
 1 

Redundancy in synaptic connections enables neurons to learn optimally 1 

 2 

Naoki Hiratani1,2* and Tomoki Fukai1 3 
1Laboratory for Neural Circuit Theory, RIKEN Brain Science Institute, Wako, Saitama, Japan, 4 

351-0198 5 
2Gatsby Computational Neuroscience Unit, University College London, London, United 6 

Kingdom, W1T 4JG 7 

*corresponding: N.Hiratani@gmail.com 8 

 9 

Keywords: synaptic plasticity, connectomics, dendritic computation 10 

 11 

Abstract 12 

Recent experimental studies suggest that, in cortical microcircuits of the mammalian brain, 13 

the majority of neuron-to-neuron connections are realized by multiple synapses. However, 14 

it is not known whether such redundant synaptic connections provide any functional benefit. 15 

Here, we show that redundant synaptic connections enable near-optimal learning in 16 

cooperation with synaptic rewiring. By constructing a simple dendritic neuron model, we 17 

demonstrate that with multisynaptic connections, synaptic plasticity approximates a 18 

sample-based Bayesian filtering algorithm known as particle filtering, and wiring plasticity 19 

implements its resampling process. The derived synaptic plasticity rule accounts for many 20 

experimental observations, including the dendritic position dependence of 21 

spike-timing-dependent plasticity. The proposed framework is applicable to detailed single 22 

neuron models, and also to recurrent circuit models. Our study provides a novel conceptual 23 

framework for synaptic plasticity and rewiring. 24 

 25 

 26 

Introduction 27 

Synaptic connection between neurons is the fundamental substrate for learning and 28 

computation in neural circuits. Previous morphological studies suggest that in cortical 29 

microcircuits, often several synaptic connections are found between the presynaptic axons 30 
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and the postsynaptic dendrites of two connected neurons (Deuchars et al., 1994; Markram 31 

et al., 1997; Feldmeyer et al., 1999). Recent connectomics studies confirmed these 32 

observations in somatosensory(Kasthuri et al., 2015) and visual(Lee et al., 2016) cortex, 33 

and also in hippocampus (Bartol et al., 2015). In particular, in barrel cortex, the average 34 

number of synapses per connection is estimated to be around 10(Markram et al., 2015). 35 

However, the functional importance of multisynaptic connections remains unknown. 36 

Especially, from a computational perspective, such redundancy in connection structure is 37 

potentially harmful for learning due to degeneracy (Watanabe, 2001; Amari et al., 2006). In 38 

this work, we study how neurons perform learning with multisynaptic connections and 39 

whether redundancy provides any benefit, from a Bayesian perspective. 40 

 Bayesian framework has been established as a candidate principle of information 41 

processing in the brain (Knill and Pouget, 2004; Körding and Wolpert, 2006). Many results 42 

further suggest that not only computation, but learning process is also near optimal in 43 

terms of Bayesian for given stream of information (Behrens et al., 2007; Lake et al., 2015; 44 

Madarasz et al., 2016), yet its underlying plasticity mechanism remains largely elusive. 45 

Previous theoretical studies revealed that Hebbian-type plasticity rules eventually enable 46 

neural circuits to perform optimal computation under appropriate normalization (Soltani 47 

and Wang, 2010; Nessler et al., 2013). However, these rules are not optimal in terms of 48 

learning, so that the learning rates are typically too slow to perform learning from a limited 49 

number of observations. Recently, some learning rules are proposed for rapid learning 50 

(Aitchison and Latham, 2014; Gütig, 2016), yet their biological plausibility are still 51 

disputable. Here, we propose a novel framework of non-parametric near-optimal learning 52 

using multisynaptic connections. We show that neurons can exploit the variability among 53 

synapses in a multisynaptic connection to accurately estimate the causal relationship 54 

between pre- and postsynaptic activity. The learning rule is first derived for a simple neuron 55 

model, and then implemented in a detailed single neuron model. The derived rule is 56 

consistent with many known properties of dendritic plasticity and synaptic organization. 57 

Furthermore, the model reveals potential functional roles of anti-Hebbian synaptic plasticity 58 

observed in distal dendrites (Letzkus et al., 2006; Sjöström and Häusser, 2006), and 59 

benefits of task-dependent dendritic synaptogenesis (Yang et al., 2009; Xu et al., 2009).  60 
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Results 61 

A conceptual model of learning with multisynaptic connections 62 

Let us first consider a model of two neurons connected with K numbers of synapses (Fig. 1A) 63 

to illustrate the concept of the proposed framework. In the model, synaptic connections 64 

from the presynaptic neuron are distributed on the dendritic tree of the postsynaptic neuron 65 

as observed in experiments (Markram et al., 1997; Feldmeyer et al., 1999). Although a 66 

cortical neuron receives synaptic inputs from several thousands of presynaptic neurons in 67 

reality, here we consider the simplified model to illustrate the conceptual novelty of the 68 

proposed framework. More realistic models will be studied in following sections. 69 

The synapses generate different amplitudes of excitatory postsynaptic potentials 70 

at the soma mainly through two mechanisms. First, the amplitude of dendritic attenuation 71 

varies from synapse to synapse, because the distances from the soma are different (Stuart 72 

and Spruston, 1998; Segev and London, 2000). