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Abstract

Zoroastrianism is one of the oldest extant religions in the world, originating in Persia (present-day

Iran)  during the second millennium BCE. Historical  records  indicate  that  migrants  from Persia

brought Zoroastrianism to India, but there is debate over the timing of these migrations. Here we

present novel genome-wide autosomal,  Y-chromosome and mitochondrial  data from Iranian and

Indian Zoroastrians and neighbouring modern-day Indian and Iranian populations to conduct the

first genome-wide genetic analysis in these groups. Using powerful haplotype-based techniques, we

show that  Zoroastrians  in  Iran and India show increased  genetic  homogeneity  relative  to  other

sampled groups in their respective countries, consistent with their current practices of endogamy.

Despite this, we show that Indian Zoroastrians (Parsis) intermixed with local groups sometime after

their arrival in India, dating this mixture to 690-1390 CE and providing strong evidence that the

migrating group was largely comprised of Zoroastrian males. By exploiting the rich information in

DNA from  ancient  human  remains,  we  also  highlight  admixture  in  the  ancestors  of  Iranian

Zoroastrians dated to 570 BCE-746 CE, older than admixture seen in any other sampled Iranian

group, consistent with a long-standing isolation of Zoroastrians from outside groups. Finally, we

report genomic regions showing signatures of positive selection in present-day Zoroastrians that

might correlate to the prevalence of particular diseases amongst these communities.
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Introduction

The Zoroastrian religion developed from an ancient religion that was once shared by the ancestors

of tribes that settled in Iran and northern India. It is thought to have been founded by the prophet

priest Zarathushtra (Greek, Zoroaster). Most scholars now believe he lived around 1200 BCE, at a

time when the ancient Iranians inhabited the areas of the Inner Asian Steppes prior to the great

migrations  south  to  modern  Iran,  Afghanistan,  Northern  Iraq  and  parts  of  Central  Asia.

Zoroastrianism became the  state  religion  of  three  great  Iranian  empires:  Achaemenid  (559-330

BCE) founded by King Cyrus the Great and ended by the conquest of Alexander the Great, Parthian

(c. 247 BCE - 224 CE), and Sasanian (224-651 CE), during which time the religion as an imperial

faith is best known. Zoroastrianism ceased to be the state religion of Iran after the Arab conquests

(636-652 CE), although it is thought that widespread conversion to Islam did not begin until about

767 CE1.

According to Parsi (i.e. Indian Zoroastrians) tradition, a group of Zoroastrians set sail from Iran to

escape persecution by the Muslim majority. They landed on the coast of Gujarat (India) where they

were permitted to stay and practice their religion. The date of the arrival remains has been the cause

of speculation and varies between 785 CE2 and 936 CE3. These dates, among others, are based on

the Qisseh-ye Sanjan, a legendary account of the journey by sea from Iran and settlement in India4.

However, maritime trade is known to have taken place between ethnic groups from Iran, including

Zoroastrians, and peoples in India long before the arrival of Islam5. Down the subsequent centuries,

the Indian Zoroastrians (also known as Parsis) maintained contact with the Zoroastrians of Iran and

later became an influential minority under British Colonial rule.
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Zoroastrian communities today are concentrated in India (61,000), Southern Pakistan (1,675) and

Iran - mainly in Tehran, Yazd and Kerman – (14,000). In the last 200 years Zoroastrians, both Parsi

and Irani, have formed diaspora communities in North America (14,306), Canada (6,422), Britain

(5,000),  Australasia  (3,808)  and the Middle East  (2,030).  Zoroastrianism is  a  non-proselytising

religion, with a hereditary male priesthood of uncertain origins6. Among the Parsis, priestly families

are  distinguished  from  the  laity.  Priestly  status  is  patrilineal,  although  there  is  also  a  strong

matrilineal  component  with the daughters  of priests  encouraged to marry into priestly  families.

Remarkably, many priests preserve family genealogies that can be traced back to the purported time

of arrival of Iranian Zoroastrians in India, and beyond to an Iranian homeland. 

Genetic data provide a means of examining the biological relationships of different populations and

testing claims of common ancestry. Previous studies of Iranian Zoroastrians have suggested they are

genetically  differentiated  from  their  neighbouring  populations.  For  example,  Farjadian  et  al.7

analysed  mitochondrial  DNA (mtDNA)  variation  in  14  different  ethnic  groups  from  Iran  and

observed that Zoroastrians and Jews were genetically distinct from other groups. In the same vein,

Lashgary  et  al.8 analysed  fourteen  bi-allelic  loci  from  the  non-recombining  region  of  the  Y-

chromosome  (NRY)  and  observed  a  notable  reduction  in  haplogroup  diversity  in  Iranian

Zoroastrians  compared  with  all  other  groups.  Furthermore,  a  recent  study  using  genome-wide

autosomal DNA found that  haplotype patterns  in Iranian Zoroastrians matched more than other

modern Iranian groups to a high coverage early Neolithic farmer genome from Iran9. 

Less is known about the genetic landscape and the origins of Zoroastrianism in India, despite Parsis

representing more than 80% of present-day Zoroastrians worldwide10. A study of four restriction

fragment length polymorphisms (RFLP) suggested a closer genetic affinity of Parsis to Southern

Europeans than to non-Parsis from Bombay11. Furthermore, NRY haplotype analysis12 and patterns
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of variation at the HLA locus13 in the Parsis of Pakistan support a predominately Iranian origin of

these Parsis.

Prompted by these observations we explored the genetic legacy of Zoroastrianism in more detail by

generating  novel  genome-wide  autosomal  and Y/mtDNA genotype  data  for  Iranian  and  Indian

Zoroastrian  individuals.  By  comparing  to  other  publicly  available  genetic  data  and  exploiting

linkage disequilibrium information in the autosomal genome, we aimed to identify the demographic

processes,  including admixture  and isolation,  that  have contributed  most  to shaping the current

genetic landscape of modern Zoroastrian populations. We used the priestly status of Zoroastrian

individuals to evaluate claims of patrilineal recent common ancestry. We also assessed the extent to

which genetic data supports historical records tracing the origin of Indian Zoroastrians to migrants

from Iran, including the timing of migrations and the patrilineal and matrilineal contributions of

Iranian Zoroastrians to the Parsi gene pool. Finally, we searched for genomic signatures of positive

selection  in  the  Zoroastrian  populations  that  may relate  to  the  prevalence  of  diseases  or  other

phenotypic traits in the community. 

Materials and methods

Samples

Buccal swabs were collected from a total of 526 men from India, Iran, the United Arab Emirates

and the United Kingdom (see Table  S1).  Individuals  sampled  in  the United  Arab Emirates  are

mainly first generation Parsis who left Aden following the communist coup in 1970, after which

Asians were expelled (Aden was part of the Bombay Presidency until 1947 and the British left Aden

in 1967-1968). Individuals sampled from the United Kingdom Zoroastrian population are mainly
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descendants of 19th  century immigrants; the Zoroastrian Association was formed in 1861 at which

time  there  were  around  50  Zoroastrians  living  in  the  UK14.  Swabs  were  stored  in  a  DNA

preservative solution containing 0.5% Sodium Doecyl Sulphate and 0.05 M EDTA for transport

purposes  and  DNA  was  purified  by  phenol-chloroform  extraction/isopropanol  precipitation.

Informed consent was obtained from all individuals before samples were taken.

Genome-wide genotyping with the Human Origins array

71 of these samples (29 Iranian Zoroastrians, 17 Iranian Fars, 13 Indian Zoroastrians and 12 Indian

Hindu)  all  of  them belonging  to  the  lay  (i.e.  non-priest)  population  were  genotyped  using  the

Affymetrix Human Origins array, which targets 627,421 Single-Nucleotide-Polymorphisms (SNPs)

with  well-documented  ascertainment,  though  we  note  that  our  techniques  here  use  haplotype

information  which  have  been  shown  to  be  less  affected  by  ascertainment  bias15,16.  SNPs  and

individuals were pruned to have genotyping rate greater than 0.95 using PLINK v1.917. Genotypes

for the Iranian Zoroastrians and the Iranian Fars were made publicly available by Broushaki et al. 9

The above mentioned dataset was then merged with modern populations in the Human Origins

dataset of Lazaridis et al.18, which includes 17 labelled populations from India and Iran. We also

included other high coverage ancient samples: the early Neolithic WC19, Mesolithic hunter-gatherer

from Luxembourg  (Loschbour),  Neolithic  individuals  from Germany  (LBK),  Anatolia  (Bar819),

Georgia (KK120), and Hungary (NE121), a 4,500 year old genome from Ethiopia (Mota22) and 45,000

year old genome from western Siberia Ust-Ishim23. In total, the merge contained 2,553 individuals

and 525,796 overlapping SNPs.

Principal Component Analysis (PCA)
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We performed PCA on all the South Asian and West European populations included in the merge

using PLINK 1.9 after LD pruning using  --indep-pairwise 50 5 0.5.

Phasing

We jointly phased the autosomal chromosomes for all individuals in the merge using SHAPEIT24

with default parameters and the linkage disequilibrium-based genetic map build 37.

Chromosome painting and fineSTRUCTURE

We classified our 2545 modern individuals into 230 groups, with the majority of these groups based

on  population  labels18.  The  exceptions  to  this  are  the  individuals  from  Iran  and  India  and

neighbouring  populations  of  interest  for  this  work  (originally  labelled  as:  Onge,  Mala,  Tiwari,

Kharia, Lodhi, Vishwabrahmin, GujaratiD_GIH, GujaratiB_GIH, GujaratiA_GIH, GujaratiC_GIH,

Cochin_Jew,  India_Hindu,  India_Zoroastrian,  Iranian,  Iran_Fars,  Iran_Zoroastrian,

Iranian_Bandari,  Iranian_GM,  Iranian_Shi,  Iranian_Lor,  Iranian_Jew,  Brahui,  Balochi,  Hazara,

Makrani,  Sindhi,  Pathan,  Kalash,  Burusho,  Punjabi_Lahore_PJL,  Druze,  BedouinB,  BedouinA,

Palestinian,  Syrian,  Lebanese,  Jordanian,  Yemen,  Georgian_Megrels,  Abkhasian,  Armenian,

Lebanese_Christian,  Lebanese_Muslim,  Assyrian,  Yemenite_Jew,  Turkish_Jew,  Turkish_Kayseri,

Turkish_Balikesir,  Turkish,  Turkish_Istanbul,  Turkish_Adana,  Turkish_Trabzon,  Turkish_Aydin,

Iraqi_Jew, Georgian_Jew, AltaiNea, DenisovaPinky, UstIshim, GB20, KK1, LBK, Loschbour, NE1,

Bar8, WC1). Individuals from these groups were re-classified into new, label-independent groups

using results from the genetic clustering algorithm fineSTRUCTURE that groups individuals into

genetically  homogeneous  clusters  based  entirely  on  patterns  of  shared  ancestry  identified  by

CHROMOPAINTER25. Briefly, CHROMOPAINTER uses a “chromosome painting” approach that

compares patterns of haplotype sharing between each recipient  chromosome and a set of donor

chromosomes25.  For  the  CHROMOPAINTER  analysis  used  for  our  fineSTRUTURE  analysis,
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which  is  the  first  painting  protocol  described  in  this  paper  and  referred  to  throughout  as  the

“fineSTRUCTURE painting”, we painted each of the 696 individuals from the 65 populations listed

above using all other 695 individuals as donors. Here we initially estimated the mutation/emission

(Mut, “-M”) and switch rate (Ne, “-n”) parameters using 10 steps of the Expectation-Maximisation

(E-M) algorithm,  for  chromosomes 1,  4,  15 and 22,  and for  every 10 individuals,  which  gave

estimated Mut and Ne of 0.00091 and 320.9197, respectively. These values were then fixed before

running CHROMOPAINTER across all chromosomes to produce a “painting profile” giving the

proportion of genome wide DNA each individual shares with each other donor individual in this

analysis. All chromosomes were then combined to estimate the fineSTRUCTURE normalisation

parameter “c”, which was 0.279452. Following Leslie et al.26, we then ran fineSTRUCTURE using

this  “c”  value  and  performing  2,000,000  iterations  of  Markov-Chain-Monte-Carlo  (MCMC),

sampling  an  inferred  clustering  every  10,000  iterations.  Following  the  recommended  approach

described by Lawson et al.25, we next used fineSTRUCTURE to find the single MCMC sampled

clustering with highest posterior probability and performed 100,000 additional hill-climbing steps to

find a nearby state  with even higher  posterior  probability.  This  hill-climbing approach grouped

these 695 individuals into 207 clusters, which we then merged into a tree using fineSTRUCTURE's

greedy algorithm that merges pairs of clusters, step at a time, until only two super-clusters remain. 

