human whole blood. 

The GWAS catalogue of published variant-trait associations was searched for all SNPs (not just 

conditional SNPs) associated with RDW to determine which loci had previously been associated with 

another trait in GWAS analyses (p<5x10-8), and which were novel [30]. We used the UCSC `liftOver` 

tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver) to match the genomic coordinates between the 

GWAS catalogue (GRCh38) and the UK Biobank genetics data (GRCh37). 

We used the software package MAGENTA [12] to determine whether any biological pathways were 

enriched in the GWAS results, using the pathways database file 

GO_PANTHER_INGENUITY_KEGG_REACTOME_BIOCARTA. 

 

Genetic Risk Scores 

Twenty Genetic Risk Scores (GRS) were computed for each participant based on the number of trait-

raising alleles they have for a particular phenotype, such as LDL cholesterol or type-2 diabetes. These 

were computed according to the method described in Pilling et al 2016 [29]. Each of the 20 GRS 

computed was tested for its association with RDW using linear regression models, adjusted for age, 

sex, assessment center, genotype array, and population stratification (using the first 5 principal 

components (PCs)). 
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Table 1 | Summary statistics for 116,666 UK Biobank participants 

Trait Mean (SD) Min - Max 

Age (years) 56.92 (7.94) 40 - 70 

RDW (%) 13.49 (0.95) 11.1 - 38.3 

Mean Cell Volume (fL) 91.39 (4.45) 54.5 - 160.3 

Hemoglobin conc. (g/dL) 14.23 (1.23) 0.14 - 20.5 

Sex N % 

 Females 61,306 52.55 

 Males 55,361 47.45 

Anemia   

 No 98,871 84.75 

 Yes * 17,795 15.25 

RDW (%)   

 <12.5 8,703 7.46 

 12.5-12.9 24,559 21.05 

 13.0-13.4 33,804 28.97 

 13.5-13.9 25,413 21.78 

 14.0-14.4 12,967 11.11 

 14.5-14.9 5,460 4.68 

 ≥15.0 5,761 4.94 

* = either hospital diagnosis or raised hemoglobin 
(WHO definition, see methods) 
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Table 2 | Four RDW-associated conditional genetic variants may have damaging effects on 
proteins 

  
Position      

RDW association 

Variant CHR : POS  cDNA Protein eA Gene AA Codon Effect Beta P eAF 

SNP *            

 rs2075995 1:23847464 1105 226 A E2F2 Q/H caG/caT P 0.033 1.8x10-16 0.502 

 rs3811444 1:248039451 1169 374 T TRIM58 T/M aCg/aTg D 0.066 6.3x10-59 0.333 

 rs143845082 3:171417570 1539 398 A PLD1 R/C Cgt/Tgt P -0.217 4.6x10-13 0.005 

 rs149535568 3:171442535 1056 237 A PLD1 G/C Ggc/Tgc D -0.27 9.3x10-15 0.048 

 rs10479001 5:131607721 751 225 T PDLIM4 A/V gCa/gTa B -0.056 1.1x10-8 0.042 

 rs2578377 5:153413390 459 122 T FAM114A2 G/S Ggt/Agt B -0.026 4.1x10-10 0.633 

 rs1799945 6:26091179 347 63 G HFE H/D Cat/Gat B 0.138 2.2x10-143 0.150 

 rs368865 13:113479820 1037 317 C ATP11A M/L Atg/Ctg B -0.025 2.4x10-9 0.724 

 rs556052 19:49377436 1215 316 C PPP1R15A A/P Gct/Cct B 0.028 8.5x10-12 0.333 

 rs855791 22:37462936 2321 736 T TMPRSS6 V/D gTc/gAc B 0.119 1.2x10-204 0.439 

 rs738409 22:44324727 617 148 G PNPLA3 I/M atC/atG D 0.029 6.2x10-9 0.216 

Deletion ¥            

  rs566629828 
1:3691997-
3692014 

309-
325 

21-26 Del SMIM1 - - F -0.12 4.5x10-12 0.013 

* Output from UCSC Variant Annotation Integrator for the RDW-associated conditionally independent SNPs located in protein-
coding regions. ¥ Output from Ensembl Variant Effect Predictor for insertion/deletion events. 

