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ABSTRACT2

Inter-sample comparisons of the T cell receptor (TCR) repertoire are crucial for gaining a better3

understanding into the immunological states determined by different collections of T cells from4

different donor sites, cell types, and genetic and pathological backgrounds. As a theoretical5

approach for the quantitative comparison, previous studies utilized the Poisson abundance models6

and the conventional methods in ecology, which focus on the abundance distribution of observed7

TCR sequences. However, these methods ignore the details of the measured sequences and are8

consequently unable to identify sub-repertoires that might have the contributions to the observed9

inter-sample differences. In this paper, we propose a new comparative approach based on TCR10
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sequence information, which can estimate the low-dimensional structure by projecting the pairwise11

sequence dissimilarities in high-dimensional sequence space. The inter-sample differences are12

then quantified according to information-theoretic measures among the distributions of data13

estimated in the embedded space. Using an actual dataset of TCR sequences in transgenic14

mice that have strong restrictions on somatic recombination, we demonstrate that our proposed15

method can accurately identify the inter-sample hierarchical structure, which is consistent with16

that estimated by previous methods based on abundance or count information. Moreover, we17

identified the key sequences that contribute to the pairwise sample differences. Such identification18

of the sequences contributing to variation in immune cell repertoires may provide substantial19

insight for the development of new immunotherapies and vaccines.20

Keywords: T cell, TCR repertoire, inter-sample comparison, pairwise sequence alignment, sequence dissimilarity, manifold learning,21

Jensen-Shannon Divergence22

1 INTRODUCTION

The development of high-throughput sequencing with next-generation sequencers has provided new23

opportunities to quantify T cell receptor (TCR) repertoires and to compare their differences among different24

cell types, organisms, and pathological samples. Such information is indispensable for quantitatively25

understanding the immunological state of organisms that is shaped by the collection of immune cells.26

Moreover, the detailed information of TCR repertoires, especially that of inter-sample differences, is27

anticipated to significantly promote the development of immunotherapies and vaccines (Hou et al., 2016).28

To this end, several theoretical methods have been proposed to quantify sample differences by focusing on29

the count (abundance) distribution of unique TCR sequences in a repertoire (Greiff et al., 2015; Laydon30

et al., 2015; Hou et al., 2016). Poisson abundance (PA) models are among the recently developed methods31
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based on the hierarchical Bayesian inference algorithm, which estimates the parameters of the models32

from experimental data and defines the inter-sample difference according to the deviation of the estimated33

parameters. This method overcomes the substantial sampling fluctuations derived from the huge diversity in34

TCR repertoires, and provides a stable result related to the inter-sample distances on the basis of statistical35

interpretations. For example, Rempala et al. (2011) used a bivariate Poisson log-normal (BPLN) model to36

classify eight different samples of the following sample conditions: donor sites, types of T cells, and the37

genetic backgrounds of different mouse lines. Guindani et al. (2014) used a Poisson Dirichlet process to38

classify the types of T cells (i.e., conventional and regulatory T cells). Besides the above examples, other39

variations of PA models have been proposed for sample classification based on the measurement of TCR40

diversity (Sepúlveda et al., 2010; Greene et al., 2013).41

Although these PA models can successfully quantify the inter-sample distances, they are also associated42

with a major drawback in that some of the sequence information for each sample is lost since these models43

focus only on the count distribution. This loss of information has hampered the ability to determine the44

characteristic sequences of each sample, which is a requisite for further investigations of the source of the45

difference by, for example, evaluations of the interaction with microbial peptides (Aas-Hanssen et al., 2015)46

and the simulation of TCR crystal structures (Klausen et al., 2015).47

As an alternative method, we can extract and count the overlapping sequences between two samples or48

among many samples. However, the possible sequence space of the TCR repertoire is at least as large as49

1015 (Davis and Bjorkman, 1988), and therefore the measured sequences can only sparsely cover the entire50

space. This sparsity substantially reduces the chance to observe the same sequence in two samples. Thus, by51

focusing on the overlaps, it is only possible to detect the public sequences that appear very frequently52

among the samples. Moreover, even if no overlapping among the sequences is detected, it is not possible to53

judge whether this occurs because the two repertoires cover quite different subspaces of the sequence space54
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or because the repertoires cover the same subspace but show no overlapping by chance simply owing to the55

sparsity of the coverage. This difference can be determined by exploiting the information of inter-sequence56

differences in the repertoires.57

To address this problem, we developed a new method for the quantitative comparison of TCR repertoires,58

by focusing on the sequence information in all samples, and estimating the low-dimensional structure59