Based on this tree and visual inspection of haplotype sharing patterns among our 207 clusters, we

classified these clusters into  genetically homogeneous groups, choosing a level of the tree where

there were K=50 total clusters. At this level of the tree, we note that the 10,000-year-old Neolithic

Iranian WC1 clustered with other modern Iranians, but nonetheless we re-classified WC1 as its own

cluster, so that we ended up with 51 final total clusters we use throughout this paper (see Table S2,

Figure S1). One of these 51 clusters contained all 13 Indian Zoroastrians or Parsis and represents

the “Parsis” group we use throughout  this paper.  A separate  cluster contained 27 of 29 Iranian
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Zoroastrians  plus  a  single  Fars  individual  that  was  very  genetically  similar  to  self-identified

Zoroastrians (Figure S2, Table S2). This particular Fars individual (IREJ-T053) was collected in the

city of Yazd, home to one of the oldest Zoroastrian communities in Iran, so it is plausible that this

individual might have been mislabelled or recently converted from Zoroastrianism to Islam. Hence

we  did  not  remove  this  Fars  person,  and  instead  used  all  28  individuals  (i.e. the  27  Iranian

Zoroastrians  plus  this  Fars  individual)  to  represent  the  “Iranian  Zoroastrian”  group  we  use

throughout this paper.

We then painted all 230 modern and 8 ancient samples using all 230 modern groups as donors,

following the “leave-one-out” approach, as described by Hellenthal et al.27, which is designed to

make the final painting profiles comparable. In particular if each donor group {1, ..., K} contains

{n1, ..., nK} individuals, respectively, the set of donors is fixed to contain nk − 1 individuals from

each of  the  K groups.  This  is  to  account  for  the  fact  that  individuals  cannot  be  painted  using

themselves as a donor, so that individuals within each of these K donor groups can only ever be

painted  using nk − 1 individuals  from their  own group label.  We refer  to  this  second painting

protocol  where  K=230 as  the “all  donors  painting”  throughout.  Note  that  a  primary  difference

between this painting and the “fineSTRUCTURE painting” described above is that we now use

group labels, based in part on clustering results, which are required for our leave-one-out approach.

When using haplotype information for this painting, we initially estimated the mutation/emission

and switch rate  parameters  as described above,  giving estimated  Mut and Ne of 0.000704 and

223.5674,  respectively.  Alternatively,  where  noted  below  we  used  an  “unlinked”  approach  (-u

switch) that analysed each SNP independently (i.e. ignored haplotype information) using the default

CHROMOPAINTER emission rate. 
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We also performed a slightly different version of this painting where Iranian and Indian populations

were  excluded  as  donors,  using  the  leave-one-out  approach  described  above  for  all  216  other

groups, a third painting protocol with K=216 that we refer to throughout as the “non Indian/Iranian

donors painting”. We did this to infer how Iranian and Indian groups relate ancestrally to groups

from outside their own countries, which for example can help determine whether admixture from

outside groups (rather than independent  drift  effects  due to genetic  isolation) is  driving genetic

differences among these sampled groups within Iran and India26,28. Mut and Ne parameters (0.00069

and  225.32,  respectively)  were  re-estimated  for  this  new  scenario  as  described  above.  When

painting Iran, we excluded all Iranian and Indian individuals as donors. In contrast, we painted the

Indian groups using all non-Indian groups as donors – i.e. we included Iranian groups as donors.

This is because in this paper we infer Iranians as important  contributors to the DNA of Parsis,

making them important to include when evaluating genetic differences among Indian groups that

are due to admixture.

TVD, FXY and FST between Iranian and Indian groups

We quantified differences in the painting profiles between all Iranian and Indian groups by applying

the metric total variation distance (TVD) as described in Leslie et al.26 using the formula:

 

where  and   are  the average  genome-wide proportion  of  DNA that  individuals  from the

recipient  groups  X  and  Y,  respectively,  match  to  donor  group  k  [1,  …,  ∈ K]  as  inferred  by

CHROMOPAINTER. For this paper TVD was calculated using the “all donors painting” results
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from runs of CHROMOPAINTER that a) used haplotype information and b) used an “unlinked”

approach that ignores haplotype information and instead analyses all SNPs independently.  

Independent  drift  effects  in  groups  X  and  Y since  their  split  can  generate  genetic  differences

between them without  requiring any outside introgression since this  split.  To elucidate  whether

inferred genetic differences, e.g. as measured by  are more attributable to ancestry from outside

sources, we followed the approach in van Dorp et al.28 designed to mitigate these drift effects. In

particular we calculated:

 ,

where  equals

,

where Li is the number of SNPs in chromosome i  [1,...,22], L the total number of SNPs across all∈

the 22 chromosomes, and  is the average proportion of DNA that individuals from X match to

donor group k when painting only chromosome i. This approach scales genetic differences between

the  two  groups  by  differences  across  chromosomes  within  each  group,  exploiting  how  each

chromosome  should  be  subjected  to  independent  drift29.  For  this  analysis  we  used  the  “Non-

Indian/Iranian  donors  painting” that  excluded  Indian  and  Iranian  populations  as  donors  in  the

dataset, which similarly attempts to attenuate drift effects within each Iran and Indian group by

matching their DNA to only groups outside of their countries (thus disallowing “self-copying” in

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


Iran/Indian groups)28. For comparison purposes, FXY was also calculated for the Iranian and Indian

groups using the “all donors painting” (Figures S4-S5). 

 

The weighted FST for these groups was also calculated based on independent SNPs using PLINK

1.9, which implements the method introduced by Weir and Cockerham30.

Exploring relative amounts of genetic diversity within groups

For a comparison of techniques, we used the following three distinct approaches to quantify the

relative amounts of genetic diversity within groups:

(1) CHROMOPAINTER analyses to infer relative amounts of genetic diversity within groups

We performed a fourth analyses using CHROMOPAINTER that is analogous to that in van Dorp et

al.28, to assess the relative genetic diversity within our 8 fineSTRUCTURE inferred clusters with

sample  size  greater  than  or  equal  to  13,  which  is  the  number  of  Parsis  individuals:  Indian_A,

Indian_B,  Indian_C,  Parsis,  Iranian_A,  Iranian_Zoroastrian,  Kharia,  Mala_Vishwabrahmin.  For

each of these 8 clusters, we randomly subsampled 13 individuals and painted each individual using

only  the  other  12  individuals  from  their  respective  cluster  as  donors,  using  50  steps  of

CHROMOPAINTER E-M algorithm inferring the switch and emission rates (i.e. “-i 50 -in -iM”).

We refer to this fourth painting protocol throughout as the “within-group-diversity painting”. For

each individual, we calculated average segment size by dividing the total proportion of genome-

wide DNA copied from all donors by the total expected number of haplotype segments copied from

all donors. This average segment size can be thought of as capturing the relative amount of genome-

wide haplotype diversity in each group, with a relatively larger  average segment size reflecting

relatively less genome-wide diversity.
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(2) PLINK IBD analysis to infer relative amounts of genetic diversity within groups

We also inferred within group genetic  diversity  across all  pairwise combinations  of individuals

within  each  of  the  above  genetic  clusters  (Indian_A,  Indian_B,  Indian_C,  Parsis,  Iranian_A,

Iranian_Zoroastrian,  Kharia,  Mala_Vishwabrahmin)  using  the  IBD  coefficient  PI_HAT

implemented in PLINK v1.9, on a dataset where SNPs were first pruned to remove those in high

linkage disequilibrium (r2>0.2) in a sliding window of 250 SNPs. For consistency, the same 13

individuals were used to calculate the genetic diversity within each group based on PI_HAT as in

calculating haplotype segment size.

(3) fastIBD analysis to infer relative amounts of genetic diversity within groups

In order to explore within group genetic diversity using a third approach, which allows SNPs to be

in LD as in our CHROMOPAINTER-based estimates of segment size, we applied fastIBD using the

software BEAGLE v3.3.231. For each cluster, we used the same subset of 13 individuals randomly

sampled above and used fastIBD to infer the pairwise IBD fraction between each pairing of these

individuals. For each chromosome of each cluster, fastIBD was run for 10 independent runs and an

IBD threshold of 10-10 for every pairwise comparison of individuals as recommended by Browning

and Browning31 though we note results were similar using an IBD threshold of 0.0001.

Inferring  admixture  events  using  a  mixture  modelling  approach,  GLOBETROTTER,  f3-

statistics and TreeMix.

As noted previously26,27, the inferred CHROMOPAINTER painting profiles are often not the best

summary of shared ancestry patterns, as for example donor groups with larger sample sizes may be

disproportionately  represented  in  these  paintings.  In  order  to  account  for  this  we  performed

additional analyses to “clean” the raw CHROMOPAINTER output. In particular, we applied the

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bayesian mixture modelling approach described in Broushaki et al.9 to infer proportions of ancestry

for all recipient groups (which we term “targets”) in relation to other included groups that represent

potential “surrogates” to sources of ancestry. Here we performed two analyses: (a) including all 229

modern groups excluding the target as potential  surrogates and (b) using all 229 modern and 8

ancient groups as potential surrogates (i.e. 237 surrogate groups in total). The aim of this mixture

modelling approach is to identify which subset of these 229-237 potential surrogates best reflect the

sources of ancestry in the target group. We then use this subset of surrogates in our admixture

analysis described below. However, we note that any inferred proportions from this mixture model

analysis  cannot  necessarily  be  interpreted  as  reflecting  proportions  of  admixture  from distinct

source groups.  Instead this  mixture  modelling  step is  primarily  used to summarize  the clearest

patterns  of  shared  ancestry  between  the  target  and surrogate  groups,  and to  restrict  the  set  of

surrogates used in our subsequent admixture analysis to help increase power and precision. 

We applied GLOBETROTTER27, a haplotype-based approach to identify, describe and date recent

admixture events, to test for evidence of admixture separately in each of 24 “target” groups from

Iran,  India,  Pakistan and Armenia.  Roughly speaking,  GLOBETROTTER infers admixture in a

target group using two (interlocking) steps. The first  infers the genetic  make-up of the putative

admixing source groups, and the second infers the date of admixture.  For the first step we used the

“all donors painting” from CHROMOPAINTER for each target group, as this GLOBETROTTER

inference step requires each surrogate and target group to be painted using the same (or a very

similar) set of donors27. While for the second step, we used CHROMOPAINTER to generate 10

painting samples per haploid genome for each Iranian, Indian, Pakistani and Armenian individual,

under a different painting where each of these individuals is painted excluding any individuals from

their assigned group as donors. We refer to this a fifth painting protocol as “GLOBETROTTER

painting”.  We  do  this  fifth  “GLOBETROTTER  painting”  to  follow  the  suggested  protocol  in
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Hellenthal et al.27, as including individuals from your own group as donors when painting often

substantially masks signals of admixture, particularly when generating the linkage disequilibrium

(LD) decay curves critical  to  dating admixture.  This  is  because individuals  (unsurprisingly,  but

unhelpfully)  match  large  segments  of  their  genome to other  individuals  from their  own group.

