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Summary

Single-cell  technologies  are  offering  unprecedented  insight  into  complex  biology,  revealing  the

behavior of rare cell populations that are typically masked in bulk population analyses. The application

of these methodologies to cell fate reprogramming holds particular promise as the manipulation of cell

identity is  typically inefficient,  generating heterogeneous cell  populations.  One current  limitation of

single-cell approaches is that lineage relationships are lost as a result of cell processing, restricting

interpretations of the data collected. Here, we present a single-cell resolution lineage-tracing approach

based on the combinatorial indexing of cells, ‘CellTagging’. Application of this method, in concert with

high-throughput  single-cell  RNA-sequencing,  reveals  the  transcriptional  dynamics  of  direct

reprogramming from fibroblasts to induced endoderm progenitors. These analyses demonstrate that

while many cells initiate reprogramming, complete silencing of fibroblast identity and transition to a

progenitor-like  state  represents  a  rare  event.  Clonal  analyses  uncover  a  remarkable  degree  of

heterogeneity  arising  from  individual  cells.  Overall,  very  few  cells  fully  reprogram  to  generate

expanded populations with a low degree of clonal diversity. Extended culture of these engineered cells

reveals an instability of the reprogrammed state and reversion to a fibroblast-like phenotype. Together,

these results demonstrate the utility of our lineage-tracing approach to reveal dynamics of lineage

reprogramming, and will be of broad utility in many cell biological applications. 

Introduction

Advances  over  the  past  half-century  such  as  nuclear  transfer1 and  factor-mediated

reprogramming2 have  revealed  the  remarkable  plasticity  of  cell  identity.  Cells  reprogrammed  to

pluripotency  can  be  directed  to  differentiate  toward  desired  target  populations  by  recapitulating

embryonic development  in vitro,  although this approach is inefficient and produces heterogeneous
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populations  of  developmentally  immature  cells3,4.  ‘Direct  lineage  reprogramming’  aims  to  directly

transform cell identity between fully differentiated somatic states via the forced expression of select

transcription factors (TFs). These direct strategies aim to bypass progenitor or pluripotent states3,5, a

shortcut intended to maximize the speed and efficiency of cell fate conversion. Using this approach,

fibroblasts have been reprogrammed toward many clinically valuable cell types6–10. It is clear, though,

that many of the resulting cells do not fully recapitulate target cell identity and function11,12. Frequently,

remnants of the starting cell fate persist13–16, and the cells generated appear to be developmentally

immature9,10,17.

Unlocking  the  mechanisms  of  reprogramming  will  lead  to  improved  cell  fate  engineering

strategies.  Efforts  to  manipulate  cell  identity  have  typically  been  challenging,  though,  due  to  the

considerable inefficiency of current reprogramming strategies. The generation of pluripotent cells has

been extensively studied and has been shown to involve two distinct stages: a long stochastic phase,

and a  shorter  deterministic  phase18.  The stochastic  nature  of  reprogramming initiation  is  likely  to

account for the inefficiencies observed in most cell fate conversion strategies; while many cells can

initiate reprogramming, relatively few complete the process19. As a result, a remarkably heterogeneous

population of cells emerge during reprogramming. Although studies on these populations in bulk have

offered  valuable  mechanistic  insight,  it  has  remained  a  challenge  to  isolate  rare  successfully

reprogrammed cells from the background noise of partially established states.  

 Single-cell analyses promise the resolution required to study rare events during reprogramming

to pluripotency, as well as direct fate conversion between fully differentiated states18,20,21. The efficiency

of  these  direct  lineage  reprogramming  protocols  typically  ranges  between  1-20%2,22.  Recent

technological advances to enable high-throughput single-cell RNA-sequencing (scRNA-seq), such as

Drop-seq23 and  InDrops24,  are  valuable  to  capture  rare  cells  undergoing  reprogramming.  This  is

particularly advantageous for inefficient engineering protocols where as few as 1 in 100 cells represent

the target species. The utility of scRNA-seq in this context has already been demonstrated: during

direct  reprogramming from fibroblasts  to  induced neurons,  transition  through a  ‘partial’  progenitor

state, that does not express classical markers was revealed20. Although these single-cell resolution

analyses  offer  unprecedented  insight  into  biological  processes,  there  are  clear  limitations  to  the

application  of  this  technology.  Collection  of  single-cell  transcriptomes  for  scRNA-seq  generally

requires tissue disruption, resulting in the loss of spatial, temporal, and lineage relationships that are

critical for thorough interpretations to be made. Several elegant computational approaches have been

developed  in  response  to  these  limitations;  Seurat  was  been  built,  in  part,  to  enable  spatial

reconstruction  from scRNA-seq data25.  In  terms of  temporal  reordering to represent  differentiation
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trajectories, Monocle has emerged as an extremely valuable tool, particularly for analysis of  in vitro

cell reprogramming and differentiation21,26. 

Presently,  many  aspects  of  cellular  behavior  observed  and  assessed  via  these  single-cell

analytical  approaches  are  inferred,  particularly  with  respect  to  the  order  of  events  during

reprogramming. This could be especially problematic in protocols involving the generation of many

potential branch points. Thus, preserving information on lineage relationships between cells is critical

in order to precisely map the trajectories leading to successful reprogramming outcomes. Here, we

present a methodology, ‘CellTagging’, to enable combinatorial indexing of cells and readout of lineage

information at the transcript level, concomitant with single-cell transcriptome analysis. This is a simple

lentiviral-based  tool  that  can  be  easily  applied  to  the  study  of  many  cellular  reprogramming  or

differentiation strategies. Here, we apply this method to the high-throughput single-cell  analysis of

fibroblast to induced endoderm progenitor (iEP) conversion, a valuable self-renewing engineered cell

type that has the potential to functionally engraft liver10 and intestine13. iEP generation represents a

prototypical direct lineage reprogramming methodology that reflects conversion via a progenitor-like

state11,13,27,  an  important  emerging theme in  direct  reprogramming12,20.  Via  this  approach we have

begun to map the transcriptional landscape of this reprogramming strategy, revealing potential roles

for Igf2 and Notch signaling in the process. We find that while reprogramming is initiated in many cells,

few  reach  a  fully-reprogrammed  state.  On  the  clonal  level  there  is  a  tremendous  amount  of

heterogeneity,  and successful  reprogramming is  not  accounted for  by distinct  ‘elite’ cells  that  are

predisposed  to  successfully  reprogram.  We  also  find  that  the  emerging  population  of  iEPs  is

generated from a smaller founder population, of which a dominant clone rapidly expands, presenting

implications for the properties of the engineered cells. Finally, far from representing a homogenous

collection of cells following this clonal expansion period, we present evidence that the population is in

dynamic flux between several distinct transcription states. 