(manifold) by projecting the high-dimensional inter-sequence relations, calculated from pairwise sequence60

alignments, onto a low-dimensional space. The methods for manifold estimation have been successfully61

applied in previous studies of virus evolution (Ito et al., 2011) and relationships of 16S rRNA gene sequences62

in bacterial genomes (Hughes et al., 2012) to extract the evolutionary pathways and interconnections of63

bacteria. Although manifold estimation has also been employed for evaluating the TCR repertoire, this was64

mainly used only for visualization purposes (Duez et al., 2016). However, the low-dimensional embedding65

of the original repertoire contains the information how the repertoires from different samples cover the66

possible sequence space. Therefore, by employing such information, it may be possible to detect a subset of67

sequences in the repertoire that has a major contribution to the inter-sample difference.68

To quantitatively compare the embedded sequences, we estimated a probability density function of69

the sequence distribution in the low-dimensional space. This density estimation compensates for the70

sampling bias due to unseen sequences from the sparsity of the measured sequences. Finally, we quantified71

the inter-sample differences between the estimated density functions of the individual samples using72

the Jensen-Shannon divergence (JSD). This information-theoretic measure characterizes the difference73

between two distributions by the probability of observing either one by chance with random sampling74

from the others. Thus, this measure can effectively and quantitatively capture information on the existence75

of non-overlapping sequences between two repertoires. By extracting the sequences that show a major76

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 17, 2017. ; https://doi.org/10.1101/128025doi: bioRxiv preprint 

https://doi.org/10.1101/128025


R. Yokota et al. Inter-sample-difference Quantification in TCR-seqs.

contribution to the information theoretic measures, the sequences most responsible for the inter-sample77

differences can be determined, which cannot be identified with previous approaches.78

The paper is structured as follows. We first describe the experimental data adopted to test our method79

and the step-by-step data analysis procedure, including (i) quantification of sequence dissimilarity with80

the pairwise sequence alignment algorithm, (ii) evaluations of four different manifold learning methods81

for projecting the sequence distribution in low-dimensional space, (iii) adoption of the kernel density82

estimation algorithm (KDE) to quantify the sequence distribution, and (iv) quantification of the inter-sample83

differences and identification of the contributing sequences according to the JSD values of the distributions.84

To validate the applicability of our method, we apply a true dataset of TCR repertoires and demonstrate that85

similar inter-sampling clustering can be obtained by both our method and previous methods despite their use86

of different modalities (sequence and count, respectively) of a repertoire. We further evaluate the statistical87

significance of our results using a bootstrap algorithm to confirm the derived sample difference. Overall, we88

aim to demonstrate the advantages of our method to previous methods by capturing more complete and89

quantitative information on TCR repertoires. This method is expected to be of value for understanding90

variation of the immunological states to facilitate development of immunotherapies and vaccines.91

2 MATERIAL & METHODS

2.1 Sequence data92

In this study, we used a public dataset of TCR repertoires in mice published in Rempala et al. (2011). This93

dataset includes information of eight different TCR populations, which are classified according to donor94

sites, types of CD4+ T-cells, and the genetic backgrounds of mice. The CD4+ T-cells were collected and95

isolated either from the thymus or peripheral lymph nodes, which are labeled as ”1” and ”2”, respectively. In96
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addition, these cells were categorized into either naive T-cells (TN) or regulatory T-cells (TR) in accordance97

with the presence or absence of Foxp3 expression. The two genetic backgrounds of mice are labeled as98

”wild type” and ”Ep” in the original paper. Both groups showed strong restriction on rearrangement of99

V(D)J genes (i.e., the two α-chain rearrangements between Jα2.6 and Jα2 with a fixed Vα2.9 segment100

and fixed β-chain Vβ14Dβ2Jβ2.6). The main difference between these groups is that the Ep mice were101

backcrossed with mice that express transgenic class 2 major histocompatibility complex molecules bound to102

a single ”Ep” peptide (Pacholczyk et al., 2006). Thus, Ep mice are expected to show a more restricted103

TCR repertoire than wild-type mice. To evaluate the diversity of TCR repertoire, the complementarity104

determining region 3 (CDR3) of TCRα chains were sequenced and amplified. Further details on this dataset105

are described in Section 4 of Rempala et al. (2011).106

2.2 Data analysis procedure107

To date, no sufficient and effective method for comparing TCR repertoires among different samples108

has been established, which is mainly due to the enormous complexity and diversity of TCR sequences109

(Hou et al., 2016). In ecology, the diversity in a population is conventionally measured with metrics of110

species abundance’ between pairs of samples. However, these methods generally rely on observational111

data of species abundance counts, and can therefore be vulnerable to sampling bias. One widely used112

typical measure to quantify biological diversity is through a dissimilarity metric such as the Bray-Curtis113

index (Bray and Curtis, 1957; Tang et al., 2016; Silverman et al., 2016). In the context of TCR repertories,114

the abundance counts of observed sequences’ can be considered to be analogous to species abundance’115

in an ecological context. However, because of the sparsity of observed sequences, application of these116

dissimilarity metrics to a dataset of TCR repertoires may not always work well. PA models have attracted117

substantial attention as methods to overcome these issues, since these models can compensate for the118
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sampling bias by estimating the statistical parameters directly from the measures of the abundance counts of119

observed sequences (Robinson and Smyth, 2007; Sepúlveda et al., 2010), and are thus expected to be more120

robust to sampling bias. However, both methods ignore detailed information of the amino acid sequences of121

