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Most human genes have multiple transcription start and polyadenylation sites,
as well as alternatively spliced exons. While transcript isoform diversity con-
tributes to shape cellular specificity, it is currently unclear what is the balance
of contributions from alternative splicing compared to alternative start and
termination sites of transcription. Here, we address this question by ana-
lyzing data from the Genotype-Tissue Expression Project. We found tissue-
dependent usage of exons for around one-half of expressed genes. Although
tissue-dependent splicing was frequent among untranslated exons, it explained
less than half of the differences in exon usage across tissues, suggesting that
most of these differences were driven by alternative transcription start and
termination sites. Analysis of the FANTOM Project data confirmed widespread
tissue-dependent usage of alternative transcriptional start sites. Our analysis
highlights alternative initiation and termination sites of transcription as the
main drivers of isoform diversity across tissues. We also show that most tissue-
dependent splicing is unlikely to have consequences at the proteome level.
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Alternative splicing, alternative promoter usage and alternative polyadenylation are in-
terdependent molecular processes that enable genomes to synthesize multiple transcript
isoforms per gene'. In mammalian genomes, it has been estimated that at least 70% of
genes use multiple transcriptional sites, more than 50% of genes have alternative tran-
scriptional start sites and nearly all genes undergo alternative splicing>**. Hence, these
molecular processes increase the repertoire of transcripts in mammalian genomes >

A variety of biological processes, including cell differentiation and cell prolifera-
tion, are regulated by the expression of alternative transcript isoforms. For example, the
alternative usage of two promoters of the gene RUNX] is spatio-temporally modulated
during mouse embryogenesis, and the disruption of this modulation leads to impaired
development®. Similarly, the transcription factor FOXP]I is differentially spliced be-
tween embryonic stem cells and differentiated cells and the regulation of this splicing
switch is essential for the maintenance of ESC pluripotency and efficient reprogram-
ming®. Mis-regulation of transcript isoform regulation has been observed in disease
phenotypes, including cancer'%!12.13,

A large majority of alternatively spliced RNAs have been detected to be bound to
ribosomes, suggesting that most transcript isoforms could be translated into protein
products'*. For dozens of genes, it has been experimentally demonstrated that alter-
native isoforms result in proteins with differences in the cellular localization, stability,
DNA binding properties, lipid binding properties and enzymatic activities'>. Alter-
native isoforms can behave like completely distinct proteins when considering their
protein-protein interaction capabilities '°. However, based on evidence from conserva-
tion of protein structures and functional features, it has been suggested that the major-
ity of alternative transcript isoforms would be translated into proteins with disrupted
structures and functions '”'®. Such ‘non-functional proteins’ are not abundant at levels
that can be detected with high confidence in large-scale proteomic experiments '*2’. A
large fraction of transcript isoforms might have functions at the RNA level rather than
at the protein level. Indeed, the expression of multiple transcript isoforms of the same
gene can enhance post-transcriptional regulation, resulting in fine tuning of mRNA
levels?!"*? and translation control >*%*,

Although transcript isoform diversity contributes to phenotypic differences across
cell-types, it is currently unclear to what extent it is driven by alternative splicing,
and to what extent by alternative transcription initiation and polyadenylation sites.
Here, we developed an analytic strategy to approach this question using data from
the Genotype-Tissue Expression (GTex) Project V6>°. We show that transcript iso-
form regulation across tissues is widespread in the human genome and affects about
one half of multi-exonic genes. We show that the majority of differences in exon us-
age cannot be explained by alternative splicing, suggesting that these differences are
due to the alternative usage of start and termination sites of transcription. Integration
of data from the FANTOM consortium® confirms prevalent tissue-dependent usage of
alternative transcription start sites. Our results suggest that alternative splicing has
more widespread repercussions on RNA products rather than on protein products and
that alternative transcript start and polyadenylation sites play an under-explored role in
defining cell-type specificity.
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RESULTS

The data

We used transcriptome data (RNA-seq) from the V6 release of the Genotype-Tissue
Expression (GTEx) project®. The dataset comprised 9,795 RNA-seq samples from 54
tissues out of a total of 551 humans. Since the dataset did not contain all tissues for
each individual, we identified subsets of data that could be analyzed as fully crossed
designs (i.e., containing all possible tissue-individual combinations). We mapped the
sequenced fragments to the human reference genome version GRCh38, obtained from
ENSEMBL release 842°, using the aligner STAR v2.4.2a”". We excluded samples where
the number of sequenced fragments was below 1,000,000 or where the percentage of
uniquely mapping reads was below 60%. Using these filtering criteria, we defined three
subsets of GTEx data:

e Subset A consisted of 8 brain cell-types (frontal cortex [BA9], nucleus accum-
bens, putamen, cortex, cerebellum, caudate, cerebellar hemisphere and hippocam-
pus) across 30 individuals, comprising a total of 240 samples;

e Subset B included 9 tissues (skeletal muscle, thyroid, whole blood, lung, subcu-
taneous adipose, skin, tibial artery, tibial nerve and esophagus [mucosa]) from
34 individuals, i.e., a total of 306 samples;

e Subset C comprised 6 tissues (heart, aorta, esophagus [muscularis], colon and
stomach) from 42 individuals (252 samples).