While we could also use this “GLOBETROTTER painting” for the first step that infers the genetic

make-up of the admixing source groups, for each target group we would then have had to re-paint

every  surrogate  group  similarly  excluding  that  target  group's  individuals  as  donors.  For

computational  simplicity  we instead used the same “all  donors” painting for each target  group,

which previous work suggests makes little difference in practice for these sample sizes and which

we explore further below27. For each target population we included only the surrogate groups that

contributed to our mixture modelling approach described above, separately under the two mixture

modelling scenarios using as surrogates (a) modern groups only and (b) modern and ancient groups.

We inferred admixture dates using the default LD decay curve range of 1-50cM and bin size of

0.1cM when considering the distance between genome segments.  An exception  to this  is  cases

where the inferred admixture date was >60 generations ago using this default curve range and bin

size, in which case we re-estimated dates using a curve range of 1-10cM and a bin size of 0.05cM,

as this has been shown previously to more reliably estimate older dates of admixture27, In each

analysis we used 5 iterations of GLOBETROTTER’s alternating source composition and admixture

date inference (num.mixing.iterations: 5) and 100 bootstrap re-samples to infer confidence intervals

around the point estimates of the date of admixture. Furthermore, in each case analyses were run

twice, once using the option null.ind:0 and once with null.ind:1 to assess the effect of standardizing

against a pseudo (null) individual, an approach designed to account for spurious signals of linkage

disequilibrium that are not attributable to admixture27. Only results for null.ind =1 are shown, as

results  for  null.ind=0  were  very  consistent.  For  comparison,  we  also  performed  an  additional

GLOBETROTTER  analysis  using  the  surrogates  inferred  under  (a)  and  (b)  when  using

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


CHROMOPAINTER results  from the  “non Indian/Iranian  donors  painting”,  this  time  using  the

same  CHROMOPAINTER  painting  for  both  the  first  and  second  steps  of  GLOBETROTTER

described above.

As a very different means of inferring admixture, we also used ADMIXTOOLS29 to calculate f3

statistics, f3(X; A,B), a commonly-used test to detect admixture in a target population X presumed

to have  received DNA from two ancestral  source populations represented by surrogate groups A

and B. We inferred admixture separately in the Indian and Iranian Zoroastrians, using all pairwise

combinations of the other populations in the dataset, plus the ancient samples, as possible admixture

sources A and B.

Additionally, we used TreeMix32 to infer a bifurcating tree that merges four groups: our Indian and

Iranian Zoroastrian groups, and the groups with largest sample size from each of Iran and India. We

also included the Yoruba as the outgroup (root) population, allowed different numbers of migration

events (0-3) among populations in the tree, and accounted for linkage disequilibrium between SNPs

grouping them in windows of 500 SNPs (-k 500).

Positive Selection tests

We used the XP-EHH (Cross Population Extended Haplotype Homozygosity) statistic33 to detect

signatures of recent positive selection by comparing populations with similar demographic histories.

Thus, we inferred putative regions of positive selection in Zoroastrians of Iran and India, using as

reference  populations  the  clusters  Iranian_A and  Indian_A (for  the  latter  only  the  individuals

labelled as India_Hindu and Gujarati were used due to usage restriction of the other samples for

selection  tests18),  respectively.  Normalized  XP-EHH  scores  were  calculated  using  SELSCAN
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v.1.1.034. The direction of selection was determined by the sign of the XP-EHH scores, with positive

values indicating selection in the Zoroastrian populations and negative values indicating selection in

the  non-Zoroastrian  populations.  SNP annotations  were  obtained  using  ANNOVAR35.  Here  we

apply XP-EHH to populations  we infer to be admixed (see Results).  While  XP-EHH has been

applied to admixed populations before36, we note this presumably may lead to spurious findings, as

proportions of DNA inherited from an introgressing group (which may have more or less linkage

disequilibrium than the ancestral group) will vary across genetic regions. 

To assess the significance threshold of the analysis, we performed 100 permutation tests to establish

the empirical distributions of XP-EHH values across the genome for both the Indian and Iranian

populations. For each permutation, we randomly partitioned our Zoroastrians and non-Zoroastrians

into [two different groups, and then calculated XP-EHH comparing these two groups. The threshold

values at significance level of 0.01% (quantiles 0.0001 and 0.9999) from the empirical distribution

combining all 100 permutations were used to determine the significance of the XP-EHH test. These

values were of -4.46 and 4.46 for the Iran, and -4.37 and 4.37 for India.

Non-recombining  region  of  the  Y-chromosome  (NRY)  and  mitochondrial  DNA (mtDNA)

analysis using data from the Human Origins array.

NRY  haplogroups  were  assigned  to  Indian  (India_Hindu,  Mala,  Tiwari,  Vishwabrahmin  and

India_Zoroastrian), Pakistani (Balochi, Brahui, Burusho, Hazara, Kalash, Kharia, Makrani, Pathan

and Sindhi) and Iranian (Iranian and Iran_Fars jointly analysed, and Iran_Zoroastrian) populations

from this  dataset  using a  maximum likelihood approach against  the  Y-chromosome consortium

NRY phylogenetic  tree37 with  Yfitter38.  Individuals  for  which  NRY haplogroup  could  not  be

assigned to were removed from further analysis. Individuals were assigned to known mitochondrial

haplogroups based on observed mtDNA SNP variation with HaploGrep39. FST genetic distances40
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were  estimated  among  all  the  groups  based on NRY or  mtDNA haplogroup  frequencies  using

Arlequin version 3.141.

Additional Y-chromosome typing and mitochondrial DNA sequencing

In order to further explore sex biased admixture and to evaluate claims of patrilineal inheritance

among the Parsi priests, all the 526 samples collected for this study were typed for Y-chromosome

(490 successful samples) and mitochondrial DNA (518 successful sequencing) (see Table S1).  Y-

chromosomes were typed for six STRs (DYS19, DYS388, DYS390, DYS391, DYS392, DYS393)

and at 11 biallelic loci (92R7, M9, M13, M17, M20, SRY1465, SRY4064, SRY10831, sY81, Tat,

YAP) as described by Thomas, Bradman, and Flinn42, and for the biallelic marker 12f2 as described

by Rosser et al.43 Microsatellite repeat numbers were assigned according to the nomenclature of

Kayser  et  al.44 For  a  subset  of  the  samples  (Parsi  priests),  four  additional  Y-chromosome

microsatellites (DYS389I, DYS389II, DYS425 and DYS426) were typed as described by Thomas,

Bradman, and Flinn42. Y-chromosome haplogroups (Yhg) were defined by the 12 biallelic markers

according to a nomenclature modified from Rosser et al.43 and Weale et al.45 The correspondence

between this nomenclature and that proposed by the YChromosome Consortium46 is as follows:

Yhg-1 = 5 P*(xR1a), Yhg-2 = 5 BR*(xDE,JR), Yhg-3 = 5 R1a1, Yhg-4 = 5 DE*(xE), Yhg-7 = 5

A3b2, Yhg-8 = 5 E3a, Yhg-9 = 5 J, Yhg-16 = 5 N3, Yhg-20 = 5 O2b, Yhg-21 = 5 E*(xE3a), Yhg-26

= 5 K*(xL,N3,O2b,P), Yhg-28 = 5 L, Yhg-29 = 5 R1a*, Yhg-37 = 5 Y*(xBR,A3b2).

The mitochondrial DNA hyper variable segment 1 (HVS-1) was sequenced as described by Thomas

et al.47 Sequences were obtained for all samples between positions 16,027 and 16,400 according to

the  numbering  scheme  of  Anderson  et  al.48 MtDNA haplotypes  were  assigned  to  haplogroups

(iMhg) firstly by identifying key combinations of HVS-1 alleles according to Macaulay et al.49,

Richards et al.50 and Maca-Meyer et al.51 as follows: 16129A, 16223T, 16391A = iMhg-I, 16069T,
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16126C = iMhg-J, 16224C, 16311C = iMhg-K,  16126C, 16294T = iMhg-T,  16223C, 16249C =

iMhg-U1, 16223C, 16051G = iMhg-U2, 16223C, 16343G = iMhg-U3, 16223C, 16356C = iMhg-

U4,  16223C,  16270T =  iMhg-U5,  16223C,  16318T =  iMhg-U7,  16223T,  16292T =  iMhg-W,

16189C, 16223C, 16278T = iMhg-X. For the remaining haplotypes,  those with a T at  position

16223 were assigned to iMhg-MNL and those with a C at position 16223 were assigned to iMhg-

HVR. 

Unbiased genetic diversity,  h,  and its standard error were calculated using the formula given by

Nei52 and significant differences in calculated values were found using a standard two-tailed z test.

Populations  were compared using FST based on haplotype  or  haplogroup frequencies,  estimated

from  analysis  of  molecular  variance  (AMOVA)  ØST values40,53,  and  using  the  Exact  Test  for

Population Differentiation54. Assessment of the significance of pairwise FST  values was  based on

10,000 permutations of the data and 10,000 Markov steps were used in the Exact Test. Patterns of

genetic differentiation were visualized using principal coordinates (PCO) analysis performed on a

similarity matrix calculated as one minus FST, based on Yhg and iMhg frequencies. Values along the

main diagonal of the similarity  matrix,  representing the similarity  of each population sample to

itself,  were  calculated  from  the  estimated  genetic  distance  between  two  copies  of  the  same

population sample (for ØST -based FST, the resulting self-similarity values simplify to  n/(n   - 1),

where n is the sample size).

Y-chromosome  and  mtDNA admixture  proportions  were  estimated  using  the  likelihood-based

method  LEA55,  based  on  Yhg  and  inferred  iMhg frequencies.  We  ran  5,000,000  Monte  Carlo

iterations  of  the  coalescent  simulation  and discarded the  first  10,000 iterations  as  burn-in.  For

comparison admixture  proportions mY, mC and mR were also estimated,  using the methods of

Bertorelle  and  Excoffier56,  Chakraborty  et  al.57 and  Roberts  and  Hiorns58 respectively.  10,000
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bootstrap re-samplings were carried out to estimate standard errors and admixture proportions were

compared using a standard two-tailed z test. 

The coalescence time of clusters of Y-chromosomes belonging to the same UEP defined haplogroup

was estimated  by finding the  Average  Square  Difference  (ASD) between the inferred  ancestral

haplotype  (in  this  case  the  modal  haplotype)  and  all  observed  chromosomes59,60.  The  95%

confidence interval for this estimate was calculated as described in Thomas et al.61 using 50,000

iterations. The microsatellite mutation rate was set to 15/7856, based on data from three published

studies62,63,64.  This  analysis  was  restricted  to  haplogroups  containing  a  high  frequency  modal

haplotypes (>50%) where the ancestral state could be inferred with confidence. 

Results

Zoroastrians are  genetically  differentiated from non-Zoroastrians,  with different  historical

ancestry in Parsis relative to non-Zoroastrian Indians

Most of the Iranian Zoroastrians (see Methods and Table S1 for a description of the samples used in

this work) are positioned within the autosomal genetic variation of other sampled Iranian samples in

a PCA of West Eurasian individuals (Figure S3). Interestingly, two of the 29 Iranian Zoroastrians

(YZ020  and  YZ024)  look  genetically  different  from  the  others,  and  were  inferred  by

fineSTRUCTURE  to  cluster  with  other  non-Zoroastrian  Iranians  (Figures  S1-S2),  which  is

consistent  with  Zoroastrians  not  being  as  closed  a  community  as  is  sometimes  thought  and

reported6.  We will come back to this issue later, but in order to study the common ancestry of the

genetically homogeneous majority of our sampled Iranian Zoroastrians, these two individuals were
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excluded from further analysis.  The Parsis  (i.e.  Indian Zoroastrians)  form a more wide-ranging

cluster along PC1, falling inside Iranian, Pakistani and Indian groups (Figure S3). 