TCRs.122

Therefore, in this study, rather than focusing on observation counts, we instead focus on the sequence123

similarity among repertoires. Our method consists of four steps: (i) calculate a dissimilarity matrix of124

observed TCR sequences in all samples using the Smith-Waterman (SW) algorithm with a scoring matrix;125

(ii) embed the data in a low-dimensional Euclidian space by dimensionality reduction methods while126

preserving the inter-sequence relations quantified by the dissimilarity matrix; (iii) estimate the sequence127

distributions in the low-dimensional space by the KDE algorithm; and (iv) quantify the sample differences128

by calculating the JSD value between the probabilistic density functions of different samples, and cluster129

the samples accordingly. Each of the above steps is described in detail in the following subsections.130

2.2.1 Quantification of sequence dissimilarity131

The first step of our method is the quantification of similarity for each pair of TCR sequences in all132

samples. The SW algorithm remains the most popular pairwise local sequence alignment algorithm in133

bioinformatics for quantifying the similarity of amino acid sequences (Smith and Waterman, 1981). In134

recent years, improved versions of the SW algorithm have been proposed to resolve the problems related to135

the increase in computational costs along with the rapidly increasing size of datasets that are now possible136

from next-generation sequencing. Here, we used one of these modifications, the striped SW algorithm137

(Farrar, 2007), which uses a single-instruction-multiple-data (SIMD) system that allows for multiple units to138

simultaneously execute the same operation. The algorithm was implemented with Parasail, an open-source139

software for sequence alignment (Daily, 2016).140
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The SW algorithm requires amino acid substitution matrices, which determine the cost of the replacement141

of a single amino acid residue by another (Henikoff and Henikoff, 1992). Although the SW algorithm has142

already been applied to TCR sequences as a mapping tool for CDR3 sequences (Shugay et al., 2014), no143

study has yet established the best choice of substitution matrices for comparison of TCR data. Therefore, to144

clarify the effect of the type of substitution matrix employed and determine the optimal choice for our145

method, we tested 10 different matrices: five different point-accepted mutation matrices (PAM; 30, 100,146

120, 160, and 250) (States et al., 1991), and five different blocks substitution matrices (BLOSUM; 45, 50,147

62, 80, and 100) (Henikoff and Henikoff, 1992). The gap opening and extension penalties were set to 10148

and 1, respectively (Farrar, 2007).149

Since the substitution matrices give nonzero values for replacements between the same amino acid150

residues, the total score of the alignment between two identical sequences depends on their sequence lengths.151

Thus, the diagonal elements of a pairwise distance matrix will have different values even when they are152

calculated from the alignments of two identical sequences. In other words, both the sequence similarity and153

the sequence length determine the values of the pairwise distance matrix. To adjust for this sequence-length154

effect, we converted the pairwise distance matrix into a dissimilarity matrix using the following equation:155

Si,j = 1−
2Di,j

Di,i +Dj,j
, (1)

where Di,j and Si,j are a pairwise distance matrix and dissimilarity matrix between the two sequences i and156

j, respectively. At this step, we calculated the pairwise distances between all pairs of unique sequences157

observed in all samples with the striped SW algorithm. We then transformed the pairwise distance matrix158

into the dissimilarity matrix using Eq. 1.159
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2.2.2 Dimensionality reduction with manifold learning methods160

To visualize the structure of the high-dimensional dissimilarity matrix in a low-dimensional space, we161

applied dimensionality reduction (manifold learning) techniques to the dissimilarity matrix described162

above that was constructed with BLOSUM62. Here, we compared the results calculated with four different163

methods: multidimensional scaling (MDS) (Borg and Groenen, 2005), ISOMAP (Tenenbaum et al., 2000),164

spectral embedding (SE) (Belkin and Niyogi, 2001), and t-distributed stochastic neighbor embedding165