Subsets A, B and C were non-overlapping, and altogether our analysis employed a
subset of 798 samples from the GTEx dataset.

Exon usage coefficients enable the study of transcript isoform regu-
lation across tissues.

Next, we used ENSEMBL transcript annotations to define reduced gene models with
non-overlapping exonic regions>® (Online Methods). We obtained 499,667 non-overlapping
exonic regions from the 35,048 multi-exonic genes, of which 412,116 were derived
from 18,295 protein-coding genes. For each of the subsets A, B and C, we com-
puted two measures of exon usage per exonic region: relative exon usage coefficients
(REUCs)* and relative spliced-in coefficients (RSICs)*. The computation of these
coefficients is illustrated in Figure 1. Both of them are measures of exon usage in
a specific tissue in a particular individual relative to the average exon usage across all
tissues and individuals (Online Methods). The REUC defines exon usage as the fraction
of sequenced fragments that map to the exonic region among all fragments mapping to
the rest of the exonic regions from the same gene. In contrast, the RSIC measures the
fraction of sequenced fragments that map to the exonic region compared to the number
of reads that support the skipping of that exonic region via alternative splicing (Fig-
ure 1C). Note that differences in exon usage due to alternative splicing are reflected
in both REUCs and RSICs (Figure 1B and Figure 1C). Changes in exon usage due to
alternative transcription initiation sites or alternative polyadenylation sites, which do
not result in exon-exon junction reads, are only reflected in REUCs (Figure 1D).

As an example, we show the gene 5-Aminolevulinate Synthase 1 (ALASI) in Fig-
ure 1D-E. ALASI encodes an enzyme that performs the first catalytic reaction of the
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biosynthetic pathway of heme. Heme is an organic cofactor that is essential for the
proper function and differentiation of many cell types, including those of the hematopoi-
etic, hepatic and nervous systems?’. Induction of ALASI has been associated with
acute attacks of porphyria disease?!. By exploring the REUCs for ALAS1, we found
that a 5° untranslated exon was included more frequently in the transcripts generated
from cerebellum and cerebellar cortex than in the other brain cell types (Figure 1D).
The same pattern of tissue-dependent usage (TDU) was also evident from the RSICs
(Figure S1), which indicates that the TDU pattern is a consequence of alternative splic-
ing rather than of alternative transcriptional initiation or termination sites (Figure 1E).
In cultured cells, it has been shown that ALAS/! transcripts that include this 5’ exon
are resistant to heme-mediated decay and that their translation is inhibited**. The de-
tected splicing pattern indicates that ALAS might be post-transcriptionally regulated
differently in cerebellum than in the rest of the brain.
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Figure 1: Caption in next page.
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Figure 1: Quantification of exon usage. (A) Exemplary gene model in the reference
genome (green) and alignments of RNA-seq reads (upper panel). Sequenced fragments
whose alignments fall fully into an exonic region are shown by a grey box; alignments
that map into two (or possibly more) exonic regions are shown by shorter grey boxes
connected by a horizontal line. For a particular exon (highlighted in orange), we con-
sider two strategies to quantify its usage that are illustrated in Panels B and C (see
Online Methods for the formal description). The first strategy is illustrated in Panel
B, where sequenced fragments are counted into two groups: the number of sequenced
fragments that map fully or partially to the exon (\) and the number of fragments that
map to the rest of the exons (¢). HREVC is defined as the ratio between A and e, and the
relative exon usage coefficient (REUC) for the exon in sample j is estimated as the ratio
between OREYC in sample j with respect to the mean #%EVC across the n samples. Panel
C illustrates the second exon usage quantification strategy, where sequenced fragments
are also counted into two groups: the number of sequenced fragments that map fully
or partially to the exon () and the number of sequenced fragments that align to ex-
ons both downstream and upstream of the exon under consideration (p). The latter
group of sequenced fragments are derived from transcripts from which the exon was
spliced out. #*%C is now defined as the ratio between A and p. The relative spliced-
in coefficient (RSIC) for the exon in sample j is estimated as the ratio between %S
in sample j with respect to the mean 6%5C across the n samples. Notice that while
differences in exon usage due to alternative splicing are reflected in both REUCs and
RSICs, differences in exon usage due to alternative transcription or termination sites
are only reflected in REUCs. (D) Heatmap representations of the REUCs for three
exonic regions (E004, EOO5 and E006) of the gene ALASI, computed using Subset
A of the GTEx data. The rows of the heatmaps correspond to the eight tissues, and
each column corresponds to one individual. The horizontal colour patterns of exon
E005 indicate elevated inclusion of cerebellum and cerebellar cortex as compared to
the rest of the brain cell-types. (E) RNA-seq samples from two cell-types (cortex and
cerebellum) from individual /2ZZX (also indicated by the arrows below each heatmap
in Figure 1D) are displayed as sashimi plots®>. The three exonic regions presented
in Panel D are shown. The middle exon, E00S5, is an untranslated cassette exon (EN-
SEMBL identifier ENSE00002267562) that is spliced out more frequently in cortex
than in cerebellum.