Results

Single-cell  analysis of  direct lineage reprogramming from fibroblasts to induced endoderm

progenitors

We previously developed a computational platform, ‘CellNet’,  to evaluate cell identity via gene

regulatory network reconstruction14. Via this approach, we found that many cell engineering protocols

produced partially converted and developmentally immature cells13,14. We applied CellNet analysis to a

direct  lineage  reprogramming  protocol  that  originally  aimed  to  convert  fibroblasts  directly  to

hepatocytes via forced expression of the endoderm transcription factors, Foxa1/2/3, and Hnf4a10 (Fig.

1A). Analysis of the resultant cells revealed a  failure to silence the fibroblast expression program,
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weak  establishment  of  hepatic  identity,  and  the  unexpected  emergence  of  intestinal  identity13.

Ultimately,  these  cells  were  able  to  functionally  engraft  a  mouse  model  of  induced  colitis,  fully

differentiating to mature intestine13. Given that these cells have also been shown to possess hepatic

potential10, and self-renew in vitro10,13, we re-designated these cells as ‘induced endoderm progenitors’

(iEPs)13.

In this study, we directly reprogrammed mouse embryonic fibroblasts to iEPs via expression of

Foxa1 and  Hnf4a, over two independent timecourses. Two weeks after initiation of reprogramming,

iEPs emerge as phenotypically distinct colonies of small cells (Fig. 1A). Every week, over a four week

period, we harvested cells for high-throughput scRNA-seq via Drop-seq28. Drop-seq is a cost-effective

scRNA-seq  platform,  employing  microparticle  beads  coated  with  poly-thymidine-tagged

oligonucleotides. Each oligonucleotide possesses a 12-base pair (bp) cell barcode, shared across all

sequences on the same bead, and an 8-bp unique molecular identifier (UMI) that labels each captured

mRNA molecule. Using a microfluidic device, beads in lysis buffer are co-encapsulated with cells.

Upon  cell  lysis,  polyadenylated  mRNA  transcripts  are  hybridized  to  the  poly-thymidine

oligonucleotides. This labels all mRNA molecules in a droplet with a cellular barcode and an individual

UMI  for  downstream computational  analysis.  Following  recovery,  cDNA amplification  generates  a

library of 3’ transcript ends tagged with a barcode denoting cell-of-origin. We performed a species-

mixing experiment to confirm single-cell resolution capture in our hands (Fig. S1A).

At  each  stage  of  reprogramming,  including  the  original  fibroblast  population,  we  harvested

150,000  cells  for  Drop-seq,  aiming  to  capture  5000  single-cell  transcriptomes.  Following  library

preparation  and  sequencing,  according to28,  processed reads  were mapped to  the mm10 mouse

genome assembly using STAR and digital gene expression matrices were generated using the Drop-

seq  tools  pipeline  (http://mccarrolllab.com/dropseq/).  Cells  expressing  200  or  more  genes  were

selected for inclusion in the matrices. Over both timecourse experiments, this resulted in a total of

18,737  cells  with  mean  counts  of  1,517  genes  and  4,811  UMIs/transcripts  per  cell.  Averaged

expression levels of genes were highly correlated between the two biological replicates (Fig. 1B). We

subsequently filtered these matrices to include only those cells with a UMI count of at least 1000,

discarding cells in which the proportion of the UMI count attributable to mitochondrial genes was less

than or equal to 10%. This yielded a total of 11,346 cells with mean counts of 1,810 genes and 6,163

UMIs/transcripts per cell for downstream analysis (Fig. 1B).

In order to broadly assess this direct reprogramming protocol, we used a combination of the R

packages  Scater29 and  Seurat25 to  calculate  cell  cycle  phase,  normalize  gene  expression,  and

visualize  clusters  of  transcriptionally  similar  cells  (Fig.S1B). Unsupervised  identification  of  highly

variable gene expression was employed for  dimension reduction via principal  component  analysis
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(PCA), where the resulting PCs were used as input to cluster the cells, using a graph-based approach.

t-Distributed  Stochastic  Neighbor  Embedding (t-SNE)25 was  used  to  separate  individual  cells  in

multidimensional  space  and  visualize  them  onto  a  2D-map.  t-SNE  resolves  the  reprogramming

process into 8-10 clusters of transcriptionally distinct cells (Fig. 1C). By projecting expression of the

fibroblast-related gene, Col1a2, onto these plots, we were able to locate unconverted cells. Likewise,

visualization of a gene coupled with iEP emergence,  Apoa1, assisted in the identification of clusters

harboring  reprogramming  cells  (Fig.  1D).  Surprisingly,  considering  the  low  efficiency  of

reprogramming, a high proportion of cells (~30%) express Apoa1. These transcriptional changes were

consistent across the two biological replicates.

Benchmarking  single-cell  analyses  to  reveal  transcriptional  changes  over  the  course  of

reprogramming

Single-cell analyses of biological phenomena that involve gradual transcriptional changes over

time are complicated by the lack of means to precisely identify cell types and transitions. In addition,

we face challenges to identify the transcriptional changes that occur due to reprogramming rather than

the aging of  cells  in  culture.  Furthermore,  capture  of  cells  at  different  experimental  intervals  can

introduce technical variation, potentially masking true biological variation.  In an effort  to overcome

these limitations, we developed a multiplexing approach, spiking-in a defined population of cells to act

as an internal  control  in  each experiment.  In  this  instance,  we employed unconverted fibroblasts

cultured in parallel to reprogramming cells, thus acting as an age-matched ‘benchmark’. To label these

cells with an index to permit their subsequent identification, we transduce benchmark fibroblasts with

lentivirus carrying GFP and a SV40 polyadenylation signal sequence. Contained within the GFP UTR

is a defined 8nt  index sequence.  This  design results in  the generation of  abundant,  indexed and

polyadenylated  transcripts  that  are  captured as  part  of  the  standard Drop-seq library  preparation

(Fig.2A). In order to maximize detection of these index sequences, we have developed a PCR method

to amplify the GFP UTR harboring the index. We spike this amplicon into the cDNA library. Following

sequencing,  a large number of  GFP-index reads are detected,  comparable to the most  abundant

cellular transcripts (Fig.S2A). 