(t-SNE) (Van Der Maaten and Hinton, 2008). All of these methods transform the dissimilarity matrix S166

with dimensionality N into a new dataset Y with a lower dimensionality d in such a way as to preserve167

the structure of the dissimilarity matrix by minimizing cost functions. The major difference among these168

methods is the cost function, which is determined according to the relative distances between all pairs of169

sequences. MDS with a SMACOF algorithm minimizes the sum of squared errors in the relative distances170

of all sequence pairs before and after projections (Borg and Groenen, 2005). This cost function of MDS171

tends to preferentially retain the distances between more distant data points over those between more172

adjacent points (Van Der Maaten et al., 2009). ISOMAP also minimizes the sum of squared errors, but rather173

than using the relative distances, it uses the geodesic distances, which are the distances along the shortest174

paths between two nodes on the neighborhood graph, calculated with a k-nearest neighbor algorithm175

(Tenenbaum et al., 2000). In the present study, we calculated the geodesic distances with the Warshall-Floyd176

algorithm (Floyd, 1962). ISOMAP retains a neighborhood structure of data points lying on a curved177

manifold (e.g., the Swiss roll dataset (Tenenbaum et al., 2000)), which is collapsed in MDS. SE, also known178

as Laplacian eigenmaps, minimizes the cost function based on the neighborhood graph, which ensures that179

local neighborhood relations in a high-dimensional space are preserved in a embedded low-dimensional180

space (Belkin and Niyogi, 2001, 2003). We regarded the adjacency matrix based on the k-nearest neighbor181

algorithm as the weighted graph matrix to construct the Laplacian graph of SE. Finally, t-SNE converts the182
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relative distances to joint probabilities, and minimizes the Kullback-Leibler divergence between the joint183

probabilities of the high-dimensional space and those of a embedded low-dimensional space (Van Der184

Maaten and Hinton, 2008). For calculation of the joint probabilities, t-SNE uses different kernels for the185

high- and low-dimensional spaces: a Gaussian kernel and a Student t-distribution, respectively. Since the186

Student t-distribution results in heavier tails than the Gaussian kernel, the t-SNE method emphasizes the187

local distances between data points in the low-dimensional space.188

In the studies of sequence alignments for sequences with different lengths, it is impossible to know189

the precise coordinates and the dimension of the sequence space. Thus, we cannot directly use principal190

components analysis, which is the most widely used dimensionality reduction technique (Bishop, 2007)191

but requires vector data with fixed dimensionality. The common advantage of the above four methods is192

that if the distances between all pairs of data points are known, then there is no need to know the specific193

coordinates of the sequence space (Van Der Maaten and Hinton, 2008; Van Der Maaten et al., 2009).194

We implemented t-SNE, MDS, and SE with the Scikit-learn manifold learning library with Python195

(Pedregosa et al., 2012). ISOMAP was implemented with our custom-written code in Python, because the196

ISOMAP function of the Scikit-learn toolbox does not support the dissimilarity matrix as an argument. The197

detailed parameters of all methods are described in Table S1 in the Supplementary Information.198

2.2.3 Estimation of the probability density function with KDE199

To compare the data points scattered in the embedded low-dimensional space among different samples,200

the embedded discrete data can be interpolated with a probability density function (PDF). Here, we201

estimated the PDF with the KDE algorithm (Jones et al., 1996; Heidenreich et al., 2013; Arlot and202

Celisse, 2010). The exponential function was used as the kernel of the KDE (Christopher et al., 1997).203

The bandwidth parameter of the exponential kernel function was optimized by maximum-likelihood204
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estimation with a cross-validation algorithm (Arlot and Celisse, 2010). To reduce the computational205

cost of this calculation, we utilized the Kd-tree algorithm, which is an N-body algorithm that divides206

all of the data into N clusters based on their relative Euclidean distances (Gray and Moore, 2001). KDE207

was implemented with the parameter optimization toolbox in Scikit-learn (Pedregosa et al., 2012). For208

application of the KDE, we discretized the embedded space with 400 bins along each axis with the following209

range: [minxi − (maxxi −minxi)/10,maxxi + (max xi −minxi)/10], where xi indicates the position210

of a data point (i.e., a sequence) in the embedded space, and i indicates each axis of that space.211

2.2.4 Quantification of sample differences with JSD212

The final step of our method involves quantification of the inter-sample differences by calculating the JSD213

values between all pairs of the estimated PDFs (Elhanati et al., 2014). The JSD is defined as:214

DJS [P (x)||Q(x)] =

∫
Dlocal

JS dx

=

∫
1

2

{
P (x) log

P (x)

M(x)
+Q(x) log

Q(x)

M(x)

}
dx

=
1

2
DKL[P (x)||M(x)] +

1

2
DKL[Q(x)||M(x)] , (2)

where P (x) and Q(x) are the estimated PDFs and DKL is the Kullback-Leibler divergence; M(x) is215

P (x)+Q(x)
2 and Dlocal

JS is the “local JSD” , whose integration with respect to x gives the JSD. Thus, the216