Tissue-dependent usage of exons is widespread in humans.

After observing further instances of tissue-dependent exon usage as in the ALAST ex-
ample, we asked how common this phenomenon was across the human genome. We
defined a score based on the REUCs that measures the strength of tissue-dependent
expression of an exonic region (Online Methods). Based on this, we considered an
exonic region to be tissue-dependent if its differential usage pattern was statistically
significant at a false discovery rate (FDR) of 10%, according to the DEXSeq method >
and if it had a score larger than 1. We thus detected tissue-dependent usage (TDU) in
at least one of the subsets of the GTEx data for 23% of the exonic regions (116,601 out
of 524,219; Figure S3). Specifically, in subset A we retrieved 47,659 exonic regions of
9,839 genes with TDU, in subset B 76,562 exonic regions of 12,295 genes, and in sub-
set C 30,719 exonic regions of 7,025 genes (Figure 2A and Figure S2). Remarkably, a
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large fraction of genes detected as expressed were subject to transcript isoform regula-
tion across tissues (Table S1). For example, out of the 18,805 multi-exonic genes that
had an average of sequenced fragments of at least 10 in subset A, 51% (9,672) showed
differential usage in at least one exonic region. Furthermore, the set of genes with
TDU was enriched for protein-coding genes as compared to a background set of genes
matched for expression strength and number of exonic regions (p-value < 2.2 - 10716,
odds-ratio = 3.4, Table S2).

We next investigated the nature of transcript isoform differences between tissues.
For each gene containing exons with TDU, we estimated the fraction of exonic regions
that were subject to TDU and the fraction of affected exonic nucleotides. TDU ef-
fects were localized to a relatively small fraction of exons for most genes (Figure 2B,
Figure 2C and Figure S4). For instance, in subset A the percentage of exonic regions
with TDU was below 25% for 70% (6,929) of the genes. In the same subset, the per-
centage of nucleotides affected by TDU was below 25% for 53% (5,248) of the genes
(Table S3). The rest of the cases, where a larger fraction of the gene length was used in
a tissue-dependent manner, were instances in which very different isoforms were ex-
pressed by different tissues. For example, all 27 exonic regions of the gene Erythrocyte
Membrane Protein Band 4.1 Like 4B (EPB4114B) were detected to be used in a tissue-
dependent manner in subset B of the GTEx data: in tibial nerve and skeletal muscle,
the first 16 exonic regions (counting from 5’ to 3°) had lower usage while the exonic
regions located towards the end of the gene showed increased usage (Figure S5 and
Figure S6). In this case, the observed pattern can be explained by the two annotated
transcript isoforms of the gene: whereas most cell-types in subset B tend to express
the short isoform, tibial nerve and skeletal muscle express the longer isoform more
frequently (Figure 2D).

Our results indicate that differences in transcript isoform regulation across tissues is
a widespread phenomenon across the human genome. It preferentially affects protein-
coding genes. For hundreds of genes, different tissues express very distinct transcript
isoforms at different levels.

Alternative transcriptional initiation and termination sites drive most
transcript isoform differences between tissues.

In the previous section we saw the example of EPB4114B for a transcript isoform
switch that is not driven by alternative splicing, and instead, by the usage of an al-
ternative polyadenylation site (here also referred to as transcription termination site)
(Figure 2D). We asked more globally: among the thousands of instances of tissue-
dependent exon usage, what fraction is driven by alternative splicing and what by al-
ternative transcriptional start or termination sites?