We  implemented  this  approach  by  spiking  benchmark  fibroblasts  into  the  reprogramming

population  at  each  experimental  timepoint.  A demultiplexing  step  was  added  to  the  sequencing

analysis in order to identify the benchmark fibroblasts, representing 10-20% of the total population.

The  locations  of  these  cells  were  then  mapped  onto  t-SNE plots  (Fig.2B;S2B).  The  majority  of

benchmark fibroblasts  are  located within  two distinct  clusters,  enabling  designation  of  these sub-

populations as unconverted fibroblasts (Fig.2B: Right panel). Immediately adjacent to the largest of
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these clusters, lies a smaller group of cells, devoid of benchmarking fibroblasts, suggesting that cells

within this cluster are in the first phases of reprogramming. Thus, we designated this group an ‘early-

transition’  cluster  (Fig.2B).  Differential  gene  expression  analysis  reveals  markers  defining  this

transcriptional  state,  including upregulation  of  Insulin-Like  Growth Factor  2  (Igf2)  and Insulin-Like

Growth  Factor  Binding  Protein  2  (Igfbp2)  expression  (Fig.2C).  Some  of  the  first  transcriptional

changes are seen within this transition cluster, although fibroblast-associated gene silencing is not yet

observed at this stage (Fig.1D). See Table 1 for significant differential gene expression defining each

cluster.

Silencing of  fibroblast  gene expression is  first  observed in  a large cluster  of  cells  (Fig1C,

cluster 1: timecourse 1, cluster 0: timecourse 2), accompanied by the initiation of genes expressed in

iEP populations10,13. We named this group the ‘transition’ cluster (Fig.2B;C). Notably, Retinol Binding

Protein 1 (Rbp1) marks cells within this transition state. Rbp1, plays a role in the transport of vitamin

A, a molecule that has recently been shown to play a role in the erasure of epigenetic memory during

reprogramming  to  pluripotency30.  This  primary  group  of  clusters  concludes  with  putative

‘reprogrammed’ cells, expressing the highest levels of iEP-associated genes. These cells also express

high  levels  of  Hes6,  a  TF  component  of  the  Notch  signaling  pathway31 (Fig.2C;S2C).  In  this

reprogrammed cluster, Albumin (Alb) expressing-cells are rare (data not shown), supporting earlier

reports of weak hepatic identity in these cells13. Other smaller clusters are defined as dying, cycling,

and cells undergoing DNA repair, based on GO annotations (Fig.2B). 

Altogether,  these  analyses  help  position  single-cells  within  discrete  phases  of  the

reprogramming process. A high proportion (~30%) of cells appear to initiate reprogramming, although

previous colony formation assays estimate that  only 1-2% of cells become fully reprogrammed to

iEPs10,13.  This  discrepancy indicates that  many cells  are partially  reprogrammed,  a state that  has

previously  been described during reprogramming to pluripotency2,18.  These partially reprogrammed

cells may be lost via apoptosis before they reach a fully reprogrammed state. This notion is supported

by previous studies demonstrating cell death as a factor that reduces the efficiency of reprogramming

to pluripotency32. To explore these possibilities, we require a more accurate method to differentiate

between fully- and partially-reprogrammed cells within this larger population of single cells. 

Scoring  cell  identity  based  on  bulk  expression  distinguishes  between  partially-  and  fully-

reprogrammed cells

From the above differential expression analyses, we were unable to identify gene expression

that  exclusively  marks  the  putative  reprogrammed  cell  cluster.  To  resolve  this,  we  adapted  an

approach that was previously used to score cell identity during direct reprogramming from fibroblasts
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to induced neurons20. In this method, quadratic programming is employed to deconstruct each single-

cell transcriptome and represent its identity as a fraction of the starting and target cell types. We have

adapted this approach, using the KeyGenes33 platform to curate a list of genes defining fibroblast and

iEP cell identity, based on the original microarray profiling from Sekiya and Suzuki10.  Fig.3A shows

fibroblast  and  iEP fractional  identities  for  all  cells  in  timecourse  1,  ordered  according  to  loss  of

fibroblast  identity,  with  concomitant  establishment  of  iEP  identity.  The  majority  of  cells  retain

considerable fibroblast identity, defined as a fractional fibroblast score of >0.8. Around 2% of cells are

classified as fully reprogrammed, receiving a fractional iEP score of >0.8, whereas 10% of cells are

within a transition between these two states. This is also reflected in the second timecourse (Fig.S3A).

This rarity of fully reprogrammed cells is in agreement with earlier efforts to measure efficiency of this

reprogramming protocol via colony formation assays10,13. To validate the utility of this approach, we

used  the  Monocle2  package26 to  reconstruct  direct  reprogramming  in  pseudotime.  Monocle  uses

dimension  reduction  to  represent  each  single-cell  in  2D  space  and  effectively  ‘joins-the-dots’  to

construct a differentiation trajectory, a ‘pseudotemporal’ ordering of cells based on the gradual re-

wiring  of  their  transcriptomes.  Projection  of  fractional  iEP  identity  onto  this  trajectory  shows

accordance  between these  two computational  approaches  to  assess the reprogramming  process

(Fig.3A;S3A, right panels). Moreover, visualization of fractional fibroblast and iEP scores onto t-SNE

plots indeed confirms that the fully reprogrammed cells are harbored into our predicted reprogrammed

cell cluster, with diminished fractional fibroblast identity scores appearing in what we had defined as

the transition cluster (Fig.3B;S3B). We used this approach to more accurately detect iEP emergence,

and found that fully-reprogrammed cells emerge by 2-weeks post-initiation of reprogramming. In the

first  timecourse,  the  number  of  iEPs  peak  at  week  3,  and  week  four  in  the  second  timecourse

(Fig.3C;S3C). Using Apoa1 expression as a marker of reprogramming initiation, we overlayed these

expression values onto iEP fractional identity scores (Fig.3D). This revealed that many cells (~30%)

appear to initiate reprogramming, whereas projection of fibroblast-specific Col1a2 expression indicates

that fibroblast gene expression fails to be silenced in many of these cells (Fig.S3D). We next wanted

to explore these distinct reprogramming trajectories, to examine the origins of reprogrammed cells,

and the eventual fate of partially reprogrammed cells. This is challenging given the asynchronicity of

reprogramming, leading to a great deal of heterogeneity at each experimental timepoint. Thus, we

aimed to reduce the complexity of these analyses by tracking individual clones of cells undergoing

reprogramming. 