“pairwise” JSDs provide a sample-difference matrix that quantifies the combinatorial differences between217

all pairs of the samples. To categorize all samples, we utilized hierarchical cluster analysis, which converts218

the N ×N -dimension sample-distance matrix into a dendrogram. Specifically, we used an agglomerative219

hierarchical cluster technique; each sample is initially treated as a singleton cluster, and pairs of clusters are220

repetitively merged according to a criterion until only a single cluster remains (Maimon and Rokach, 2005).221
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We here used Wards criterion (Ward, 1963) for agglomerative clustering, which was implemented using222

the linkage function of Matlab’s Statistics and Machine Learning Toolbox (The MathWorks Inc., Natick,223

MA, USA). To compare our clustering result of the observed sequences with those obtained using other224

count-based methods, we also quantified the inter-sample difference with BPLN and Bray-Curtis methods.225

BPLN was applied according to the methods described in the original paper by Rempala et al. (2011).226

To evaluate the goodness of fit of the clustering results, Rempala and colleagues Rempala et al.227

(2011) calculated the cophenetic correlation coefficient (CCC), which quantifies the distortion due to the228

transformation from the distance matrix to the cophenetic matrix, from which the dendrogram was derived.229

However, the CCC does not always accurately reflect the goodness of fit of the results. Indeed, Wards230

method tends to produce lower CCC values than other methods such as average and centering methods231

even though it has been previously reported as the best agglomerative method (Hands and Everitt, 1987;232

Saracli et al., 2013). Therefore, instead of the CCC, we verified the fit of the model based on the statistical233

significance of the distance between the nodes of the dendrogram, because the significance of the estimated234

value of JSD is unclear. Specifically, we used bootstrap methods to evaluate significance, resampled data235

points from the naive PDF according to the number of observed read counts, and then re-estimated the PDF236

from the resampled data points. We then calculated the JSDs between the naive and re-estimated PDFs.237

We repeated this process 100 times to obtain a histogram of the calculated JSDs. The 2.5th and 97.5th238

percentiles of the histogram of the JSDs between the naive and each re-estimated PDF represent both ends239

of the 95% confidence interval, where values outside of the interval indicate a significance level of over 5%.240

To identify the sequences with the greatest contributions to the inter-sample distances, we selected square241

bins for the top 1% of the local JSDs. We next defined the sequences in these bins as those contributing to242

the observed pairwise sample difference. Furthermore, to investigate the characteristics of the contributing243

sequences, we calculated the relative frequencies of the amino acid residues in all of the contributing244
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sequences. The graphics of the relative frequencies were obtained using WebLog 3 software (Crooks et al.,245

2004).246

All analyses were performed using custom-made codes written in Python, Matlab, and R.247

3 RESULTS

3.1 Evaluation of sequence dissimilarity for pairwise sequence alignment248

Using the pairwise sequence alignment and Eq. 1, which excludes the influence of the sequence lengths249

from the alignment results, we calculated the dissimilarity matrix of all pairwise sequences in the dataset of250

Rempala et al. (2011). The upper panels in Figs. 1(A) and 2(B) show the dissimilarity matrices obtained251

with the 10 different substitution matrices, five of PAM and five of BLOSUM. As shown in these panels,252

the components of the dissimilarity matrices are clearly separated into two distinct clusters, which are253

considered to reflect the α-chain rearrangements between Jα2.6 and Jα2 under the usage of the other254

fixed VJ genes. Moreover, the low-numbered PAMs and high-numbered BLOSUMs showed more gradual255

differences among the matrix elements than the others. This tendency was even more evident when viewing256

their embedded spaces for the separation of clusters. The lower panels in Fig. 1(A) and (B) show the t-SNE257

projection maps of the corresponding dissimilarity matrices in the upper panels. In this case, low-numbered258

PAMs and high-numbered BLOSUMs tended to have merged clusters. This may be attributed to the259

specific characteristics of these two substitution matrices, which have a higher variability in the scores for260

replacements between a pair of amino acids. Based on these results, we used the BLOSUM62 dissimilarity261

matrix for subsequent analyses for two main reasons. First, both the too high-numbered PAMs and too262

low-numbered BLOSUMs seemed to lose the intra-cluster structures by trying to compress the clusters into263

regions that were too small, while both the too low-numbered PAMs and too high-numbered BLOSUMs264
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diminished any inter-cluster differences, resulting in indistinguishable clusters. Second, BLOSUM62 has265

been the most widely used matrix in analyses of TCRs and antigen peptides to date (Oyarzún et al., 2013;266

Schwaiger et al., 2014; Hoffmann et al., 2015; Aas-Hanssen et al., 2015).267

3.2 Dimensionality reduction of the dissimilarity matrix268

To evaluate the applicability of dimensionality reduction methods, we reduced the dimensionality of the269

dissimilarity matrix into a two-dimensional space using four different dimensionality reduction methods270