For each exonic region, we searched for evidence of alternative splicing by count-
ing, in each sample, the number of sequenced fragments that supported exon skipping
(as sketched in Figure 1C). We found that only a minor fraction of exonic regions with
tissue-dependent usage (TDU) had appreciable evidence of being spliced out from tran-
scripts (Table S4). For instance, the mean of read counts supporting exon skipping was
larger than 10 in only 30% (9,282) of the exonic regions with TDU in subset C. On
the other hand, 58% (17,815) showed no or only weak evidence of being alternatively
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Figure 2: Tissue-dependent exon usage is widespread in the human genome. Panels
A, B and C show data from subset A of the GTEx data. The same plots using data from
subsets B and C can be found in Figure S2 and Figure S4. (A) Similar to a volcano-
plot, this figure shows statistical significance (p-value on — log; scale) versus effect
size (tissue score) of our tissue-dependence test for each exonic region of the human
genome. The solid red lines show the thresholds used in this study to call an exonic
region tissue-dependent. The p-value threshold 4.28 - 102 corresponds to an adjusted
p-value of 0.1 according to the Benjamini-Hochberg method to control false discovery
rate (FDR) for all p-values shown. (B) Histogram of the fraction of exonic regions
within each gene that are subject to tissue-dependent usage (z-axis). The y-axis shows
the number of genes. (C) Similar to Panel B, but expressed in terms of fraction of
base-pairs within a gene affected by tissue-dependent usage. (D) Exemplary data from
four tissues of individual /3/XE. Shown is RNA-Seq coverage (y-axis) plots along
genomic coordinates (x-axis) of chromosome 9 in the locus of the gene EBP4114B.
The lower panel shows the transcript annotations for the gene EPB4114B. Skin and
thyroid express short isoforms of EPB4114B, while tibial nerve and skeletal muscle
express longer isoforms.

spliced (Figure 3A and Figure S7). We estimated that alternative splicing explains
tissue-dependent transcript differences for at most 36% of the genes (Table S5).

As a second line of evidence, we quantitatively compared the relative exon usage
and spliced-in coefficients (REUCs and RSICs, as defined above). For each exonic
region and each subset of the GTEx data, we fit two analysis-of-variance models, one
for the REUCs and one for the RSICs, using tissues and individuals as categorical


https://doi.org/10.1101/127894
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/127894; this version posted April 17, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

covariates. We determined the coefficient of partial determination (R?) of the tissue
covariate for each fit. A large value of R? in the RSIC fit indicates that the TDU is due
to alternative splicing. Conversly, a large R? in the REUC fit indicates that the TDU is
due to any of alternative splicing, alternative transcription initiation sites or alternative
transcriptional termination sites. For the minority of exonic regions with TDU that
also had strong evidence of alternative splicing, the REUCs and the RSICs were highly
correlated, and their R? statistics were in good agreement, confirming that the TDU
was due to alternative splicing (Figure 3B, Figure 3C and Figure S7). Nevertheless,
for the majority of exonic regions with TDU, the TDU was consistent with alternative
transcription initiation and termination sites.
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Figure 3: Alternative splicing underlies only a minor fraction of exons with TDU,
while the rest are consistent with alternative transcription start or stop sites. The
three panels show data from subset A of the GTEx data. Analogous plots using data
from subsets B and C are shown in Figure S7. (A) The heights of the bars show the
number of exonic regions with TDU, grouped according to the number of reads that
support their splicing out from transcripts. Most exonic regions with TDU have ei-
ther no or weak evidence of being spliced out from transcripts (bar colored in pink
salmon). The bar colors serve also as color legends for Figure 3B and Figure 3C. (B)
Each point represents one of the 47,659 exonic regions that were detected to be used
in a tissue-dependent manner. The z-axis shows the fraction of REUC variance that
is attributed to variance between tissues (R?). Analogously, the y-axis shows the R?
statistic for the RSICs. Exonic regions with strong evidence of being spliced out from
transcripts (purple points) lay along the diagonal. (C) Cumulative distribution func-
tions of the Pearson correlation coefficients between the REUCs and the RSICs are
shown for exonic regions with TDU. The regions are stratified according to the number
of sequenced fragments supporting their splicing out from transcripts. The REUCs and
RISCs are highly correlated for the minor fraction of exons that have strong evidence
of being spliced out from transcripts (purple line).

Analysis of CAGE data confirms prevalent tissue-dependent usage
of alternative transcription start sites.

To further investigate the hypothesis that alternative splicing does not drive most tran-
script isoform diversity across tissues, we analyzed the Cap Analysis of Gene Expres-
sion (CAGE) data from the FANTOM consortium®. These data provide genome-wide
quantitative information of transcriptional start sites (TSS) for many cell-types. For
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each subset of the GTEx data, we generated a subset of FANTOM samples with the
same composition of cell-types (as long as the samples existed and had replicates). For
instance, based on the cell-types from subset A of the GTEx data, we selected a set
of FANTOM samples consisting of caudates, cerebellums, cortexes, hippocampus and
putamens. Then, for each of the three subsets of the FANTOM data, we tested each
gene for changes in the relative usage of alternative TSS across cell-types. At a false
discovery rate of 10%, we found 2,402, 6,763 and 2,778 genes with tissue-dependent
usage of TSS across subsets A, B and C, respectively. Furthermore, the three lists of
genes with differential TSS usage were in very good agreement with the counterpart
lists of genes with TDU from the GTEx subsets (Table S6). When considering the genes
with differential TSS usage across cell-types, 79% (1,904) of subset A, 80% (5,427) of
subset B and 60% (1,657) of subset C also showed transcript isoform regulation in the
corresponding GTEx subsets.