CellTagging:  a  combinatorial  indexing  method  to  track  clonal  dynamics  of  direct

reprogramming
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In  current  single-cell  transcriptome analyses,  information  on lineage  relationships  between

cells is lost. This knowledge is essential for tracing the fate of partially- and fully-reprogrammed cells.

Several  elegant  lineage  tracing  solutions  such  as  the  Sleeping  Beauty  transposase34 and  a

CRISPR/Cas9 self-evolving barcode35 exist  but  are not  presently  compatible with scRNA-seq.  We

aimed to simultaneously read-out the single-cell transcriptome along with lineage information revealing

the reprogramming history for each cell. To this end, we have developed a lineage-tracing approach to

reveal clonal ancestry in parallel with cell identity. Briefly, each individual cell in the original fibroblast

population is labeled with a unique combination of genetic DNA indexes, ‘CellTags’, introduced via

lentiviral  transduction (Fig.4A).  We based this methodology on our approach to index benchmark

fibroblasts, modifying the approach to engineer random 8nt sequences into the 3’UTR in place of the

defined index sequence. We generated a complex library where each lentivirus could carry one of

64,000 unique CellTags. We transduced fibroblasts with this library at a multiplicity of infection ~10,

resulting  in  each  fibroblast  being  labeled  with  a  unique  combination  of  ~10  CellTags  (Fig.S4A).

Reprogramming  to  iEPs  was  initiated  24hr  post-CellTagging.  We  again  employed  our  PCR

amplification method to maximize sequencing coverage of  CellTags,  ensuring reliable detection in

parallel with scRNA-seq readout (Fig.S2A).

Clonally-related cells were identified via overlap of their combinatorial CellTag signatures. To

recover these sequences, reads were extracted using the CellTag "motif" (GGTNNNNNNNNGAATTC).

These reads were collapsed based on UMIs to generate a matrix  of  CellTag UMIs for  each cell.

Weighted  Jaccard  Similarity  analysis  was  performed on  data  normalized  for  the  total  number  of

CellTags per cell,  using the R package,  Proxy.  We opted to employ weighted analysis,  based on

observations that abundant CellTag expression is robust and stable between clones over the course of

culture (Fig.S4A). This also places less emphasis on the less abundant CellTags which are more likely

to  arise  due  to  noise,  avoiding  the  need  for  any  filtering  based  on  expression  levels.  Lentiviral

silencing  has  not  presented  an  issue  with  this  approach,  where  we  can  reliably  detect  CellTag

expression to at least 11-weeks post labeling. Clonal relationships were visualized via a correlation

matrix (Fig.4A) and clones were identified via hierarchical clustering as a group of 5 or more highly-

related cells, based on CellTag overlap. 

CellTagging reveals extensive heterogeneity within each clone of reprogramming cells

iEPs self-renew  in  vitro,  and can be passaged long-term10,13.  Figure 4B demonstrates the

emergence of clones over time, where over the first reprogramming timecourse we have detected 48

major cell clones. We selected these 48 clones and present them as a dendrogram, demonstrating

that several clones have undergone significant expansion (Fig.4C).  Of the benchmarked fibroblast
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population, which was split from the CellTagged population prior to reprogramming, only 2 clones were

identified. In contrast, when we enriched for cells classifying as fully-reprogrammed iEPs (fractional

iEP identity > 0.8, we could discern many clones, demonstrating their expansion as a result of their

reprogramming (Fig.S4B). We were able to track the evolving identity of many clones over several

timepoints, revealing the dynamics of reprogramming from cells descending from the same original

fibroblast. Mapping these clones onto t-SNE shows that cells sharing clonal identity demonstrate a

remarkable degree of heterogeneity in terms of reprogramming outcome (Fig.4E). In most instances,

reprogramming cells derived from the same individual cell can occupy many different transcriptional

states (Fig.S4C), suggesting that the same reprogrammed cell can adopt many different outcomes. By

following individual  clones,  we were able  to classify  several  broad reprogramming behaviors.  For

example, we see several instances where many descendants are located within early-transition and

transition phases at timepoint 3, with some cells entering a fully-reprogrammed state (Fig.4E; S4C).

By timepoint 4, though, many of these reprogrammed cells are lost with a concomitant gain in the

‘death’  cluster,  suggesting  that  cells  reprogram  and  then  die.  This  could  be  described  as  a

reprogramming ‘branchpoint’ toward a literal dead end. Alternatively, cells in the transition phase may

begin to die and do not fully reprogram, and that the loss of fully reprogrammed cells arises due to

reversion of these cells into the transition zone. This possibility is supported by the observation, in

some instances, that the number of descendants in the transition zone increases (Fig.S4C: clone B).

This could also be accounted for by relative expansion of these transition cells. Modified timing of

CellTag  delivery  will  help  resolve  these  possibilities.  Overall,  this  analysis  demonstrates  that

reprogramming cells derived from the same initial  cells,  within a short  timeframe can adopt many

distinct transcriptional states. In agreement with previous reports, this apparent stochasticity would

account for low reprogramming efficiency. In terms of overall efficiency, half of cells classified as iEPs

are located within the major clones in the first timecourse. In the second timecourse, this is much more

pronounced with 50% of all iEPs derived from the same single cell (Fig.5A). This suggests that many

of the iEPs that were counted in previous colony formation assays (seeded one week after initiation of

reprogramming)  were derived  from the same original  cells,  and  therefore  the actual  efficiency  of

fibroblast to iEP reprogramming is much lower than the 1-2% originally reported10,13.