We  clustered  some  of  our  sampled  individuals,  including  all  Indians  and  Iranians,  into  51

genetically  homogeneous groups that  exhibited  good correlation  between genetic  similarity  and

population  label  (Figure  1a,  Figure  S1,  Table  S2;  see  Methods  for  explanation  of  clustering

approach). One of these 51 clusters contained all  13 Parsis, forming the “Parsis” group we use

throughout the remainder of this study. A separate cluster contained 27 of 29 Iranian Zoroastrians

plus a single Farsi individual that was very genetically similar to self-identified Zoroastrians (Figure

S2, Table S2), and these 28 individuals form the “Iranian Zoroastrian” group we use throughout the

remainder of this study. The remaining genetically homogeneous clusters (Figure 1a, Figure S1,

Table S2) containing Indian and Iranian individuals that we refer to below consist of: (1) 54 Iranians

primarily from Lori, Shiraz and Yazd and Iranian Mazanderanis (referred to as “Iranian_A”); (2) 7

Bandari  Iranians  (“Iranian_B”);  (3)  2  genetically  distinct  Bandari  Iranians  (“Iranian_C”);  (4)  7

Iranian Jews (“Iranian_Jews”); (5) 16 primarily Gujarati Indians  (“Indian_A”); (6) 24 Tiwari and

Gujarati  Indians (“Indian_B”);  (7) 25 Lodhi and Hindu Indians (“Indian_C”);  (8) 26 Mala and

Vishwabrahmin Indians (“Mala_Vishwabrahmin”); (9) 13 Kharia Indians (“Kharia”); (10) 11 Onge

(“Onge”); (11) 2 Cochin Jews from India (“Cochin Jews_A”); and (12) 3 other Cochin Jews from

India (“Cochin Jews_B”) (Figure 1, Table S2).

Among our  sampled  individuals  from Armenia,  India,  Iran  and Pakistan,  we measured  genetic

distance between pairs  of groups using two different  techniques:  (1) the commonly-used, allele

frequency-based measure FST
30, and the haplotype-based measure (2) TVD26 (see Methods; Table

S3, Figures S4-S5). While genetic distance among groups is not large overall (e.g. typically FST <

0.04), similar to Jewish groups from these regions, the Onge from the isolated Andaman Islands,
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and the Indian Kharia, an indigenous tribal ethnic group that has been isolated from other groups65,

Zoroastrians  were strongly genetically  differentiated  from non-Zoroastrians  under  each of  these

three measures, agreeing with previous work7,8,66. For example, the genetic distance between Iranian

Zoroastrians  and non-Jewish,  non-Zoroastrians  from Iran  ranged  from 0.015-0.029 for  FST and

0.544-0.551 for TVD, with each distance measure larger than the maximum such measure between

any two non-Zoroastrian,  non-Jewish Iranian groups (0.011 and 0.164, respectively) (Table S3).

Similarly,  excluding  the  Onge  and  Kharia,  the  genetic  distances  between  Parsis  and  non-

Zoroastrians  from India ranged from 0.014-0.028 for FST and 0.221-0.278 and TVD, with each

measure larger than the maximum distance between any two other non-Zoroastrian Indian groups

(0.002-0.008 and 0.058-0.122, respectively). Therefore, in both Iran and India, these results indicate

a high degree of genetic distance between the Zoroastrians in these countries relative to most other

sampled individuals from their respective countries. 

Our haplotype-based techniques are designed to identify which sampled individuals share ancestors

with each other most recently. Typically, individuals share more recent ancestors with individuals of

the same population label than with individuals from other populations, as is the case here with both

Zoroastrian  groups,  reflecting  (sometimes  recent)  genetic  isolation  between  individuals  with

different population labels. However, we also measured genetic distance between pairs of groups

using  a  different  haplotype-based  genetic  distance  measure,  FXY,  and  an  analysis  (“Non

Indian/Iranian donors painting”; see Methods) that was specifically designed to mitigate signals of

genetic differentiation attributable to recent genetic isolation28. Briefly, we do this by comparing the

DNA of individuals from a particular group only to other individuals that were sampled from other

geographic areas,  for example comparing the DNA of Iranian Zoroastrians to only that of non-

Iranians and non-Indians. Relative to many of the ancestors shared among people from the same

country, this inference often reflects sharing of ancestors that lived farther back in time. In practice
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this painting and our FXY score, which uses independent drift effects across chromosomes to further

substract  our  genetic  differentiation  due  to  recent  isolation,  should  indicate  a  relatively  small

amount of genetic distance between two groups that have a similar recent ancestral history, e.g.

have similar sources of admixture from outside sources or descend from a common recent source

population. This should be true even if the two groups have largely stopped intermixing with one

another for a period of time, such that they have e.g. relatively high FXY and TVD28. Under this FXY

measure,  Iranian  Zoroastrians  showed a  much-reduced genetic  distance  to  other  Iranian  groups

(Figure 1d), e.g. with Zoroastrians and the Iranian_A cluster having the lowest FXY value out of all

comparisons of Iranian groups (Table S3). In contrast to results using our FST and TVD measures,

genetic dissimilarities measured by FXY among the other Iranian groups (Iranian_Jews, Iranian_A,

Iranian_B, Iranian_C) are higher, which we explore further below. However, the FXY scores are not

noticeably lower between the Parsis and non-Zoroastrian groups from India, with in general the

Parsis showing a similar relatively high amount of genetic differentiation as the Kharia, Onge and

Indian Cochin Jewish groups to all other Indian groups (Table S3), mimicking our results when

comparing these groups using FST and TVD (Figure 1c). 

Therefore, these analyses suggest that a large degree of observed genetic differentiation between

Zoroastrians and non-Zoroastrians from Iran is primarily attributable to genetic isolation between

Zoroastrians and non-Zoroastrians in the country. In contrast, a large degree of observed genetic

differentiation between Parsis and non-Zoroastrians from India is attributable to the Parsis having

different ancestry than other Indian groups (Figure 1c,d). 

Genetic homogeneity is higher in Zoroastrian groups, consistent with increased endogamy 

relative to non-Zoroastrians in Iran and India 
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We performed additional analyses to measure the amount of genetic homogeneity separately within

each cluster. Compared to non-Zoroastrian groups, we found that each of Iranian Zoroastrians and

Parsis shared relatively longer haplotype segments with members of their own group (Figure 1b,

Figure S6, Table 1), reflecting a higher degree of genetic similarity within each Zoroastrian group

relative to non-Zoroastrian groups. This is consistent  with both Iranian and Indian Zoroastrians

being  genetically  isolated  from  non-Zoroastrian  groups28.  This  is  true  under  two  distinct

homogeneity estimators that use haplotype information. The first approach FastIBD31 compares the

DNA of pairwise combinations of a group's individuals, and here gave median shared haplotype

lengths of 0.148 cM and 0.113 cM across pairwise combinations of Iranian Zoroastrians and Parsis,

respectively,  relative  to  0.075  for  the  third  largest  value  in  the  Kharia.  The  second  approach

CHROMOPAINTER25 (under our “within-group-diversity painting”;  see Methods) compares the

DNA of all of a group's individuals jointly, and here gave median shared haplotype lengths across

individuals of 0.212 cM and 0.161 cM for Iranian Zoroastrians and Parsis, respectively, relative to

0.134 for  the  third  largest  value  in  the  Kharia.  Conflicting  slightly  with this,  we note that  the

PI_HAT  value  from  PLINK  v1.917,  which  is  based  on  an  alternative  technique  that  ignores

haplotype information when measuring homogeneity, infer the Kharia to have more homogeneity

than Parsis, giving median values of 0.323 and 0.312 across pairwise combinations of Kharia and

Parsis, respectively. This perhaps results from a decreased resolution when not exploiting linkage

disequilibrium information, at least when using ascertained SNPs31. 

Consistent with our autosomal DNA results, Y/mtDNA results for these same individuals gave gene

diversity values that were significantly lower for Iranian and Indian lay Zoroastrians relative to non-

Zoroastrians,  for  both  Y-haplotype  frequencies  (Tables  S4  and  S6)  and  mtDNA  haplotype

frequencies (Tables S5 and S7). 
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Evidence for admixture in Zoroastrian groups with different sources and times using nuclear

data

We calculated f3 statistics using autosomal DNA from the Iranian Zoroastrians and Parsis as targets

and all  pairwise combinations  of the other modern and ancient  groups as sources,  reporting all

pairwise combinations that gave a negative f3 value with a Z score >|2| for the Parsis in Table S8. In

all  cases  one  source  of  admixture  is  best  represented  by a  modern-day Indian population.  The

second source is generally represented by an ancient Neolithic sample from Europe or Anatolia, or a

modern group close to Iran such as Armenia, Lebanon, or Iraqi_Jews, suggesting an Iranian-like

source. In the case of the Iranian Zoroastrians, no admixture events were inferred with any group

present in the dataset, consistent with previous reports of f3 statistics sometimes having decreased

power to detect admixture in isolated groups with e.g. bottleneck or founder effects29.

Additionally, we identified admixture events in both Parsis and Iranian Zoroastrians by first using a

mixture modelling approach9 to identify the best ancestry surrogates for each target group, and then

running the haplotype-based software GLOBETROTTER to date any putative admixture events

using only these surrogates (see Methods). In contrast to f3 statistics, GLOBETROTTER infers the

decay of linkage disequilibrium among segments inherited from admixing sources, which increases

the power to identify admixture and can also be used to date events27,67. For each case we used either

(a) only modern groups or (b) both ancient and modern groups as possible surrogates. Each of (a)

and (b) gave largely corroborating results, e.g. with confidence intervals for dates overlapping when

admixture is inferred for the same target group (Figure 2, Figure S7, Tables S9-S11). However, test

(b) was sometimes more sensitive as we note below.

In (a)  and (b)  we detected  admixture  in  the  Parsis  dated  to  27 (range:  17-38)  and 32 (19-44)

generations ago, respectively, in each case between one predominantly Indian-like source and one
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predominantly Iranian-like source. This large contribution from an Iranian-like source (~64-76%) is

not seen in any of our other 7 Indian clusters, though we detect admixture in each of these 7 groups

from wide-ranging sources related to modern day individuals from Bangladesh, Cambodia, Europe,

Pakistan, or of Jewish heritage (Figure 2; Figure S7; Tables S9-S11). For Iranian Zoroastrians, we

only detect admixture under analysis (b), occurring 66 (42-89) generations ago between a source

best genetically explained as a mixture of modern-day Croatian and Cypriot samples, and a second

source matching to the Neolithic Iranian farmer WC1. We infer admixture in all three other non-

Jewish Iranian groups, though consistently more recent (<38 generations ago) with contributions

from sources related to modern-day groups from Pakistan, Sub-Saharan African or Turkey (Figure

2, Figure S7; Tables S9-S11). 

We also ran TreeMix on our two Zoroastrian groups, one other Indian group (Indian_C), and one

other  Iranian group (Iranian_A) in  order to infer  a bifurcating tree relating  these groups,  using

Yoruba as an outgroup and allowing for 0-3 migration events (Figure S8). While all TREEMIX

analyses inferred the highest drift value in the Iranian Zoroastrians, in agreement with our analyses

described  above,  the  migration  results  were  less  clear  despite  low  residuals  (Figure  S9).  For

example,  when  including  admixture  TREEMIX inferred  migration  from ancestors  of  Iran  into

Yoruba, though this has never been previously suggested, and from Parsis into other Indian groups

rather than the other way around. This likely reflects the challenge in accurately identifying and

describing  admixture  events  in  some  cases  when  not  directly  measuring  the  decay  of  linkage

disequilibrium that is expected in genuine admixture signals27,67. 

Evidence for sex-biased admixture in Parsis using Y-chromosome and mtDNA data

Analysis of mtDNA and NRY variation using data from the Human Origins array showed that the

modal NRY haplogroup in all Iranians and Parsis was J, with maximum frequency observed among
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the  Parsis  (freq=0.67;  Figure  3a,  Table  S4).  This  is  consistent  with  previous  NRY haplogroup

frequencies observed in Iranian Zoroastrian and non-Zoroastrian groups68. In particular, 8 of the 12

Iranian Zoroastrians from the city of Yazd belonged to NRY haplogroup J. In contrast, the modal

NRY haplogroup among non-Zoroastrian Indian groups and groups in Pakistan was R (Figure 3a).