Figure 4 shows three examples of genes with TDU patterns that were explained
by the usage of alternative TSS. In subset A, we found that the gene Growth Arrest
Specific 7 (GAS7) expressed tissue-specific isoforms (Figure S8). From the coverage of
sequenced RNA fragments along the genome, we suspected that transcription initiated
more upstream in cerebellum compared to cerebral cortex. The CAGE data revealed 5
major clusters of TSS for GAS7, of which 2 were strongly used in cerebellum and were
practically absent from cerebral cortex (Figure 4A). The differential usage of these
2 TSS clusters explained the upstream transcription seen in cerebellum that was not
observed in cerebral cortex. Similarly, by exploring the data for the gene Keratin 8
(KRTS) in subset B, we found patterns of TDU that were very prominent in thyroid
tissue compared to subcutaneous adipose tissue (Figure S9). These patterns of TDU
were explained by the usage of a TSS located in the middle of the gene body that
resulted in the expression of shorter transcript isoforms. This internal TSS of KRTS8
was used very frequently in thyroid tissue and was absent in subcutaneous adipose
tissue (Figure 4B). We found the exact same pattern for the gene Nebulette (NEBL) in
subset C of the data. For this gene, the usage of an internal TSS resulted in transcript
isoforms that excluded several 5° exons. This internal TSS was used very frequently in
heart tissue, while it was absent in pancreas tissue (Figure 4C, Figure S10).

Our integrative analysis of two orthogonal sources of data (independent samples,
different technologies) confirms that there is an abundance of alternative TSSs that are
used in a tissue-dependent manner and that result in TDU.

Tissue-dependent splicing of protein-coding exons is rare.

We asked which regions of genes were subject to tissue-dependent exon usage. We
integrated information from the ENSEMBL and APPRIS databases to annotate each
exonic region. Importantly, APPRIS uses information about protein structures, func-
tional data and cross-species conservation to infer which transcript isoforms are likely
to code for functional proteins. APPRIS flags transcript isoforms that are predicted to
code for functional proteins as principal isoforms, while the rest of the transcripts are
marked as non-principal isoforms'”. Using these sources of information, we classified
each exonic region into 5 categories: (1) exonic regions coding for principal isoforms,
(2) exonic regions coding only for non-principal isoforms, (3) 5° untranslated exonic
regions (5° UTR), (4) 3* untranslated exonic regions (3’ UTR), and (5) untranslated ex-
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Figure 4: Integration of RNA-seq and CAGE data. Each panel displays an example
of a gene where the usage of alternative transcription start sites explains the patterns
of TDU. (A) Coverage tracks (y-axes) of RNA-seq and CAGE data for cerebral cortex
and cerebellum are shown along the genomic coordinates (z-axis) of the locus of gene
GAS7, located on chromosome 17. The upper two tracks show RNA-seq data from
individual 712ZZX. The lower two tracks show mean CAGE counts (on log> scale) for
each annotated TSS. Cortex uses two transcription start site clusters (pointed by the
red arrows) that are absent in cerebellum. The differential usage of these two TSS
explains the upstream RNA-seq coverage seen in cortex. (B) Same as in Figure 4A, but
showing data of thyroid and subcutaneous adipose tissue along the genomic coordinates
of the KRT8 locus on chromosome 12. The RNA-seq data corresponds to the individual
11EI6. The internal TSS cluster that is indicated by the red arrow is strongly used in
thyroid tissue, resulting in the expression of short transcript isoforms. (C) Same as
in Figure 4A, but showing data of heart and pancreas along the genomic coordinates of
the NEBL locus on chromosome 10. The RNA-seq data corresponds to the individual
ZF29. In heart, the usage of an internal TSS (indicated by the red arrow) results in the
expression of transcript isoforms that exclude several 5° exons of the gene.

ons belonging to non-coding processed transcripts. Then, for each subset of the GTEx
data, we generated a background set of exons with the same distributions of both mean
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counts and exon widths as the set of exonic regions with TDU.

We found that the proportions among the 5 exon categories were very different
between exonic regions with tissue-dependent usage due to alternative splicing (TDU-
AS), exonic regions with TDU but no evidence of alternative splicing (TDU-NAS) and
the background sets of exons (p-value < 2.2-10716, y2-test, Figure 5A, Figure S11 and
Table S7). Specifically, exonic regions with TDU-AS were depleted among those cod-
ing for principal isoforms and enriched among exonic regions coding for non-principal
isoforms and 3 UTRs. Our analysis also revealed that exons from non-coding pro-
cessed transcripts, despite being weakly expressed, were alternatively spliced very fre-
quently in a tissue-dependent manner (Figure 5, Figure S11 and Figure S12).