Fully-reprogrammed cells demonstrate long-term instability

At  four  weeks  following  initiation  of  reprogramming,  we  observe  large  clones  of  cells

dominating the iEP populations (Fig.4B;5A). In the second timecourse we cultured these cells until

week 11 and performed Drop-seq, followed by single-cell and clonal analysis. At week 4, cells derived

from a single clone account for over 50% of the iEP population. Following passage for a further 5
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weeks, over 90% of cells were derived from this one clone, originally stemming from an individual

fibroblast (Fig.5A). Considering the self-renewal properties of this progenitor-like state, we expected

most of these cells to classify as iEPs. Surprisingly, only a small fraction of the week 11 expanded iEP

cells  scored as iEPs  (Fig.5B;S3C).  Visual inspection of  these expanded cells also revealed clear

phenotypic  heterogeneity within this population (Fig.5B).  Together,  these results suggest  that  fully

reprogrammed iEPs may represent a transient state that is lost over time, perhaps to spontaneous

differentiation  or  reversion  to  the  original  fibroblast  state  in  culture.  From  differential  expression

analysis, no specific differentiation markers are identified within clusters, and fractional MEF identity

scores moderately outside of the iEP cluster (Fig.5B). This suggests that iEPs in culture may revert

back to a fibroblast-like state. This also supports our earlier observations that cells may revert back to

a transition-like state during the active reprogramming phase. Even though the majority of these cells

are derived from the same clone, is it possible that these sub-populations have arisen from distinct

reprogramming trajectories. CellTagging of these stable lines will permit potential transitions of cells

between these distinct transcriptional states to be monitored.

These findings raise questions about the long-term stability of the iEP reprogrammed state. To

explore  this  in  further  detail,  we  performed Drop-seq  profiling  of  an  iEP cell  line  that  had  been

continually passaged for one year. We had previously shown that this same line has the potential to

functionally engraft a mouse model of acute colitis13. Surprisingly, many cells received high fractional

iEP scores and were grouped within two subclusters, one of which expressed intestinal-associated

genes  Reg3g and  Gkn2.  A third cluster of cells expressing  Spp1 and  Mgp,  received high fractional

fibroblast identity scores and may correspond to a reverted cell phenotype. Together, these results

demonstrate  that  these  established  lines  can  undergo  significant  changes  over  time,  and  that

dominance of the population by a small number of clones could significantly impact on the potential of

each population as a whole. 

Discussion

Here,  we  present  a  combinatorial  labeling  method,  CellTagging,  which  enables  single-cell

analysis of clonal dynamics during direct lineage reprogramming from fibroblasts to iEPs. Using Drop-

seq,  we  have  demonstrated  that  reprogramming  to  iEPs  comprises  distinct  transition  stages,

suggesting roles for Igf2 and Notch signaling. Although many cells initiate reprogramming, full erasure

of fibroblast identity and emergence of iEPs represents a rare event. Analyses of individual clones,

originating  from the  same  original  cells,  demonstrate  a  remarkable  degree  of  heterogeneity  with

respect to reprogramming outcome. Longer-term tracking of fully-reprogrammed cells demonstrates

that the expandable iEP population is derived from only a handful of initial fibroblasts. These resulting
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populations also display a great deal of heterogeneity, with evidence to suggest that iEPs may be in

flux between distinct transcriptional states. 

Originally, the intended target cell identity for iEPs was the hepatocyte10. Our previous analyses

of these engineered cells revealed that intestinal identity was established in concert with hepatic fate,

and  that  fibroblast  identity  remained  intact13.  These  analyses  were  performed  on  microarray

transcriptome data collected at the population level, leading to the conclusion that iEPs are partially

reprogrammed. Single-cell analysis, presented here, reveals that the persistent fibroblast signatures in

our previous studies were most likely derived from the sub-population of partially reprogrammed cells.

Contrary to our  previous  findings,  those rare cells  that  fully  reprogram do appear  to fully  silence

fibroblast identity. These observations demonstrate the utility of scRNA-seq and provide new insights

into the reprogramming process. 

Upon reprogramming to iEPs, a major group of cells (~30%) initiate expression of iEP target

genes.  Although  this  initiation  phase  appears  efficient,  many cells  continue  to  express  fibroblast-

associated genes in this transition period. Only those cells progressing to the fully reprogrammed state

silence fibroblast gene expression programs. Amongst the direct lineage reprogramming strategies,

generation of iEPs is among the most inefficient protocols with only 1-2% of fibroblasts generating

iEPs10,13. This is in contrast to fibroblast to neuron direct reprogramming where 20% of fibroblasts yield

induced neurons22. One method to generate neurons involves the expression of the TFs, Acsl1, Brn2,

and  Mytl120,22,36.  Recently,  Mytl1  has  been  shown  to  be  responsible  for  silencing  non-neuronal

identities to promote generation of neural fate in fibroblasts37. This raises the possibility that the Foxa1-

Hnf4a reprogramming cocktail may be missing the Myt1l equivalent. If so, discovery of a third iEP

reprogramming factor to silence all non-hepatic fate may increase the efficiency and fidelity of this

particular engineering strategy.

In terms of reprogramming trajectories, our clonal tracing reveals that a single cell undergoing

reprogramming does not follow a defined trajectory of transcriptional changes. Rather, descendants of

the individual cell in which reprogramming was initiated may enter many asynchronous trajectories.

Previous studies have demonstrated that reprogramming to pluripotency involves an initial stochastic

phase18,38. The derivation of cell lines from an individual clone has demonstrated that all cells over time

have  the  capacity  to  reprogram,  and  argue  against  the  existence  of  ‘elite’  cells  predisposed  to

reprogram38. Our results presented here are in agreement with these earlier findings, but the degree of

heterogeneity  derived from a single  cell,  under  the  same conditions,  in  short  temporal  order  are

surprising. It is tempting to speculate that this suggests that there are many more stochastic hurdles to

overcome during cell fate conversion. One major barrier to reprogramming that has been proposed is

the location of target genes ‘locked’ within heterochromatin39, and that access to these is a stochastic
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process.  The clonal  heterogeneity  we observe may suggest  that  the accessibility  of  target  genes

fluctuates both over the short term, and at each step of the reprogramming process. 