In comparisons of NRY haplogroups among all Indian and Iranian groups, Parsis showed the lowest

genetic distance with the Iranian Zoroastrian group in terms of FST
40 (FST = 0.026, p=0.157) and

highest genetic distance with other Indian groups (Kharia and Tiwari; FST  > 0.762 , p < 0.0001)

(Table S6).

In contrast, the majority of individuals from India, Pakistan and the Parsis belonged to the same

mtDNA haplogroup M, the modal mtDNA haplogroup in the Indian sub-continent (Table S5), also

sharing the same modal sub-haplogroup M32'56 (Figure 3b).  Parsis  showed the highest genetic

distance  from the Iranian  Zoroastrian  group comparing  mtDNA haplogroups  (FST =  0.482,  p  <

0.0001), while having almost no genetic differentiation from other Indian groups (Kharia, Lodhi

and Vishwabrahmin; FST < 0.0001, p > 0.487). The Pakistani groups were intermediary between

groups from Iran and India, suggesting geographic continuity (Table S7).

To examine sex-biased admixture in Parsis in more detail we sequenced the mtDNA control region

(positions  16,027  to  16,40048)  in  a  larger  sample  of  79  Iranian  lay  Zoroastrians,  8  Iranian

Zoroastrian priests, 121 lay Parsis, 71 Parsi priests, 46 non-Parsi Indians, and 193 non-Zoroastrian

Iranians, and generated Y-chromosome haplotypes comprising 6 short tandem repeat (STR) and 12

biallelic loci42,69 in 76 Iranian lay Zoroastrians, 8 Iranian Zoroastrian priests, 122 lay Parsis, 71 Parsi

priests,  41 non-Parsi Indians, and 172 non-Zoroastrian Iranians  (Table S1). Using Y-chromosome

binary polymorphism defined haplogroups (Yhg) and inferred mtDNA haplogroups (iMhg), these

additional data showed that the Parsi  priests sample has the lowest gene diversity values of all

populations studied for both Y and mtDNA (Tables S12-S13), though we did not have enough data
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from Iranian Zoroastrian priests to make any analogous observation.  Consistent with the Human

Origins Y/mtDNA data, the iMhg and Yhg frequency-based pairwise  FST  values for these larger

samples  indicate  that through the male line the lay Parsis  have a  closer  relationship  to the lay

Iranian  Zoroastrians,  but  through  the  female  line  they  have  a  closer  relationship  to  the  non-

Zoroastrians from India (Figure S10). However, no shared Y-chromosome STR+biallelic marker or

mtDNA control  region  sequence  haplotypes  were  shared  between  the  Parsi  priest  and  Iranian

Zoroastrian priest samples, and all FST p-values and exact tests, whether based on Yhg, Y-haplotype,

iMhg or mtDNA haplotype frequencies, indicated significant differentiation between these two. 

Using the likelihood-based estimation of admixture (LEA) method of Chikhi et al.55 as implemented

in the LEA software70 on Yhg and iMhg data, with the non-Zoroastrian Indians and Iranian lay

Zoroastrians as surrogates for the two admixing source populations,  we infer the most probable

Iranian lay Zoroastrian contribution to the lay Parsis Y-chromosomes to be 96% (median = 86%,

mean  =  82%,  95%  CI  =  41%  to  99%),  whereas  the  most  probable  Iranian  lay  Zoroastrian

contribution to Parsis mtDNA is 8% (Figure 3c; median = 26%, mean = 32%, 95% CI = 1% to

88%).  More  than  ninety  four  percent  of  posterior  estimates  for  Y-chromosome  Iranian  lay

Zoroastrian  contribution  to  the lay  Parsis  were higher  than  the  posterior  estimates  for  mtDNA

Iranian  lay  Zoroastrian  contribution  to  the  lay  Parsis  in  random  samples  drawn  from  each

distribution. For comparison, the admixture proportion estimators mY, mC and mR for the Iranian

lay Zoroastrian contribution to the lay Parsis56,57,58 gave very similar point estimates to the modal

estimates obtained using LEA: For Yhg frequencies, mR = 0.94 (bootstrap SD = 0.093), mC = 0.93

(bootstrap  SD =  0.11),  mY =  0.96  (bootstrap  SD =0.18).  For  iMhg frequencies,  mR =  0.052

(Bootstrap SD = 0.15), mC = 0.12 (Bootstrap SD = 0.098), mY = 0.024 (Bootstrap SD = 0.16). For

all  3  methods  of  admixture  estimation  the  difference  in  estimated  Y-chromosome and mtDNA

contributions of the Iranian lay Zoroastrian contribution to the lay Parsis was highly significant. 
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Inferring details of the Parsis priests

Our  additional  (i.e.  non-Human  Origins  array)  Y/mtDNA  data  defined  8  Y-chromosome

haplogroups and 182 total Y-chromosome haplotypes when using biallelic and STR loci (Tables

S12-S13) and  240  mtDNA haplotypes  that  clustered  into  14  haplogroups  using  key  HVS-1

mutations. These new data showed that the Parsi priests sample has the lowest gene diversity values

of  all  populations  studied  in  both  Y and  mtDNA,  with  the  majority  of  the  Parsi  priest’s  Y-

chromosomes (86%) fall into either Yhg-1 or Yhg-28 (as defined in Figure S11). The distribution of

STR-defined  haplotypes  within  these  haplogroups  is  characterized  by  the  presence  of  a  high

frequency modal haplotype (>50%), with the remaining haplotypes being only a small number of

mutation  steps  different  from the  modal  haplotype  (Figure  S11).  The  exception  to  this  is  one

‘outlier’ Yhg-28  chromosome  that  was  found  to  be  9  mutation  steps  different  from the  nine-

microsatellite defined Yhg-28 modal haplotype. These data are consistent with the majority of Parsi

priests being patrilineal descendants of two male founders in the relatively recent past.  Assuming

that with the exception of the one Yhg-28 outlier, the modals are the ancestral haplotypes61 to all

other chromosomes within each Yhg, we estimate the coalescence dates for Yhg-1 and Yhg-28

chromosomes are 37 generations (95% CI 19 to 61 generations) and 31 generations (95% CI 18 to

46 generations) respectively. Assuming a generation time of 28 years this translates to 1036 years

(95% CI 532 to 1708 years) and 868 years (95% CI 504 to 1288 years)  respectively. Noting that

these two coalescence date estimates are not significantly different (only 63% of simulated dates for

Yhg-1 are older than those for Yhg-28) we re-estimated the coalescence date assuming that both

lineages originated at the same time by finding the mean ASD from the respective modal haplotypes

for both clusters. This gave a combined coalescence date of 923 years (95% CI - 597 to 1277 years).

When uncertainty in the mutation rate estimate is taken into account the 95% CI widens to 501 to

1782 years.
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Genetic regions showing evidence of selection in Zoroastrians relative to non-Zoroastrians

We calculated XP-EHH values for Iranian Zoroastrians and Parsis using other Iranians and Indians

as reference populations (Figures S12-S13). Tables S14-S15 provide details for all the SNPs below

and above quantiles 0.0001 and 0.9999 of the empirical distribution, respectively (see Methods),

including the genes within those regions, or the flanking genes in the case of intergenic SNPs. 

In the case of the Iranian Zoroastrians, most of the regions with the strongest signals of selection

(positive XP-EHH values) are located in intergenic or intronic regions. Among these, some of the

most  significant  SNPs (p<0.0001 based on a  permutation  procedure;  see  Methods)  are  located

upstream from gene  SLC39A10 (Solute Carrier Family 39 Member 10) with an important role in

humoral  immunity71 or  in  CALB2 (Calbindin  2),  which  plays  a  major  role  in  the  cerebellar

physiology72.

With regards to the positive selection tests on Parsis versus India Hindu/Gujarati groups, the most

significant SNPs were embedded in WWOX (WW Domain-Containing Oxidoreductase), associated

with neurological disorders like epilepsy73, and in a region in chromosome 20 the  WFDC (acidic

protein WAP four-disulfide core domain) locus and other genes like SPINT4, SNX21 or TNNC2 (see

Table S14 for a complete list). On the other hand, among the SNPs showing signatures of positive

selection in the reference Indian population, two highly significant selection signals were identified:

LOC102467224 and LOC283177, with unknown functions.

Discussion 

Though recent studies have investigated the origins of different Jewish populations from India, like

the Cochin Jews or the Bene Israel74,75,76, little is known about the genetic structure of the relatively
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isolated populations found mainly in India and Iran that practice Zoroastrianism, one of the oldest

religions of the world.  We present genome-scale genetic analyses of Zoroastrians from Iran and

India, and provide genetic evidence for their historical exodus3. 

Zoroastrians  in  both  Iran  and  India  are  genetically  differentiated  from  other  groups  in  these

countries, in Y-chromosome, mtDNA and autosomal patterns of variation (Figures 1,3, Figures S1-

S5, S10, Tables S2-S3, S4-S7). For example, autosomal clustering using fineSTRUCTURE grouped

all  Parsis together  with each other before merging with any other  group, and merged 27 of 29

Iranian Zoroastrians with each other before merging them with any other group (Figure S1, Table

S2). One of the  remaining 2 Iranian Zoroastrians merged with 39 other individuals mainly from

Lebanon and Turkey.  The other merged with individuals  we label as Iranian_B, which consists

primarily of Bandari individuals, and shows a very similar genetic pattern and admixture history as

this  Iranian_B  cluster  (Figure  S2,  Table  S16).  Both  of  these  two  individuals  were  genetically

distinct  from  the  other  Zoroastrians  (Figure  S2)  suggesting  these  individuals  were  possibly

mislabelled  or  recently  converted  to  Zoroastrianism.  The  latter  would  suggest  present-day

Zoroastrians in Iran are not as closed a group today as previously reported6.

Excluding these two Iranian Zoroastrians, the remaining Zoroastrians in both Iran and India display

a high level of genetic homogeneity; greater than any other Iranian and Indian group used in this

study (Figure 1b). This is likely attributable to founder effects, bottlenecks and/or through some

endogamy throughout the last millennium and up to the present day. These factors likely played a

major role in the observed differences in autosomal DNA patterns between Iranian Zoroastrians and

non-Zoroastrians  from Iran,  as  analyses  that  attempt  to  mitigate  these  genetic  isolation  effects

notably decrease the observed genetic differences between Iranian Zoroastrians and non-Zoroastrian

Iranians (Figure 1d, Figure S4, Table S3). In contrast, our analyses to mitigate isolation effects do
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not drastically affect observed genetic differences between the Indian Zoroastrians (Parsis) and non-

Zoroastrian  groups  from India,  suggesting  the  different  admixture  histories  of  different  Indian

groups play a major role in shaping observed genetic differences among these Indian groups today

(Figure 1c, Figure S5, Table S3).

 

In particular,  we detect  an admixture event  in the Parsis  dated to around 1030 CE (690-1390),

between a source genetically similar to modern Indian groups and a second source best represented

genetically by a ~9,500 year old Neolithic farmer from Iran (Figure 2, Table S10). This Iranian

source of introgression differs from the sources of admixture inferred in all other sampled Indian

groups (Figure 2, Table S10). Our admixture date matches the historical records of a large-scale

migration of Zoroastrians to India beginning in either 785 CE (Modi, 1905) or 936 CE3, providing

genetic evidence for this period of migration and suggesting the migrants mixed with local females

soon upon arrival. Our results suggest these migrations may have resulted in a single “pulse” of

admixture occurring around 1030CE, though our dates are also consistent with multiple episodes of

migration  from around 690CE to 1390CE,  which is difficult  to disentangle given these sample

sizes27. However, we only see evidence of Iranian origins in our Parsis and in no additional sampled

non-Zoroastrian  groups from India,  which strongly suggests  our  admixture  signal  is  due to the

migration  of  Zoroastrians  from Iran  rather  than  related  to  historically  documented  trade  routes

between  present-day  Iran  and  India5 that  would  likely  have  included  mixture  among  non-

Zoroastrian groups. 