“Effect”= (D)amaging, (P)ossibly damaing, or (B)enign SNP, or (F)rameshift due to deletion; “AA”=amino-acid change; “eA”=effect 
allele causing the change; “Beta”=the beta coefficient for the effect allele on RDW; "P"=p-value for the RDW association; 
“eAF”=effect allele frequency in UK Biobank white/British participants. All positions are from hg19/b37. 
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Table 3 | MAGENTA results: biological pathways enriched in RDW genetics signals  

 

Biological pathway N genes Exp. Sig. Obs. Sig. p-value 

      
Chromosomal & DNA-related 

 Histone 33 2 13 9.9x10-7 

 Nucleosome 31 2 9 1.7x10-5 

 Nucleosome assembly 43 2 10 1.0x10-4 

 Packaging of telomere ends 23 1 11 9.9x10-7 

 Telomere maintenance 49 2 12 5.0x10-6 

 Chromatin packaging and remodeling 142 7 20 2.4x10-5 

 Apoptosis-induced DNA fragmentation 9 0 4 4.0x10-4       
RNA polymerase-related 

 RNA Pol I - promoter clearance 44 2 14 9.9x10-7 

 RNA Pol I - promoter opening 23 1 14 9.9x10-7 

 RNA Pol I - chain elongation 30 2 9 7.0x10-6 

 RNA Pol I, III, and mitochondrial transcription 82 4 15 1.2x10-5       
Lipid-related 

 Chylomicron 9 0 5 3.4x10-5 

 Chylomicron-mediated lipid transport 15 1 5 6.0x10-4 

 Phospholipid efflux 8 0 4 2.0x10-4 

 Very-low-density lipoprotein particle 14 1 5 2.0x10-4       
Other 

 Systemic Lupus Erythematosus 60 3 15 9.9x10-7 

 Olfaction 105 5 18 4.0x10-6 

 Cellular iron ion homeostasis 25 1 8 2.8x10-5 

 Lactation (mammary development) 8 0 3 4.5x10-3 
            

Output from MAGENTA GWAS enrichment software for the 30,988 RDW-associated genetic variants. Pathways 

shown are those where the estimated false discovery rate p<0.05. N genes=number of genes in the gene-set 

analysed; Exp. Sig.=Expected number of genes with a corrected gene p-value above the 95 percentile 

enrichment cutoff; Obs. Sig.=Observed number of genes with a corrected gene p-value above the 95 percentile 

enrichment cutoff; p-value=nominal p-value using 95 percentile of all gene scores for the enrichment cutoff. 

 

 

 

 

 

  

.CC-BY-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 2, 2017. ; https://doi.org/10.1101/128330doi: bioRxiv preprint 

https://doi.org/10.1101/128330
http://creativecommons.org/licenses/by-nd/4.0/


21 
 

 

Figure 1 | Genetic variants associated with RDW in GWAS of 116,666 UK Biobank 
participants 

 

The variants are grouped into 194 independent signals, colored blue if a variant in the signal is 

associated with any trait in the NHGRI-EBI GWAS catalog of known associations, otherwise colored in 

red. The y-axis (–log10 p-values) is limited to 30 for clarity, as the max value is 200. See Supplementary 

Table 1 for RDW associations for each signal, and Supplementary Table 3 for mapping to the catalog. 

Horizontal line p=5x10-8. 
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Figure 2 | Genetic Risk Score associations with RDW 

 

* FDR = false-discovery rate adjusted significant association. Genetic Risk Scores (GRS) were z-

transformed prior to analysis. Linear regression model against RDW (z-transformed) including 116,666 

participants, adjusted for age, sex, assessment center and population structure (genetic PCs 1-5). LDL 

(low-density lipoprotein), HDL (high-density lipoprotein), TG (triglycerides), SBP (systolic blood 

pressure), CAD (coronary artery disease), T1D (type-1 diabetes), T2D (type-2 diabetes), AMD (age-

related macular degeneration), AD (Alzheimer’s disease), FVC (forced vital capacity), BMI (body mass 

index), IBD (inflammatory bowel disease). Full results in Supplementary Table 5. 
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