(t-SNE, MDS, ISOMAP, and SE). In Fig. 2, each point in each panel corresponds to a unique sequence271

of TCRs, and the spatial distances between pairs of points reflect the dissimilarity of the sequences272

corresponding to the points. Panels (i) and (ii) of Fig. 2(A–D) show the projection results of the unique273

sequences obtained from all samples, and the subset of points (sequences) in (i) that appeared in the sample274

denoted in the inset letters of the panel, respectively. The sample differences could be clearly reflected275

according to the scattering pattern of the points. Moreover, the points derived from the t-SNE and MDS276

methods spread more widely over the two-dimensional space than the others, whereas the points were more277

locally consolidated with the ISOMAP method, and especially with SE. This result suggests that t-SNE and278

MDS may be more appropriate than other reduction methods for larger datasets, because highly dense279

regions can cause difficulty in comparing the probabilistic distributions between samples. Furthermore,280

the two clear clusters in the dissimilarity matrix (the upper panel of BLOSUM62 in Fig. 1(B)) were well281

reflected in the two clusters for the MDS and ISOMAP methods (Fig. 2(B,C)), but were not represented282

clearly in the clusters of t-SNE. This result suggests that t-SNE emphasizes slight differences within clusters283

rather than large differences between the clusters of the dissimilarity matrix. Since it is unclear whether this284

visualization property of t-SNE works efficiently for comparisons between samples, we quantified and285
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compared the distributions of data points at the next step, and examined the method that would be most286

appropriate for this purpose.287

3.3 Hierarchical clustering of the pairwise-sample-difference matrix288

We applied the KDE algorithms to the spatial distributions of data points to estimate their probability289

density functions (color gradient in Fig. 2), with which JSD is calculated to quantify pairwise-sample290

differences. The matrices of the pairwise-sample differences are shown in Fig. 3(A), and the resulting291

dendrograms in Fig. 3(B) indicate the hierarchical clustering results with the agglomerative method. The292

clustering results can be categorized into two groups: ISOMAP and the others (MDS, t-SNE, and SE). The293

dendrograms of t-SNE, MDS, and SE showed good correspondence with our intuitive notions about the294

hierarchical structure of the experimental conditions, which were ranked in order of donor sites, types of T295

cells, and genetic background with clear biological significance (Rempala et al., 2011). By contrast, the296

dendrogram of ISOMAP showed a mismatch in the hierarchical order between the T-cell types and donor297

sites of Ep mice.298

To verify the results of hierarchical clustering obtained by our method, they were compared with those299

obtained with previous observation count-based methods, the BPLN and Bray-Curtis method. As shown300

in Fig. 4, the sample differences and dendrograms estimated from the BPLN and Bray-Curtis methods301

were very similar to those obtained using our approach with MDS, t-SNE, and SE. Importantly, these302

similar results were obtained with different data modalities: sequence similarity and observation counts.303

Therefore, this consistency suggests that there is common information between sequence similarity and304

observation counts with respect to quantifying the differences among samples. We should note that these two305

modalities can be combined simply by assigning the number of observed sequence counts as a weighting306

factor for each data point (i.e., a unique sequence) in the embedded space. Indeed, the counts-weighted307
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PDFs using KDE (Fig. S1) showed no obvious change in the hierarchical clustering structure of the308

pairwise-sample differences. Taking these results together, the MDS or t-SNE appears to be the better choice309

as a dimension-reduction method for evaluation of differences in TCR repertories among samples, given310

that these methods show wide spatial distributions of the data points, and also show the most consistent311

dendrogram structures with those of previous count-based methods.312

3.4 Significance test for inter-sample differences313

To verify the statistical significance of the calculated JSDs between all sample pairs, we calculated the314

JSDs between the naive and the re-estimated PDFs using a non-parametric bootstrap algorithm. Figure 5315

shows the histogram of the JSD values between the naive PDF of Fig. 2 (C, ii) and the re-estimated PDFs.316

In the figure, arrows indicate the naive JSD values between the sample designated on the top of the panel317

and the other samples. If the values indicated by the arrows are bigger than the light red region in the panel,318

the pairwise naive PDFs deriving the naive JSD are significantly different each other. Except for EpTN2, the319

arrows that indicate the JSD values between the pairs in proximity to the terminal nodes of the dendrogram320

in Fig. 3 (A) were in inside of the light red regions, which means that the JSD values were not significantly321

bigger than the JSD values of the histogram. This result suggests that the PDFs of these pairs are so similar322

that they cannot be statistically distinguished from each other. By contrast, the arrows that indicate the naive323

JSD values between pairs in the upper parts of the clusters, above the terminal nodes, were in outside of the324

red light regions, which means that the JSD values were significantly different from each other. This result325

indicates that the types of T cells and the genetic background can be discriminated with sufficient statistical326

significance.327
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3.5 Spatial distribution of local JSD values328