We also found that exonic regions with TDU-NAS showed a slight yet significant
enrichment among 5° UTR exons compared to the background (p-value < 1.2 - 1077,
x2-test, Figure 5A and Figure S11). TDU-NAS occurred frequently among 3'UTR
regions compared to the background (p-value < 1.2 - 10~7, x2-test). However, this
enrichment among 3’UTR regions was observed only in subsets B and C of the GTEx
data (Figure S11).

11


https://doi.org/10.1101/127894
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/127894; this version posted April 17, 2017. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

A B
Coding (PI) [ Coding (non-PI) . E051
! ! 3 2,000
;(L)J(-:l—e':sed tran:crLijp;l’;R é 1’0083 ﬁ
[0
(TJ —/
100 A <
Q T %400
S @ 75 - §§208§ \t\\ /—\[/v\
X O =
g 05)-, 50 o 3 \_/
R 251 g
L
= 2 |
d 1 T 1 T 1
P WS u 21055 2.1057 2.1059
0‘3\) 0‘6\) kgaG\"g‘ Genomic coodinates (Mb)
c E018 D £009
g 120
< Emoiﬂ /M g 603
2% 0 g 0 —
N[~ g
80 40
g Mo\ | 5 = i
= 0 = L 0
n (2]
£ £
2 L
o 9 | |
Q T T II T II T 1 T l’ T T T II 1 II T T T
6.6092 6.6095 6.6098 52471 524714 524718
Genomic coodinates (Mb) Genomic coodinates (Mb)

Figure 5: Alternative splicing is infrequent among coding exons. (A) The percent-
age of exonic regions (y-axis) is shown for three subsets of exons: (1) exonic regions
with TDU due to alternative splicing [DEU (AS)], (2) exonic regions with TDU with-
out evidence of alternative splicing [DEU (NAS)] and (3) a background set of exons
matched for expression and exon width. Each color represents a different category of
exons according to transcript biotypes: exons coding for principal transcript isoforms
[Coding (PI)], exons coding for non-principal transcript isoforms [Coding (non-PI)],
5" UTRs, 3’ UTRs and exons from non-coding processed transcripts [Processed tran-
scripts]. (B) Sashimi plot representation of the RNA-seq data from frontal cortex and
cerebellum of individual WL46. The lower data track shows the transcript isoforms of
the gene PKD]I. The transcripts are colored according to their biotype (the color leg-
end is the same as in Figure 5A). The highlighted exon (E051) belongs to a non-coding
transcript and is differentially spliced across tissues. (C) Same as in Figure 5B, but
showing data from tibial artery and whole blood of the individual ZTPG. Transcripts
from the gene MAN2B2 along chromosome 4 are shown. The highlighted exon (E08)
belongs to a non-coding transcript and is differentially spliced across tissues. (D) Same
as in Figure 5B, but showing data from esophagus tissue (muscularis) and heart tissue
(left ventricle) of the individual /77YS. The lower track shows the transcripts anno-
tated for gene NISCH along chromosome 4. The highlighted exon (E009) belongs to a
non-coding transcript and is differentially spliced across tissues.
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DISCUSSION

Our analysis highlights two aspects of transcript isoform diversity that have been un-
derappreciated. First, alternative splicing is not the main driver of transcript isoform
diversity across tissues. Instead, most transcript isoform differences are consistent with
the alternative usage of transcription start and polyadenylation sites. Second, most
tissue-dependent splicing is unlikely to have consequences for protein products, de-
spite producing multiple isoforms at the transcriptome level.

Two previous studies reported similar observations about the contribution of al-
ternative splicing to the diversity of transcript isoforms>**3. These studies, however,
considered a very limited number of samples and did not study differences across cell-
types. Here, we analyzed 798 GTEx transcriptomes covering 23 different cell-types.
These data, together with the analytical approach illustrated in Figure 1A, enabled us to
underline alternative transcription initiation and polyadenylation sites as the principal
sources of transcript isoform diversity across cell-types. It has been suggested that gene
expression is the main driver of cell-type specificity, with splicing playing a comple-
mentary role®. Our analysis suggest that alternative transcription and polyadenylation
sites are also be essential to define phenotypic differences across tissues.