That our approach inferred the Neolithic Iranian sample WC1 to be a better surrogate for the Iranian

admixing source in  the Parsis  than any modern Iranian groups (including Iranian  Zoroastrians)

likely results from strong bottleneck effects and/or recent admixture events that have made modern

Iranian groups look more genetically differentiated from the source group that migrated to India
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~17-44 generations ago. For example,  when performing an alternative approach that attempts to

mitigate  genetic  isolation  effects  within  each  modern  Iranian  and  Indian  group by disallowing

genetic matching to members from the same assigned cluster  (i.e. the “Non Indian/Iranian donors

painting”; see Methods), this high aDNA contribution to Parsis is replaced by the modern Iranian

Zoroastrians (Table S11, Figure S7). If we instead use the original approach that does not mitigate

these isolation effects (i.e. the “all donors” painting in Figure 2, Table S10) but exclude WC1 as a

surrogate,  the highest  contributing  Iranian group to the Parsis  is  Iranian_A and not  the Iranian

Zoroastrians  (Table  S9).  The  fact  that  Iranian  Zoroastrians  are  only  favoured  as  the  source  of

admixture in Parsis after mitigating isolation effects suggests that at least some of these effects in

the Iranian Zoroastrians have occurred more recently than the migrations of Parsis to India ~600-

1300 years ago. In contrast, for the Parsis it is difficult to discern the extent to which their relative

genetic  homogeneity  (e.g.  Figure  1b)  reflects  recent  isolation  since  admixture  versus  isolation

effects occurring in their ancestry source from Persia prior to this admixture event.

Our mtDNA and NRY variation also shows clear evidence of contrasting maternal and paternal

ancestry in Parsi individuals, consistent with previous studies which suggest that migration of the

ancestors  of  the  present-day  Parsi  population  was  largely  sexually  asymmetrical  from Iran  to

India77. In particular, using Iranian lay Zoroastrians as a surrogate to this introgressing source in

Parsis, the Iranian male contribution to the Parsis Y-chromosome gene pool with highest posterior

probability  is  96%, while  the Iranian female contribution to the Parsis  mtDNA gene pool  with

highest posterior probability is only ~8% (Figure 3). Consistent with this, we infer the autosomal,

sex-averaged contribution to be 61-76% using a variety of modern and ancient Iranian surrogate

groups (Figure 2, Figure S7, Tables S9-S11). This supports Zoroastrianism being brought from Iran

to India by a group of males, and/or that gene-flow into the Parsi community from the neighbouring

Indian population was mainly female-mediated. Consistent with this, with the genetically estimated
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(see above) and historically attested arrival date of Parsis in India, and with the claim of patrilineal

descent among Parsi priests, we infer that the majority of Parsi priests are descended from two male

founders 923 years (95% CI - 597 to 1277 years) ago. This parallels the Jewish kohanim patrilineal

priesthood,  who  claim  descent  from  Moses’ brother  Aaron,  and  display  low  Y-chromosome

diversity;  with most  Y-chromosome STR haplotypes  either  belonging to  or  being  only  a  small

number of mutation steps away from a modal haplotype.

In  Iranian  Zoroastrians,  we  inferred  a  relatively  old  admixture  event  between  sources  best

represented genetically by the Neolithic Iranian WC1 and modern-day Cypriots occurring in around

70 CE (range: 570 BCE-750 CE). While we infer admixture in each of our three other non-Jewish

Iranian groups (Figure 2, Table S10), this admixture date in the Zoroastrians is significantly older,

consistent with their long-standing isolation. The date uncertainty and ancient nature of this event

prevents interpreting it in a clear historical context, but one intriguing possibility is that it might

reflect mixture among groups joined via the allegiance of the Cypriots with Alexander the Great to

help conquer the Persian Empire in 332 BCE. At any rate, interestingly our date range corresponds

closely  to  that  spanning the  three  major  Persian  empires  (Achaemenid,  Parthian,  Sasanian)  for

which Zoroastrianism acted as official state religion (559 BCE-651 CE). Ancient DNA from these

regions related to these ancient groups and others will greatly enhance our understanding of this

older  signal.  Interestingly,  when  using  only  modern  groups  as  surrogates  and excluding  WC1,

GLOBETROTTER was not  able  to  detect  this  older  admixture  event  (Table  S9).  In  this  latter

analysis, our model considered the Iranian Zoroastrians to be sufficiently genetically matched to a

single modern group (Iranian_A) without requiring any other ancestry sources. Presumably this is

because Iranian_A has similar genetic patterns to the Iranian Zoroastrians, with GLOBETROTTER

inferring similar (but more recent) admixture 20-38 generations ago in Iranian_A between sources

best  represented  by  WC1  and  modern-day  Turkish  groups.  Our  results  here  suggest  that  this
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similarity masks the older DNA contributions to the Zoroastrians. However,  the combination of

WC1 and  other  modern  groups  provides  a  better  match  to  an  ancestral  source  of  the  Iranian

Zoroastrians  than  using  only  Iranian_A,  enabling  a  clear  signal  of  admixture  (Tables  S10-S11,

Figure 2, Figure S7). This reveals how adding even small numbers of ancient samples, particularly

those  less  affected  by recent  admixture,  can  increase  power  and insights  in  population  genetic

history inference, even if those ancient samples are substantially older than the time period under

study, as is  the case here with WC1 living over 7,000 years earlier.

Genetic isolation and endogamous practices can be associated with higher frequencies of disease

prevalence. For example, there are reports claiming a high recurrence of diseases such as diabetes78

among the Iranian Zoroastrians, and Parkinson’s79, colon cancer80 or the deficiency of G6PD81, an

enzyme that triggers the sudden reduction of red blood cells, among the Parsis. Researchers have

argued that in addition to these demographic effects, selection can also play a role in the increase of

rare disorders or other phenotypes,  as has been previously reported for the Ashkenazi Jews82,83.

Therefore,  identifying  regions  under  positive  selection  in  the  Zoroastrian  populations  may  be

helpful  to understand the prevalence of diseases or distinct  phenotypic traits  in the community.

Supporting this, using XP-EHH33 comparing Zoroastrians to non-Zoroastrians, we have identified

some regions that might have been under selection specifically in the Zoroastrians (p<0.0001 based

on a permutation procedure;  see Methods),  as well  as putative selection  in the non-Zoroastrian

reference groups.  Some of these regions contain genes that have been associated with different

diseases, including cancers, like DEC1 associated with esophageal cancer84 and positively selected

in Iranian non-Zoroastrians, or WWOX, associated with spinocerebellar ataxia85 and epilepsy73 and

positively  selected  in  Indian  Zoroastrians.  However,  a  permutation  study  that  re-assigned

Zoroastrians and non-Zoroastrians randomly to two groups and then tested for selection between

these groups gave very similar magnitudes of XP-EHH scores to that seen in our non-permuted data
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(Figure S13), warranting caution in interpreting these findings. A larger cohort would be needed to

corroborate their significance, coupled with exhaustive epidemiological studies. Nonetheless, they

represent a first  insight into understanding genetic predisposition and/or resistance to disease in

these groups that could form the basis for targeted medical approaches in these isolated groups. 

In summary, in this work we explore the genetic landscape and structure of India and Iran and

provide genome-wide genetic evidence that the Parsis descend from an admixture event between

ancestral groups consisting predominantly of males with Iranian-related ancestry and females with

Indian- related ancestry.  For the first time, we date this event in ancestral Parsis to around 1030 CE,

in agreement with historical records, and also provide new evidence of a much older admixture

event in Iranian Zoroastrians dated to around 74 CE with an unknown historical explanation. We

also  demonstrate  that  Zoroastrians  in  both  countries  are  genetically  homogeneous  populations

differentiated from other population living locally; likely in part due to strict religious rules that

discourage intermixing with non-Zoroastrians. Further work is required to help understand whether

the genetic differences attributable to this isolation correlate with observed differences in disease

phenotypes between these communities and other local groups. 
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Conflicts of interest

GH is a founder and director of GENSCI and consultant to LivingDNA.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements

SL is supported by BBSRC (Grant Number BB/L009382/1). GH is supported by a Sir Henry Dale

Fellowship  jointly  funded  by  the  Wellcome  Trust  and  the  Royal  Society  (Grant  Number

098386/Z/12/Z) and supported by the National Institute for Health Research University College

London Hospitals Biomedical Research Centre. LvD is supported by CoMPLEX via EPSRC (Grant

Number EP/F500351/1). We are grateful to the late Mrs Shehnaz Neville Munshi for her involve-

ment in the samples collection in India and Iran, and Khojeste P. Mistree, for the facilitation of the

project in India and the introduction to priests in all the locations where samples were obtained. We

also thank the Children’s Hospital of Philadelphia for genotyping the samples on the Human Ori-

gins array.

References

1.  Stewart,  S.  (2013).  The Everlasting  Flame:  Zoroastrianism in  History  and Imagination  (I.B.

Tauris).

2. Modi, J.J. (1905). A few events in the early history of the Parsis and their dates (Bombay).

3. Hodivala, S.H. (1920). Studies in Parsi History (Bombay).

4. Williams, A. (2009). The Zoroastrian Myth of Migration from Iran and Settlement in the India

Diaspora (Brill Academic Publishers).

5. Wink, A. (1990). Al-Hind: The Making of the Islamic World, vol. 1 (Brill Academic Publishers )

6. Boyce, M. (2001). Zoroastrians: Their Religious Beliefs and Practices (Routledge).

7. Farjadian, S., Sazzini, M., Tofanelli, S., Castrì, L., Taglioli, L., Pettener, D., Ghaderi, A., Romeo,

G. and Luiselli, D. (2011). Discordant patterns of mtDNA and ethno-linguistic variation in 14

Iranian Ethnic groups. Hum. Hered. 72, 73-84.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


8. Lashgary, Z., Khodadadi, A., Singh, Y., Houshmand, S.M., Mahjoubi, F., Sharma, P., Singh, S.,

Seyedin, M., Srivastava, A., Ataee, M., et al. (2011). Y chromosome diversity among the Iranian

religious groups: A reservoir of genetic variation. Ann. Hum. Biol. 38, 364-371.

9. Broushaki, F., Thomas, M.G., Link, V., López, S., van Dorp, L., Kirsanow, K., Hofmanová, Z.,

Diekmann, Y., Cassidy, L.M., Díez-del-Molino, D., et al. (2016). Early Neolithic genomes from

the eastern Fertile Crescent. Science. 353, 499-503.

10. Stepaniants,  M. (2002). The encounter  of Zoroastrianism with Islam (University of Hawai'i

Press).

11. al-Maghtheh, M., Ray, V., Mastana, S.S., Garralda, M.D., Bhattacharya, S.S. and Papiha, S.S.

(1993). Variation in DNA polymorphisms of the short arm of the human X chromosome: genetic

affinity of Parsi from western India. Hum. Hered. 43, 239-243.

12. Qamar, R., Ayub, Q., Mohyuddin, A., Helgason, A., Mazhar, K., Mansoor, A., Zerjal, T., Tyler-

Smith, C. and Mehdi, S.Q. (2002). Y-chromosomal DNA variation in Pakistan. Am. J. Hum.

Genet. 70, 1107-24.

13. Mohyuddin, A. and Mehdi, S.Q. (2005). HLA analysis of the Parsi (Zoroastrian) population in

Pakistan. Tissue Antigens. 66, 691-695.

14. Hinnells, J. (1996). Zoroastrians in Britain (Clarendon Press Oxford).

15. Conrad, D.F., Jakobsson, M., Coop, G., Wen, X., Wall, J.D., Rosenberg, N.A. and Pritchard, 

J.K. (2006). A worldwide survey of haplotype variation and linkage disequilibrium in the human

genome. Nat. Genet. 38, 1251-1260.

16. Hellenthal, G., Auton, A. and Falush, D. (2008). Inferring Human Colonization History Using a

Copying Model. PLoS Genetics 4, e1000078. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Chang, C.C., Chow, C.C., CAM Tellier, L., Vattikuti,  S., Purcell,  S.M. and Lee, J.J. (2015).

Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 4,

7.

18. Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D.C., Rohland, N., Mallick, S., Fernandes, D.,

Novak, M., Gamarra, B., Sirak, K., et al. (2016). Genomic insights into the origin of farming in

the ancient Near East. Nature. 536, 419-424.

19. Hofmanová, Z., Kreutzer, S., Hellenthal, G., Sell, C., Diekmann, Y., Díez-Del-Molino, D., van

Dorp, L., López, S., Kousathanas, A., Link, V., et al. (2016). Early farmers from across Europe

directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. U. S. A. 113, 6886-6891.

20.  Jones,  E.R.,  Gonzalez-Fortes,  G.,  Connell,  S.,  Siska,  V.,  Eriksson,  A.,  Martiniano,  R.,

McLaughlin,  R.L.,  Gallego-Llorente,  M.,  Cassidy,  L.M.,  Gamba,  C.,  et  al.  (2015).  Upper

Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912.

21. Gamba, C., Jones, E.R., Teasdale, M.D., McLaughlin, R.L., Gonzalez-Fortes, G., Mattiangeli,

V., Domboróczki, L., Kővári, I., Pap, I., Anders, A., et al. (2014). Genome flux and stasis in a

five millennium transect of European prehistory. Nat. Commun. 5, 5257.

22. Gallego-Llorente, M., Jones, E.R., Eriksson, A., Siska, V., Arthur, K.W., Arthur, J.W., Curtis,

M.C., Stock, J.T., Coltorti,  M., Pieruccini P, et al. (2015). Ancient Ethiopian genome reveals

extensive Eurasian admixture throughout the African continent. Science. 350, 820-822.

23. Fu, Q., Li, H., Moorjani, P., Jay, F., Slepchenko, S.M., Bondarev, A.A., Johnson, P.L., Aximu-

Petri, A., Prüfer, K., de Filippo, C. et al. (2014). Genome sequence of a 45,000-year-old modern

human from western Siberia. Nature. 514, 445-449.

24. Delaneau, O., Marchini, J. and Zagury, J.F. (2011). A linear complexity phasing method for

thousands of genomes.Nat. Methods. 9, 179-81

25. Lawson, D.J., Hellenthal, G., Myers, S. and Falush, D. (2012). Inference of population structure

using dense haplotype data. PLoS Genet. 8, e1002453. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Leslie, S., Winney, B., Hellenthal, G., Davison, D., Boumertit, A., Day, T., Hutnik, K., Royrvik,

E.C., Cunliffe,  B.; Wellcome Trust Case Control Consortium 2, et al.  (2015).  The fine-scale

genetic structure of the British population. Nature. 519, 309-314.

27.  Hellenthal,  G.,  Busby,  G.B.,  Band,  G.,  Wilson,  J.F.,  Capelli,  C.,  Falush,  D.  and Myers,  S.

(2014). A Genetic Atlas of Human Admixture History. Science. 343, 747-751.

28. van Dorp, L., Balding, D., Myers, S., Pagani, L., Tyler-Smith, C., Bekele, E., Tarekegn, A.,

Thomas,  M.G.,  Bradman,  N.  and Hellenthal,  G.  (2015).  Evidence  for  a  common origin  of

blacksmiths  and  cultivators  in  the  Ethiopian  Ari  within  the  last  4500  years:  lessons  for

clustering-based inference. PLoS Genet. 11, e1005397.

29.  Patterson,  N.,  Moorjani,  P.,  Luo,  Y.,  Mallick,  S.,  Rohland,  N.,  Zhan,  Y.,  Genschoreck,  T.,

Webster, T. and Reich, D. (2012). Ancient Admixture in Human History. Genetics.  192, 1065-

1093. 

30. Weir, B.S. and Cockerham, C.C. (1984). Estimating F-statistics for the analysis of population

structure. Evolution. 38, 1358–1370.

31.  Browning,  B.  and  Browning,  S.  (2011).  A fast,  powerful  method  for  detecting  identity  by

descent. Am. J. Hum. Genet. 88, 173-182.

32.  Pickrell,  J.K. and Pritchard,  J.K. (2012).  Inference of  Population Splits  and Mixtures  from

Genome-Wide Allele Frequency Data. Plos Geneti. 8, e1002967.

33. Sabeti, P.C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E.H.,

McCarroll,  S.A.,  Gaudet,  R.,  et  al.  (2007).  Genome-wide  detection  and  characterization  of

positive selection in human populations. Nature. 449, 913-918.

34.  Szpiech,  Z.A.  and Hernandez,  R.D.  (2014).  selscan:  an  efficient  multithreaded  program to

perform EHH-based scans for positive selection. Mol. Biol. Evol. 31, 2824-2827.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


35. Wang, K., Li, M. and Hakonarson, H. (2010). ANNOVAR: Functional annotation of genetic

variants from next-generation sequencing data. Nucleic Acids Res. 38, e164.

36. Pickrell, J.K., Coop, G., Novembre, J., Kudaravalli, S., Li, J.Z., Absher, D., Srinivasan, B.S.,

Barsh, G.S., Myers, R.M., Feldman, M.W., et al. (2009). Signals of recent positive selection in a

worldwide sample of human populations. Genome Res. 19, 826-37. 

37. Karafet, T.M., Mendez, F.L., Meilerman, M.B., Underhill, P.A., Zegura, S.L. and Hammer, M.F.

(2008).  New  binary  polymorphisms  reshape  and  increase  resolution  of  the  human  Y

chromosomal haplogroup tree. Genome Res. 18, 830-838.

38. Jostins, L., Xu, Y., McCarthy, S., Ayub, Q., Durbin, R., Barrett, J., and  Tyler-Smith, C. (2014).

YFitter:  Maximum likelihood assignment  of Y chromosome haplogroups from low-coverage

sequence data. arXiv preprint arXiv:1407.7988.

39. Kloss‐Brandstätter, A., Pacher, D., Schönherr, S., Weissensteiner, H., Binna, R., Specht, G. and

Kronenberg, F. (2011). HaploGrep: a fast and reliable algorithm for automatic classification of

mitochondrial DNA haplogroups. Hum. Mutat. 32, 25-32.

40. Reynolds, J., Weir, B.S. and Cockerham, C.C. (1983). Estimation of the coancestry coefficient:

basis for a short-term genetic distance. Genetics. 105, 767-779.

41. Excoffier, L., Laval, G. and Schneider, S. (2005). ARLEQUIN ver. 3.0: An integrated software

package for population genetics data analysis. Evol. Bioinf. Online. 1, 47–50.

42.  Thomas,  M.G.,  Bradman,  N.  and  Flinn,  H.M.  (1999).  High  throughput  analysis  of  10

microsatellite and 11 diallelic polymorphisms on the human Y-chromosome. Hum. Genet. 105,

577-581.

43. Rosser,  Z.H.,  Zerjal,  T.,  Hurles,  M.E.,  Adojaan,  M.,  Alavantic,  D.,  Amorim, A.,  Amos, W.,

Armenteros, M., Arroyo, E., Barbujani, G., et al. (2000). Y-chromosomal diversity in Europe is

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


clinal and influenced primarily by geography, rather than by language. Am. J. Hum. Genet. 67,

1526-1543.

44.  Kayser,  M.,  Caglià,  A.,  Corach,  D.,  Fretwell,  N.,  Gehrig,  C.,  Graziosi,  G.,  Heidorn,  F.,

Herrmann, S., Herzog, B., Hidding, K., et al. (1997). Evaluation of Y chromosomal STRs: a

multicenter study. Int. J. Legal Med. 110, 125–133.

45. Weale M.E., Yepiskoposyan, L, Jager, R.F., Hovhannisyan, N., Khudoyan, A., Burbage-Hall, O.,  Bradman, N. and

Thomas M.G. (2001). Armenian Y chromosome haplotypes reveal strong regional structure within a single ethno-

national group. Hum. Genet. 10, 659-674

46.  Y  Chromosome  Consortium.  (2002).  A  nomenclature  system  for  the  tree  of  human  Y-

chromosomal binary haplogroups. Genome Res. 12, 339-348.

47. Thomas, M.G., Weale, M.E., Jones, A.L., Richards, M., Smith, A., Redhead, N., Torroni, A.,

Scozzari, R., Gratrix, F., Tarekegn, A., et al. (2002). Founding mothers of Jewish communities:

geographically  separated  Jewish  groups  were  independently  founded  by  very  few  female

ancestors. Am. J. Hum. Genet. 70, 1411-1420. 

48. Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, M.H., Coulson, A.R., Drouin, J., Eperon,

I.C., Nierlich, D.P., Roe, B.A., Sanger, F., et al. (1981). Sequence and organization of the human

mitochondrial genome. Nature. 290, 457−465.

49. Macaulay, V., Richards, M., Hickey, E., Vega, E., Cruciani, F., Guida, V., Scozzari, R., Bonne-

Tamir, B., Sykes. B. and Torroni, A. (1999). The emerging tree of west Eurasian mtDNAs: a

synthesis of control-region sequences and RFLPs. Am. J. Hum. Genet. 64, 232–249.

50. Richards, M., Macaulay, V., Hickey, E., Vega, E., Sykes, B., Guida, V., Rengo, C., Sellito, D.,

Cruciani, F., Kivisild, T., et al. (2000). Tracing European founder lineages in the Near Eastern

mtDNA pool. Am. J. Hum. Genet. 67, 1251–1276.

51. Maca-Meyer, N., González, A.M., Larruga, J.M., Flores, C. and Cabrera, V.M. (2001).  Major

genomic mitochondrial lineages delineate early human expansions. BMC Genet. 2,13.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


52. Nei, M. (1987). Molecular evolutionary genetics (Columbia University Press).

53. Michalakis, Y. and Excoffier, L. (1996). A generic estimation of population subdivision using

distances  between alleles  with special  reference for microsatellite  loci.  Genetics.  142,  1061-

1064.

54. Raymond, M. and Rousset, F. (1995). An exact test of population differentiation. Evolution. 49,

1280-1283.

55. Chikhi, L., Bruford, M.W. and Beaumont, M.A. (2001). Estimation of admixture proportions: a

likelihood-based approach using Markov chain Monte Carlo. Genetics. 158,1347-1362.

56. Bertorelle, G. and Excoffier, L. (1998). Inferring admixture proportions from molecular data.

Mol. Biol. Evol. 15, 1298-1311.

57. Chakraborty, R., Kamboh, M.I., Nwankwo, M. and Ferrell,  R.E. (1992). Caucasian genes in

American blacks: new data. Am. J. Hum. Genet. 50, 145-55.

58. Roberts, D. and Hiorns, R. (1965). Methods of analysis of the genetic composition of hybrid

populations. Hum. Biol. 37, 38-43.

59.  Slatkin,  M.  (1995).  A  measure  of  population  subdivision  based  on  microsatellite  allele

frequencies. Genetics. 139, 457-462.

60.  Goldstein,  D.B.,  Ruiz  Linares,  A.,  Cavalli-Sforza,  L.L.  and  Feldman,  M.W.  (1995).  An

evaluation of genetic distances for use with microsatellite loci. Genetics. 139, 463-471.

61. Thomas, M.G., Skorecki, K., Ben-Ami, H., Parfitt, T., Bradman, N. and Goldstein, D.B. (1998).

Origins of Old Testament priests. Nature. 394, 138-140.

62. Bianchi, N.O., Catanesi, C.I., Bailliet, G., Martinez-Marignac, V.L., Bravi, C.M., Vidal-Rioja,

L.B., Herrera, R.J. and López-Camelo, J.S. (1998). Characterization of ancestral and derived Y-

chromosome haplotypes of New World native populations. Am. J. Hum. Genet. 63, 1862–1871. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


63.  Heyer,  E.,  Puymirat,  J.,  Dieltjes,  P.,  Bakker,  E.  and  de  Knijff,  P.  (1997).  Estimating  Y

chromosome specific microsatellite mutation frequencies using deep rooting pedigrees. Hum.

Mol. Genet. 6, 799–803.