Although only a very small proportion of fibroblasts successfully reprogram to iEPs, these cells

self-renew in vitro and can be expanded for long periods of time, perhaps indefinitely. One unexpected

finding here is the dominance of an iEP population resulting from a single clone, after a relatively short

period of expansion. Moreover, even though expanded iEPs were derived from only a handful of cells,

the population exhibits clear cellular heterogeneity.  In long-term cultured cells,  iEPs appear to de-

differentiate toward a fibroblast-like state, although iEP clusters are still maintained. CellTagging of

these stable populations will reveal if the same individual cells can transition between these states,

and the transcriptional control underlying this flux. In addition, our single-cell analyses have revealed a

separate cluster of cells enriched for intestinal markers. This raises the possibility that these particular

cells in our earlier intestinal transplantation studies were responsible for the functional engraftment we

reported13. This population does not appear in every iEP line generated, suggesting that heterogeneity

in reprogramming and the expansion of a small number of clones has a major impact on long-term cell

potential. This is perhaps reflective of the skewed differentiation properties known to afflict many stem

cell lines40. 

In summary, here we have presented a method to facilitate analysis of clonal dynamics at

single-cell  resolution.  This  has  revealed  that  in  contrast  to  the  initial  heterogeneity  of  the

reprogramming  process,  the  resulting  expanded  cells  lack  clonal  diversity.  Beyond  application  to

understanding the reprogramming process, the CellTagging approach will be broadly applicable to the

study of any cell growth and differentiation process that is amenable to lentiviral transduction. The

emergence of scRNA-seq approaches, such as the 10x Genomics Chromium system, that enable a

higher single-cell capture rate will benefit this approach. In this case, smaller starting cell populations

can be examined, which should help to increase capture of clones across multiple timepoints. In terms

of temporal resolution, the CellTagging approach is easily adapted to multiple rounds of labeling to

track clonal evolution in greater detail.

Experimental Procedures

Mice

Mouse  Embryonic  Fibroblasts  were  derived  from  the  C57BL/6J  strain  (The  Jackson  laboratory:

000664).  All animal procedures were based on animal care guidelines approved by the Institutional

Animal Care and Use Committee.

Generation of iEPs
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Mouse embryonic fibroblasts were converted to iHeps/iEPs as in Sekiya and Suzuki (2011)10. Briefly,

fibroblasts  were  prepared  from  E13.5  embryos  and  serially  transduced  with  polyethylene  glycol

concentrated  Hnf4a-t2a-Foxa1,  followed  by  culture  on  gelatin  for  2  weeks  in  hepato-medium

(DMEM:F-12, supplemented with 10% FBS, 1 mg/ml insulin (Sigma), dexamethasone (Sigma-Aldrich),

10  mM  nicotinamide  (Sigma-Aldrich),  2  mM  L-glutamine,  50  mM  b-mercaptoethanol  (Life

Technologies),  and  penicillin/streptomycin,  containing  20  ng/ml  hepatocyte  growth  factor  (Sigma-

Aldrich), and 20 ng/ml epidermal growth factor (Sigma-Aldrich), after which the emerging iEPs were

cultured on collagen.

Lenti- and Retrovirus Production 

Lentiviral particles were produced by transfecting 293T-17 cells (ATCC: CRL-11268) with pCMV-dR8.2

dvpr (Addgene plasmid 8455), and pCMV-VSVG (Addgene plasmid 8454). Virus was harvested 48

and 72 hr after transfection and PEG concentrated. Constructs were titered by serial dilution on 293T

cells. Hnf4a-t2a-Foxa1 retrovirus was packaged with pCL-Eco (Imgenex), titered on fibroblasts, and

cells transduced according to Sekiya and Suzuki10.

CellTagging methodology

To generate CellTags, we introduced an 8nt variable region into the 3’UTR of GFP in the pSMAL

lentiviral construct41 using a gBlock gene fragment (Integrated DNA Technologies) and megaprimer

insertion. A complex library of CellTag constructs was used to generate lentivirus (above) which was

then used to transduce fibroblasts at a multiplicity of infection of ~10. 

Drop-seq procedure

Cells were dissociated using TrypLE Express (Gibco),  washed in PBS containing 0.01% BSA and

diluted to 100 cells/μl. These cells were processed by Drop-seq within 15 minutes of their harvest.

Drop-seq  was  performed as  previously  described23.  In  brief,  cells  and  beads  were  diluted  to  an

estimated  co-occupancy  rate  of  5%  upon  co-encapsulation.  Two  independent  lots  of  beads

(Macosko201110,   ChemGenes Corporation,  Wilmington MA) were used:  091615 (Timecourse 1),

032516B (Timecourse 2). Emulsions were collected and broken by perfluorooctanol (Sigma), followed

by bead harvest  and reverse transcription.  After  ExonucleaseI  treatment,  aliquots of  2,000 beads

( 100 cells) were amplified by PCR for 14 cycles. Following purification by addition of 0.6x AMPure∼

XP beads (Agencourt), cDNA from an estimated 5,000 cells was tagmented by Nextera XT using 600

pg of cDNA input, as assessed by Tapestation (Agilent) analysis. Following further purification, 1ng of

each library was used as input for GFP amplification for a further 12 cycles of PCR using the Drop-seq
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P5-TSO_Hybrid  primer  (AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGT

GGTATCAACGCAGAGT A C)  and  a  P7  hybrid  primer  complementary  to  the  3’  end  of  GFP∗ ∗
(P7/Seq2/GFP Hybrid: CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCT

TCCGATCTGGCATGGACGAGCTGTACAAGTAA).  Following  purification,  the  GFP  amplicon  was

spiked into the main library at 5% of the total concentration. Libraries were sequenced on an Illumina

HiSeq 2500 at 1.4pM, with custom priming (Read1CustSeqB Drop-seq primer). 