Transcriptome-wide studies have shown that, in a given cell-type, most genes ex-
press one major isoform at high levels, while the rest of the isoforms (i.e. the minor
isoforms) are expressed at weaker levels®’’. Alternative splicing events were not de-
tected with high confidence in a reanalysis of large-scale proteomic experiments .
Importantly, the protein isoforms detected in large-scale proteomic experiments are
consistent with both the major RNA isoforms and the principal isoforms from the AP-
PRIS database'8. Extending and broadening these observations, our results suggest
that most tissue-dependent splicing does not have consequences at the proteome level.
We support this thesis with three main sources of evidence:

e First, tissue-dependent splicing is enriched among untranslated exons, particu-

larly among exons from non-coding transcript isoforms.

e Second, tissue-specific splicing is depleted among exons coding for principal
protein isoforms.

o Third, the exon categories where tissue-dependent splicing is more common are
weakly expressed. Thus, the patterns of tissue-specific splicing are explained by
tissue-specific expression of minor transcript isoforms.

The remaining open question is, if tissue-dependent splicing has little effect at the pro-
teome level, what are its functions, if any, at the transcriptome level? A parsimonious
answer may involve post-transcriptional regulation. Recent CRISPR-mediated inter-
ference screens identified 499 long non-coding RNAs that were essential for cellular
growth, of which 89% showed growth-modifying phenotypes that were exclusive to
one cell-type **. Similar screens at the transcript isoform level would be helpful to eval-
uate the essentiality of the thousands of non-coding and non-translated tissue-specific
isoforms derived from protein-coding loci.

Alternative usage of promoters, alternative splicing of exons and alternative usage
of polyadenylation sites are highly interleaved *°. In the light of our results, it is con-
ceivable that such coordination of decisions on the usage of transcription start sites,
alternative exons and transcriptional termination is often cell-type specific. The un-
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derstanding of such coordination will be facilitated by the development of sequencing
technologies that provide quantitative measurements of full-length transcripts *>#42,
Furthermore, while alternative splicing may have limited effects for protein products,
future research is needed to uncover to what extent tissue-dependent usage of alterna-
tive start and termination sites results in truncated versions of proteins.

Altogether, our results provide a step forward to the understanding of the human
genome and its gene products, with wide-ranging implications for structural biology,
protein interaction networks and drug design.
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Online Methods

Data processing and sample selection

We downloaded and decrypted the GTEx samples using the Short Read Archive Toolkit
software. We used genomic and annotation files of the human reference genome ver-
sion GRCh38 as provided by the release number 68 of ENSEMBL?®. To avoid any
mapping bias, we standardized the read length of all samples. Since most samples con-
sisted of sequenced fragments of 76 bp, we trimmed the sequenced fragments to 76
bp for samples with longer read lengths and excluded the samples with read lengths
below 76 bp. Next, we mapped the resulting sequencing fragments to the human ref-
erence genome using STAR v2.4.2a>’. We provided the aligner with annotated exon-
exon junctions and followed the recommended ““2-pass alignment” pipeline to optimize
mapping accuracy. We excluded the samples with less than 1,000,000 sequenced frag-
ments as well as those samples where less that 60% of the sequenced fragments could
be assigned to a unique position in the reference genome. Since the GTEx data did not
contain the samples for all tissues of each individual, we defined three large subsets
of samples that would enable us to analyze each subset as a fully-crossed design (con-
taining all tissue-individual combinations) while at the same time keeping as many
different individuals and tissues as possible. A description of these subsets, which
comprised a total of 798 samples, can be found in the main text.

Based on the transcript isoform annotations, we defined reduced models with non-
overlapping exonic regions using the HTSeq* python scripts from the DEXSeq pack-
age. Importantly, reduced gene models enabled us to unambiguously assign sequenced
fragments to exonic regions. For each of the 798 samples, we tabulated the sequenced
fragments to each exonic region. Only reads mapping uniquely to the reference genome
were considered for further analysis.

Relative exon usage coefficients

We model the counts using generalized models of the Negative Binomial family for
each subset of the GTEx data”®?’. We denote k;;; as the number of sequenced frag-
ments mapping to exonic region ¢ in sample j. When estimating REUCs, k; ;o denotes
the sum of sequenced fragments mapping to exonic regions of the same gene as exonic
region ¢ but excluding exonic region ¢ (Figure 1B). k;;o and k;;; are realizations of a
random variable K;;; that is assumed to follow a Negative Binomial distribution,

K;;; ~ NB(mean = s;u;,;; dispersion = o), (1)

where s; is a scaling factor that accounts for between-sample differences in sequencing
depth and «; is the dispersion parameter that describes the spread of the count data
distribution. s;; is estimated using the DESeq method** and «;; is estimated as in the
DEXSeq method”®. The mean 4;j; is predicted by the model

log piji = B + 187 + 15 B + I8R5 o) @)

where [ = 1 when referring to the exonic region ¢ and [ = 0 when referring to the
counts from the rest of the exons of the same gene. The coefficients of the model are
explained as follows:
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I} js estimates overall gene expression effects on sample j.

e Since 37 is only included when [ = 1, it estimates the mean across samples of
the logarithmic ratio between the counts from exon 7 with respect to the counts
of the rest of the exons of the same gene (i.e. K;j; / Kj0). Therefore, this
coefficient is a measure of the average exon usage across all samples.