The main advantage of our method compared to count-based methods is the ability to identify the major329

sequences contributing to inter-sample differences. To identify the sequences with the greatest contributions330

to large local JSD values, we plotted the spatial distribution of the local JSDs between the WtTN1 and331

EpTN1 sequences. As shown in Fig. 6, two regions were identified that were associated with top 1%332

significance values. Table 1 lists the identified sequences in these regions with larger local JSDs than the333

others. In regions 1 and 2, there were no sequences for WtTN1, whereas EpTN1 had multiple sequences334

in these regions, suggesting that these apparent Ep-specific sequences may contribute to the observed335

abnormality in the antigen presentation of Ep mice.336

This type of sequence identification can provide further knowledge about the characteristics of sequence337

alignments. Figure 7 shows the occupation probability (relative frequency) of amino acids at each position338

of the sequences obtained from all of the sequences contributing to pairwise differences, and a consensus339

sequence was determined from amino acid positions 6th to 11th. We note that these contributing sequences340

and their characteristics cannot be easily identified simply by examining the overlapping sequences in two341

samples, because there was almost no overlap between EpTN1 and WtTN1 sequences (0.352%, 1/284), and342

because these account for only 6.34% (18/284) of the total unique sequences in the two samples.343

4 DISCUSSION

We quantified the difference in TCR repertoires among different samples based on amino acid sequence344

dissimilarity. Through a quantitative comparison of the sequence distributions in the dimension-reduction345

spaces of the dissimilarity matrix, we estimated the inter-sample hierarchical structure, which was almost346

identical to that estimated with previous count-based methods that did not incorporate detailed sequence347
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information. Furthermore, we identified the sequences that most strongly contribute to the pairwise sample348

difference using the local JSD distribution.349

Despite the fact that our method relies on sequence similarity and previous methods are based on350

observation frequency, completely different features of the TCR repertoire, almost the same sample-351

clustering structure was obtained. This suggests that there is a relationship between the observation counts352

and sequence similarities, which was further confirmed by the lack of change in the structure of the353

hierarchical clustering result when estimating the PDFs by the KDE algorithm with the weights based on354

the number of observed sequence counts. Further studies to understand this relation in greater depth would355

allow to cross-check the results of sample classification by investigating the consistency of two methods.356

Moreover, clearly distinguishing the overlapping and non-overlapping information between counts and357

sequences may allow for more detailed classification of samples.358

Although our method and the counts-based methods provide similar classification result, there are two359

unique merits of our method. The first is the robustness against errors derived from polymerase chain360

reaction (PCR) amplification bias attributed to the variability in reproducibility for individual sequences361

(Greiff et al., 2015). Previous studies have shown that the PCR efficiency is affected by sequence profiles362

such as the length and GC content (Aird et al., 2011; Kivioja et al., 2011). Indeed, high-throughput363

sequencing with DNA barcoding has confirmed that the PCR amplification efficiency of TCR sequences is364

highly variable due to the differences in profiles of individual cDNA molecules (Carlson et al., 2013; Shugay365

et al., 2014; Best et al., 2015). This fact suggests that the PCR process for TCR sequence amplification366

induces errors in the numbers of observed sequence counts, which may eventually lead to errors in the367

results of counts-based methods such as PA models. Alternatively, our method does not depend on the368

sequence counts, allowing for reliability against errors due to PCR bias. The second key merit of our369

method is the ability to identify the sequences with the greatest contributions to pairwise sample differences.370
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This sequence identification allows for targeted analyses along with the results of other studies such as the371

simulation modeling for determining the crystal structures of the TCRs encoded by these sequences (Klausen372

et al., 2015) or establishing alignments between CDR3 sequences and microbial genomes (Aas-Hanssen373

et al., 2015). Such a closed-loop experimental design may help to achieve a breakthrough in the development374

of vaccines or immunotherapies (Hou et al., 2016). Thus, the present results and advantages demonstrate the375

potential applicability of adopting a sequence-based method in repertoire analysis, which can compensate376

for the drawbacks in conventional count-based methods.377

Nevertheless, there are several issues and problems that should be mentioned that are worthy of further378

investigation in developing and improvement of sequence-based approaches for comparison of TCR379

repertoires.380

One issue concerns the treatment of gap penalties. When we evaluated the differences of the score matrices381

shown in Fig. 1, we fixed the gap opening and extension penalties to 10 and 1, respectively. Although the382

effects of the penalties have not been adequately investigated in previous studies (Wrabl and Grishin, 2004),383

the gap opening penalty was found to affect estimations of the hierarchical data structure (data not shown).384