Computational methods

Drop-seq alignment and digital gene expression matrix generation

After sequencing, scRNA-seq libraries were processed, filtered, and aligned as previously described42,

including correction of  barcode synthesis  errors.  This  process,  and the required tools,  are further

outlined online in the Drop-seq Alignment Cookbook (http://mccarrolllab.com/dropseq/). In an effort to

facilitate downstream analyses the reference genome used during alignment was modified to include

three transgenic sequences. The processed reads were aligned to the genome using STAR, default

settings were used. Following alignment, digital gene expression (DGE) matrices were then generated

for each timepoint from both time courses. Cells which expressed 200 or more genes were selected

for inclusion in the matrices. For time course one this resulted in a combined 10,038 cells and 20,576

genes included in the digital expression matrix. The mean number of expressed genes in these cells

was 1,215.908, and the mean UMI count was 2,636.718. This matrix was then filtered to include only

cells with a UMI count of at least 1,000, cells in which the proportion of the UMI count attributable to

mitochondrial genes was less than or equal to 10%, resulting in an expression matrix with 5,932 cells

and 20,383 genes. This filtered expression matrix was used for all downstream analyses. The mean

UMI  count  of  the  filtered  matrix  was  4120.815,  and  the mean number  of  expressed  genes  was

1,801.648.  The  same was  performed  for  the  second  time course,  resulting  in  a  combined  gene

expression matrix of 8,335 cells and 21,023 genes. The mean UMI count and number of genes per

cell,  for  the  combined  matrix  was  5,502.507  and  1820.732  respectively.  After  filtering  the  matrix

contained 5,414 cells and 20,934 genes, with a mean UMI count of 8,207.728 and a mean number of

genes per cell of 2635.565. These filtered matrices were used for all downstream analysis.

Cell cycle analysis and normalization

Following DGE filtering, cell cycle scores were generated for each cell and the data normalized. Cell

cycle scores were generated as described in43, using the "pairs" based method. Briefly, this method

compares the relative expression of gene pairs in a cell. Scores for each phase of the cell cycle are

calculated based on the relative difference in expression of these genes. Finally, cells are assigned a
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phase of  the  cell  cycle  based upon the scores  the cell  receives  for  each individual  phase.  After

calculating the cell cycle scores, the data was normalized using the "deconvolution" method described

in44. This method pools cells and combines the expression values of the cells in a pool. The pooled

expression values are used to calculate size-factors for normalization. These pool based normalization

factors can then be "deconvoluted" into cell-specific normalization factors, which are then used to

normalize each cell's  expression.  This  "deconvolution"  normalization is an attempt  to address the

abundance  of  zero  counts  that  is  prevalent  to  scRNA-seq.  The  cell  cycle  scores  and  data

normalization was facilitated by the Scater package, available on Bioconductor45. 

CellTag clonal analysis

Using the processed, filtered, and unmapped reads from an intermediate step of the alignment, reads

that contained the CellTag "motif" were identified. From each of these reads, the UMI, Cell Barcode,

and CellTag were extracted. For each cell barcode from the digital expression matrix, UMI counts were

generated for each CellTag identified in the cell. The UMIs and CellTags were not collapsed based on

hamming distance. Next, a matrix was constructed in which rows are Cell Barcodes and columns are

CellTags. The value of any given location in the matrix, e.g. K x J, is equal to the UMI count of cell tag

J, in cell K. The CellTag matrix was then filtered, removing CellTags appearing in >5% of cells in the

first timepoint. Cells expressing more CellTags than two standard deviations from the mean were also

removed,  as these were likely  to  represent  cell  doublets.  Weighted Jaccard analysis  using the R

package, Proxy was employed to calculate similarity between cells. Clones were classified as groups

of 5 or more highly-related cells, visualized using the Corrplot package with hierarchical clustering.  

Seurat, Monocle, and quadratic programming analyses

After filtering and normalization of the DGE, the R package, Seurat25 was used to cluster and visualize

the data. As the data was previously normalized,  it  was loaded into Seurat  without  normalization,

scaling, or centering. Along with the expression data, meta data for each cell was included, containing

information  such as  fractional  fibroblast  and  iEP scores,  cell  cycle  scores,  cell  cycle  phase,  and

timepoint  information.  Seurat  was used to  remove unwanted variation  from the gene expression,

regressing out Timepoint, number of UMIs, proportion of mitochondrial UMIs, and cell cycle scores.

After removing these unwanted sources of variation, highly variable genes were identified and used as

input  for  dimensionality  reduction  via  PCA.  The  resulting  PCs  and  the  correlated  genes  were

examined to determine the number of components to include in downstream analysis. These principal

components  were then used as  input  to  cluster  the  cells,  using a graph-based approach.  These

clusters were visualized using tSNE. Unsupervised Monocle221,26 analysis was used to order cells in
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pseudotime. Quadratic programming, previously described in20, was employed to score fibroblast and

iEP identity. This approach was modified using bulk expression data collected previously10 and the

KeyGenes33 platform to extract gene signatures of both cell types. The R Package, QuadProg was

used for Quadratic Programming and generation of cell identity scores. 
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Figure Legends

Figure 1. Single-cell analysis of fibroblast to iEP direct reprogramming

(A)  Experimental overview: E13.5 mouse embryonic fibroblasts were directly reprogrammed to iEPs

via retroviral delivery of Foxa1 and Hnf4a, as previously reported10,13. At weekly intervals throughout

four-weeks  of  reprogramming,  cells  were  collected  for  Drop-seq  analysis.  Non-reprogrammed

fibroblasts were also harvested.  (B)  Single-cell analysis metrics. Left-panel: Scatter plot of average

gene expression values (across cells) between both experimental timecourses. Correlation between

these two experimental replicates is measured using the Pearson correlation coefficient. Right panels:

Violin plots of UMIs (transcripts) per cell for both timecourse replicates. (C) Visualization of single-cell

clusters using 2D t-SNE (Seurat). 10 and 8 transcriptionally distinct clusters of cells were detected in

biological  replicate  timecourses  1  and  2,  respectively.  (D)  Visualization  of  key  changes  in  gene

expression. Expression levels  of  the fibroblast  marker,  Col1a2,  and the iEP marker,  Apoa1,  were

projected  onto  t-SNE plots  (upper  panels)  to  broadly  classify  distinct  clusters  of  cells.  Col1a2 is

downregulated  in  reprogrammed cells  (positioned  to  the right)  which  gradually  upregulate  Apoa1

expression. Expression changes are also shown on violin plots (lower panels).