o (3 captures sex-dependent differences in exon usage. In the GLM model ma-
trix, z;; takes the value of —1/2 if sample j is from a male individual and 1/2
if sample j is from a female individual. Thus, this coefficient estimates the log-
arithmic fold change of the usage of exonic region ¢ for each sex with respect to
the average exon usage.

e The Relative Exon Usage Coefficient (REUC), Bfgl(f t) is the interaction co-
efficient between individual u ;) and tissue ¢(;) from which sample j was taken.
For exonic region i, the coefficient 517 C ;  thus estimates the logarithmic fold

change in exon usage for each individual-tissue combination with respect to the
average exon usage.

The REUCs are subjected to a Bayesian shrinkage procedure in order to reduce the

mean-variance dependencies?”*.

Relative spliced-in coefficients

To estimate Relative Spliced-In Coefficients (RSICs) we use Equation 1 and Equation 2
to model a modified read counting scheme (Figure 1C). k;;; remains the same as for
the REUC: fit but k;jo (i.e. [ = 0) now denotes the number of sequenced fragments
supporting the splicing out from transcripts of exonic region ¢ (Figure 1C). For exonic
region i, the coefficient 3 from Equation 2 now measures the mean across samples
of the logarithmic ratio between the number of reads supporting the splice in of exonic
region ¢ and the number of reads supporting the splice out of exonic region i (i.e.
the average spliced-in (SI) coefficient). The coefficient 5;* for exonic region ¢ now
measures the change of SI between each sex with respect to the average SI. The RSIC
for exon i, Fif) 1(j)» measures the logarithmic fold change in the exon’s S! for each
tissue-individual combination with respect to the average SI. As for the REUCs, the
RSICs are also subjected to the Bayesian shrinkage procedure to eliminate the mean-
variance trend >’

Changes in exon usage driven by alternative splicing are reflected in both REUCs
and RSICs. Changes in exon usage due to alternative initiation or termination sites of
transcription, which do not result in exon-exon junction reads, are only reflected by
RSICs.

Estimation of tissue-dependance score

For each exonic region on each subset of the data, we estimated a score based on
the REUCs to measure to what extent the usage of each exonic region was tissue-
dependent. First, the REUCs of a given exonic region ¢ were expressed as the number
of standard deviations away from the median of the exon’s REUCs,

REUC : REUC
iut _M%d%an( iut )

Ziut =

. 3
- (BT
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Then, the tissue-dependence score for exonic region ¢ was defined by

1 m
= Ziu } )
m
u=1
with m being the number of individuals on the data subset.

Analysis of variance of REUCs and RSICs

For each exonic region on each subset of the data, we fitted an analysis of variance

T, = max{
t

model,
REUC 0 Individual Tissue
it = Bi + Biu + Bt + €ut, (%)
using ordinary least squares regression to minimize the residual sum of squares (RSS),
_ Z 2 _ Z REUC _ AREUC)2
RSS; = Ciut = ( ut  — Miut ) ’ (6)
u,t u,t

where BREUC are the REUC values predicted by the model. In order to estimate the
coefficient of partial determination (R?) for the tissue predictor (i.e. the proportion
of total variance that can be attributed to variance across tissues), we fitted a reduced

model lacking the S5 term,

EE‘,UC _ 5? + 5%2d1v1dual + €iut. 7
The R? for a given exon i is then calculated by,

_ RSS;(full)
RSS; (reduced)’

where RSS; (full) is the RSS from the full model (i.e. Equation 5) and RSS; (reduced)

is the RSS from the reduced model (i.e. Equation 7). The same procedure was followed

to estimate 122 on the RSICs but using SRC as the response variable in Equation 5 and
in Equation 7.

R?=1

(2

®)

Genomic analysis

To test for over-representation of features among the genes with TDU, we used the R
CRAN package Matchlt* to generate background sets of genes with the same distri-
bution of expression strength and number of exonic regions as the genes with TDU.
Genes were classified according to ENSEMBL annotations and we used a 2-test for
differences between genes with TDU and the background set of genes. Gene biotypes
were retrieved from ENSEMBL using the Bioconductor*’ package biomaRt*®. For en-
richment of features among exons with tissue-dependent usage (TDU), we also used
Matchlt to generate background sets of exons with the same distribution of expression
strength and exon widths. We tested for differences between exons with TDU and the
background set of exons using a x2-test.

Operations on genomic ranges were done using the Bioconductor package Genom-
icRanges® . Data visualizations and graphics were generated using the Bioconductor
packages ggplor2°° and Gviz>'.
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Reproducibility

The Bioconductor package HumanTissuesDEU contains the R data objects and code
needed to reproduce the analysis and figures presented in this manuscript.
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