The CDR3 region of TCR is a much shorter sequence than peptide sequences, and also shows frequent385

deletions and insertions from somatic recombination events. Considering these characteristics, further386

investigations about the effects of gap penalties are needed.387

Another aspect worthy of further consideration is the empirical estimation of the cost functions used388

in the dimensionality reduction methods and in the combination of projection methods and comparison389

of the embedded results. As demonstrated in Fig. 2, the scattering patterns of the sequence data in the390

low-dimensional space depend on the cost functions of the method adopted. Using MDS and ISOMAP,391

we obtained two clear clusters reflecting two regions in the dissimilarity matrix. This is because the cost392
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function of MDS preferentially preserves the distances between the distant points rather than those between393

nearby points (Van Der Maaten et al., 2009). By contrast, t-SNE emphasizes the local structures of nearby394

points over global points by using the Student t-distribution as the kernel of the embedded space. These395

cost functions were empirically determined for visualization purposes in the original papers, without396

consideration of the subsequent quantitative inter-sample comparison of the embedded results. Although397

our results suggest that the empirical combination of dimensionality reduction methods and comparison of398

the embedded results by JSDs may work well, both the projection method and comparison method in the399

embedded space should be consistently designed so as to best reflect the inter-sample difference in the400

original sequence space. This method might be developed by choosing an information-theoretic measure401

for the cost function of projection that can preserve the relevant information of repertoires in the original402

sequence space. Because the underlying high-dimensional structures of the repertoire are difficult to capture403

intuitively, methods based on firm theoretical rationality and biological significance are indispensable for404

further exploitation of repertoire information.405
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Figure 1. Dissimilarity matrices and their embedded distributions with 10 different score matrices; (A)
PAM, (B) BLOSUM.
The upper and lower panels show the dissimilarity matrices and projection maps in two-dimensional space,
respectively. All of the rows and columns in each dissimilarity matrix were sorted according to the sum of
their elements. The colors of points in the lower panels of (A) and (B) correspond to the clusters in PAM250
and BLOSUM45 that were discriminated by k-means algorithms (k = 7).
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Figure 2. Dimensional reduction with four different dimensionality reduction methods: (A) t-SNE, (B)
MDS, (C) ISOMAP, and (D) SE.
Panel (i) includes the points of the total unique sequences observed in all samples. Panel (ii) includes
only the portions of sequences that were observed in each sample. ”Ep” and ”Wt” denote two different
genetic backgrounds of mice. ”TN” and ”TR” denote naive and regulatory T-cells. ”1” and ”2” denote the
thymus and peripheral lymph nodes, respectively. As an instance, EpTN1 denotes the naive T-cells that
were collected from the thymus in the ”Ep” mice.
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Figure 3. JSD matrices and their clustering results with four different methods: (i) tSNE, (ii) MSD, (iii)
ISOMAP, and (iv) SE. (A) Matrices of pairwise-sample differences and (B) the dendrogram constructed
from the matrices.
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Figure 4. Sample-distance matrices constructed with two methods: (i) BPLN, (ii) Bray-Curtis. (A) Matrices
of pairwise-sample differences and (B) the dendrogram constructed from the matrices.

Table 1. Sequences contributing to the JSD between EpTN1 and WtTN1.

Regions EpTN1 WtTN1

1 CAASAYQLIWG
CAASCYQLIWG
CAASRYQLIWG
CAASTYQLIWG

2 CAAGNYQLIWG
CAAHNYQLIWG
CAANNYQLIWG
CAARNYQLIWG
CAASNYQLIWG
CAATNYQLIWG
CADLNYQLIWG
CADSNYQLIWG
CAGSNYQLIWG
CASHNYQLIWG
CASSNYQLIWG
CATSNYQLIWG
CAVSNYQLIWG
CVGSNYQLIWG
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Figure 5. Significance tests of JSD values using bootstraps.
Each colored arrow indicates the naive JSD values between the resampled sample and another. The light red
region indicates the 95% confidence interval.

Figure 6. Spatial distribution of local JSD values between EpTN1 and WtTN1.
The white line shows the contours of the regions with significant local JSDs.
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Figure 7. Relative frequencies of observed amino acids at each position in the contributing sequences.
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SUPPLEMENTARY INFORMATION

Figure S1. Count-weighted PDF estimation with tSNE-embeding data.
Conventions comply with Fig.2 and 3. (A) PDFs weighted by the number of sequence counts. (B) Sample
distance matrix estimated with the weighted PDFs. (C) the dendrogram constructed from the matrix in (B).
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Table S1. Detail parameters of manifold learning methods.
Except for ISOMAP, we used the functions in the class of sklearn.manifold in the scikit-learn toolbox. The
parameters of each function are described in the Table S1. For ISOMAP, first, we calculated the geodesic
distances by using k-nearest neighbor algorithm and Floyd-Warshall method. Then, we applied the geodesic
distances to MDS with the following parameters.
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