Figure 2. Benchmarking single-cell analyses to reveal reprogramming-related transcriptional

changes. (A) Cell Indexing strategy: benchmark, age-matched fibroblasts were labeled with a specific

8nt index sequence embedded in the 3’UTR of GFP, delivered via a lentiviral construct. Following

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 28, 2017. ; https://doi.org/10.1101/127860doi: bioRxiv preprint 

https://doi.org/10.1101/127860
http://creativecommons.org/licenses/by/4.0/


labeling, benchmark fibroblasts were cultured in parallel to reprogramming cells and spiked into each

cell population harvested for Drop-seq analysis. These cells were spiked-in at a proportion of 10-20%

of the overall population and act as an internal control for each reprogramming timepoint.  (B)  Left

panel: Identification  and  visualization  of  benchmark  fibroblasts.  The  location  of  these  control

fibroblasts  is  marked within  2D on the t-SNE plot  for  timecourse 1,  where they  generally  cluster

together. Right panel: designation of cluster identity. Each cluster on the t-SNE plot was assigned a

phase of reprogramming or behavior,  based on a combination of differential  gene expression and

gene ontology analysis. The population comprises of 7 defined clusters: 2 fibroblast clusters, early-

transition, transition, reprogrammed, death, cycling, and repair.  (D)  Identification and visualization of

gene expression defining specific clusters. Left tables: gene expression significantly enriched in early

transition, transition, and reprogrammed stages. Top right panels: visualization of the early transition

markers,  Igfbp2 and  Igf2,  using  t-SNE.  Bottom  panels:  visualization  of  Hes6,  marking  the

reprogrammed cluster, and Rbp1, marking both the transition and reprogrammed clusters. All analysis

here is shown for timecourse 1. Analyses for timecourse2 can be found in the supplementary material.

Figure 3. Scoring cell identity using quadratic programming. (A) Left panel: For all timecourse 1

cells,  similarity  to  the  bulk  transcriptome for  fibroblasts  and  iEPs  was  calculated  using  quadratic

programming and plotted as fractional identities.  Cells  were ordered according to increase in  iEP

identity.  Right  panel:  fractional  iEP  identity  scores  projected  onto  Monocle  reconstruction  of  the

reprogramming in timecourse 1. The end of reprogramming, as defined by Monocle, coincides with

high iEP scores. (B) Projection of fibroblast (left panel) and iEP (right panel) fractional identity scores

onto  t-SNE  visualizations  of  cell  clusters.  Emergence  of  iEPs  overlaps  with  transition  and

reprogramming clusters in this first timecourse. (C) Boxplot of iEP fractional identity scores, grouped

by timepoint. (D) Plot showing relative expression of Apoa1 (top panel) and Col1a2 (lower panel) with

fractional iEP scores overlayed (red). Cells are according to increase in iEP identity.

Figure 4. CellTagging: a combinatorial labeling strategy to track clonal relationships between

cells. (A) The CellTagging methodology. We adapted our cell indexing and benchmarking approach by

replacing the defined 8nt index in the 3’UTR of GFP with an 8nt random sequence (CellTag). This

resulted in a complex library of up to 64,000 unique CellTags. Lentivirus was prepared with this library

and used to transduce fibroblasts at a multiplicity of infection ~10, resulting in the labeling of each

fibroblast with a unique combination of CellTags. Fibroblasts were then cultured as benchmark cells or

reprogrammed to iEPs. At each experimental timepoint, CellTag data was collected in concert with

each single-cell transcriptome and unique CellTag signatures were extracted for each cell. Weighted
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Jaccard  analysis  was used to  calculate  the  similarity  of  CellTag  signatures  between cells  and  is

presented as correlation  plots.  Hierarchical  clustering  is  used to group clones of  cells  (based on

CellTag signature overlap)  together on these plots.  Right  panel:  the red outline demonstrates the

identification  of  a  clone  of  cells  derived  from  the  same  initial  CellTagged  fibroblast.  (B) Clone

identification and tracking over multiple timepoints. CellTag signatures were extracted for all cells in

timecourse  1  and  are  presented  as  correlation  plots.  Upper  panels:  Over  the  course  of

reprogramming,  distinct  clones emerge.  Lower  panel:  correlation plot  of  major  clones identified in

timepoint 4. (C) Dendrogram showing relationships between cells. This analysis was used to identify

distinct  clones  of  cells,  some  of  which  could  be  tracked  over  multiple  timepoints.  (D) Cell

identity/behavior designation for all cells over the course of reprogramming in timecourse 1. This is

used as a point of reference for individual clone behavior. (E) Behavior of two representative clones.

Cells belonging to clone A are detected from timepoints 2 to 4 and are detected in all stages of the

reprogramming process,  demonstrating a high degree of  heterogeneity.  Cells  of  clone D are also

detected from timepoints 2 to 4. Many cells of this clone are found in the transition cluster at timepoint

3. At timepoint 4, this has resolved into two distinct outcomes: successful reprogramming, or death. 

Figure 5. Clonal analysis of expanded iEPs. (A) Following reprogramming, iEPs can be expanded

for long periods. In the second timecourse we continued passaging iEPs until 11-week post-initiation

of reprogramming. Left panels: Clonal analysis of cells at timepoint 4 shows that a large proportion of

cells  are derived from the same clone.  50% of  iEPs originate from the same fibroblast  ancestor.

Following culture until week 11, this clone has expanded to dominate the cell population. Right panel:

dendrogram of all timepoint 4 and 11 cells from timecourse 2.  (B) Image of iEPs at week 11: these

expanded iEPs demonstrate phenotypic variability, with the emergence of small colonies of cells. Right

panels:  t-SNE  visualizations  of  cell  clusters  and  projection  of  fibroblast  and  iEP  identity  scores

demonstrate that many fully reprogrammed cells have been lost from this population. Most cells of this

population do not definitively score as either fibroblasts or iEPs. (C) Image of iEPs after 12 months of

passaging:  long-term expanded iEPs,  unrelated to cells  derived from timecourse 1  and 2.   Right

panels:  t-SNE  visualizations  of  cell  clusters  and  projection  of  fibroblast  and  iEP  identity  scores

demonstrate that cells resolve into three distinct clusters following long-term culture. iEPs are located

in 2 clusters, whereas fibroblast identity can be clearly distinguished in a third, smaller cluster of cells.

Scale bar = 100mM 

Table 1. Identification of marker genes for each cluster identified for timecourse 1.  Differential

gene expression analysis identifies signatures of cell  clusters in timecourse 1. The top 5 enriched
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genes marking each cluster are shown in green. The top 5 depleted genes for each cluster are shown

in red. 
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