64. Kayser, M., Roewer, L., Hedman, M., Henke, L., Henke, J., Brauer, S., Krüger, C., Krawczak,

M., Nagy, M., Dobosz, T., et al. (2000). Characteristics and frequency of germline mutations at

microsatellite  loci  from  the  human  Y  chromosome,  as  revealed  by  direct  observation  in

father/son pairs. Am. J. Hum. Genet. 66, 1580–1588.

65. Vidyarthi, L.P. and Upadhyay, V.S. (1980). The Kharia: Then and Now: A Comparative Study of

Hill, Dhelki, and Dudh Kharia of the Central-eastern region of India (Concept).

66. Reich, D., Thangaraj, K., Patterson, N., Price, A.L., Singh, L. (2009).  Reconstructing Indian

population history. Nature. 461, 489-494.

67. Loh P.R., Lipson M., Patterson N., Moorjani P., Pickrell J.K., Reich D. and Berger, B. (2013).

Inferring admixture histories of human populations using linkage disequilibrium. Genetics. 193,

1233-1254.

68. Grugni,  V.,  Battaglia,  V.,  Kashani,  B.H.,  Parolo, S.,  Al-Zahery,  N.,  Achilli,  A., Olivieri,  A.,

Gandini, F., Houshmand, M., Hossein Sanati, M., et al. (2012). Ancient migratory events in the

Middle East: new clues from the Y-chromosome variation of modern Iranians. PLoS ONE.  7,

e41252.

69. Behar, D.M., Thomas, M.G., Skorecki, K., Hammer, M.F., Bulygina, E., Rosengarten, D., Jones,

A.L., Held, K., Moses, V., Goldstein, et al. (2003). Multiple origins of Ashkenazi Levites: Y 

chromosome evidence for both Near Eastern and European ancestries. Am. J. Hum. Genet. 73, 

768-779.

70.  Langella,  O.,  Chikhi,  L.  and  Beaumont M.A. (2001).  LEA (Likelihood-based estimation  of

admixture):  a program to simultaneously estimate admixture and the time since admixture. Mol.

Ecol. Resour. 1, 357-358.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


71. Hojyo, S., Miyai, T., Fujishiro, H., Kawamura, M., Yasuda, T., Hijikata, A., Bin, B.H., Irié, T., 

Tanaka, J., Atsumi, T., et al. (2014). Zinc transporter SLC39A10/ZIP10 controls humoral 

immunity by modulating B-cell receptor signal strength. Proc. Natl .Acad. Sci. U. S. A. 111, 

11786-11791.

72.  Schiffmann,  S.N.,  Cheron,  G.,  Lohof,  A.,  d'Alcantara,  P.,  Meyer,  M.,  Parmentier,  M.  and

Schurmans,  S.  (1999).  Impaired  motor  coordination  and  Purkinje  cell  excitability  in  mice

lacking calretinin. Proc. Nat. Acad. Sci. 96, 5257-5262.

73. Abdel-Salam, G., Thoenes, M., Afifi, H.H., Korber, F., Swan, D. and Bolz, H.J. (2014). The

supposed tumor suppressor gene WWOX is mutated in an early lethal microcephaly syndrome

with epilepsy, growth retardation and retinal degeneration. Orphanet. J. Rare Dis. 9, 12.

74.  Waldman,  Y.Y.,  Biddanda,  A.,  Dubrovsky,  M.,  Campbell,  C.L.,  Oddoux,  C.,  Friedman,  E.,

Atzmon, G., Halperin, E., Ostrer, H. and Keinan, A. (2016a). The genetic history of Cochin Jews

from India.. Hum. Genet. 135, 1127-1143.

75. Waldman, Y.Y., Biddanda, A., Davidson, N.R., Billing-Ross, P., Dubrovsky, M., Campbell, CL.,

Oddoux, C., Friedman, E., Atzmon, G., Halperin, E., et al. (2016b). The Genetics of Bene Israel

from India Reveals Both Substantial Jewish and Indian Ancestry. PLoS ONE. 11, e0152056.

76. Chaubey, G., Singh, M., Rai, N., Kariappa, M., Singh, K., Singh, A., Pratap Singh, D., Tamang, 

R., Selvi Rani, D., Reddy, A.G., et al. (2016). Genetic affinities of the Jewish populations of 

India. Sci. Rep. 6,19166.

77. McElreavey, K. and Quintana-Murci, L. (2005). A population genetics perspective of the Indus

Valley through uniparentally-inherited markers. Ann. Hum. Biol. 32, 154-162.

78. Khalilzadeh, S., Afkhami-Ardekani, M. and Afrand, M. (2015). High prevalence of type 2 

diabetes and pre-diabetes in adult Zoroastrians in Yazd, Iran: a cross-sectional study. Electron. 

Physician. 7, 998-1004.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


79.  Bharucha,  N.E.,  Bharucha,  E.P.,  Bharucha,  A.E.,  Bhise,  A.V.  and Schoenberg,  B.S.  (1998).

Prevalence of Parkinson's disease in the Parsi community of Bombay, India. Arch. Neurol.  45,

1321-1323.

80. Jussawalla, D.J. and Gangadharan, P. (1977). Cancer of the Colon: 32 years of experience in

Bombay, India. J. Surg. Oncol. 9, 607-622.

81.  Baxi,  A.J.,  Balakrishnan,  V.,  Undevia,  J.V.  and Sanghvi,  L.D.  (1963).  Glucose-6-phosphate

dehydrogenase deficiency in the Parsee community, Bombay. Indian J. Med. Sci. 17, 493-500.

82. Goodman, R.M. and Motulsky, A.G. (1979) Genetic Diseases Among Ashkenazi Jews (New

York: Raven Press).

83.  Bray,  S.M.,  Mulle,  J.G.,  Dodd,  A.F.,  Pulver,  A.E.,  Wooding,  S.  and  Warren,  S.T.  (2010).

Signatures of founder effects, admixture and selection in the Ashkenazi Jewish population. Proc.

Natl. Acad. Sci. U. S. A. 107, 16222-16227.

84. Yang, L., Leung, A.C., Ko, J.M., Lo, P.H., Tang, J.C., Srivastava, G., Oshimura, M., Stanbridge,

E.J.,  Daigo,  Y.,  Nakamura,  Y.,  et  al.  (2005).  Tumor suppressive role of a  2.4 Mb 9q33-q34

critical region and DEC1 in esophageal squamous cell carcinoma. Oncogene. 24, 697–705. 

85.  Mallaret,  M.,  Synofzik,  M.,  Lee,  J.,  Sagum,  C.A.,  Mahajnah,  M.,  Sharkia,  R.,  Drouot,  N.,

Renaud, M.,  Klein, F.A.,  Anheim, M.,  et al. (2014).  The tumour suppressor gene WWOX is

mutated in autosomal recessive cerebellar ataxia with epilepsy and mental retardation.  Brain.

137, 411-419. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 18, 2017. ; https://doi.org/10.1101/128272doi: bioRxiv preprint 

https://www.ncbi.nlm.nih.gov/pubmed/24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Koenig%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Anheim%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Klein%20FA%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Renaud%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Drouot%20N%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sharkia%20R%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mahajnah%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Sagum%20CA%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20J%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Synofzik%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mallaret%20M%5BAuthor%5D&cauthor=true&cauthor_uid=24369382
https://doi.org/10.1101/128272
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure Titles and Legends

Figure  1.  Clustering,  homogeneity  and  genetic  differentiation  of  the  Iranian  and  Indian

populations. (a)  Each color  inside  the  pies  represents  the  proportion  of  individuals  from each

population label  that is  assigned to each fineSTRUCTURE cluster ("Others" include all  groups

outside Iran and India), with the total number of individuals included in each cluster shown inside

brackets  in  the  legend.  (b)  Distribution  of  CHROMOPAINTER’s  inferred  lengths  of  haplotype

segments  (in  cM)  copied  intact  from  a  single  donor,  when  allowing  13  randomly-sampled

individuals  from each  group  (roman  numerals  in  part  (a)  legend)  to  copy  from the  other  12

individuals with the same label. (Black dot = median values, bars = 95% empirical quantiles across

individuals.)  (c)-(d)  Comparison  of  pairwise  TVD  based  on  the  “all  donors  painting”  (upper

triangle) and FXY based on the “non-Indian/Iranian donors painting” mitigating recent drift effects

(lower triangle) for (c) Indian and (d) Iranian groups.

Figure 2. Recent admixture in India and Iran. (a) Inferred recent admixture in India and Iran,

using admixture surrogates from Europe (brown), Middle East (orange; Yemen in dark orange),

Africa (light green), Pakistan (red), Bangladesh (pink), Cambodia (cyan),  Iran (dark green) and

India (blue) and of Jewish heritage (purple), plus the ancient samples WC1 (yellow), Ust'Ishim

(dark grey) and Bar8 (grey). Inferred proportions of haplotype sharing with each surrogate group

are represented in the pie graphs, with all contributing groups highlighted in non-grey in the map in

the left bottom corner. (b) Dates of admixture (dots) and 95% confidence intervals (bars) inferred by

GLOBETROTTER,  colored  according to  the surrogate that  best  reflects  the minor  contributing

admixture source. (c) GLOBETROTTER coancestry curves, illustrating the weighted probability

(black  lines)  that  DNA segments  separated  by distance  x (in  cM) match  to  the  two admixture

surrogates given in the title, are given for the Parsis (WC1 vs Indian_C) and Iranian Zoroastrians
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(WC1 vs  Cypriot),  along with  the  best  fitting  exponential  distributions  (green  lines)  using  the

inferred date from (b) for each. 

Figure 3. mtDNA and Y-chromosome variability in Iran and India. (a) NRY and (b) mtDNA

macrohaplogroup frequencies in India, Parsis, Iran, Iran Zoroastrians and Pakistan. Iran, India and

Pakistan  include  all  non-Zoroastrian  Iranian,  Indian  and  Pakistani  populations  analysed,

respectively,  using  chip  data.  (c)  Posterior  distribution  of  admixture  proportions  in  lay  Parsis

assuming non-Zoroastrian Indian and Iranian lay Zoroastrian surrogate groups, using observed Mhg

and Yhg values.
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Tables

Table 1. Measuring within group homogeneity: Segment size (CHROMOPAINTER), FIBD

and PI_HAT.  CHROMOPAINTER’s  inferred  median  haplotype  segment  sizes  (in  cM) copied

intact from a single donor, when allowing 13 randomly-sampled individuals from each cluster to

copy from the other 12 individuals assigned to the same cluster, using 50 steps of Expectation-

Maximisation  (E-M). IBD values  inferred by fastIBD (FIBD) implemented  in BEAGLE v3.3.2

using the same 13 randomly-sampled individuals. PI_HAT values inferred by PLINK v1.9 across

the  same  13  randomly-sampled  individuals  after  sub-sampling  SNPs  to  remove  those  in  high

linkage  disequilibrium  are  also  reported.  Median  and  empirical  quantile  values  across  the  13

individuals are given for each metric for each cluster.

Cluster Segment (95% CI) FIBD (95% CI) PI_HAT (95% CI)

Indian_A
0.108

(0.103-0.117)

0.063

(0.051-0.078)

0.302

(0.297-0.309)

Indian_B
0.106

(0.104-0.128)

0.063

(0.052-0.075)

0.301

(0.296-0.308)

Indian_C
0.115

(0.106-0.14)

0.06

(0.05-0.096)

0.304

(0.299-0.312)

Indian Zoroastrians
0.161

(0.12-0.184)

0.113

(0.074-0.145)

0.312

(0.299-0.324)

Iranian_A
0.106

(0.103-0.11)

0.06

(0.047-0.08)

0.301

(0.294-0.306)

Iranian Zoroastrians
0.212

(0.171-0.271)

0.148

(0.098-0.301)

0.326

(0.31-0.372)

Kharia
0.134

(0.091-0.223)

0.075

(0.052-0.318)

0.323

(0.311-0.412)

Mala_Vishwabrahmin
0.104

(0.101-0.112)

0.061

(0.049-0.089)

0.308

(0.301-0.319)
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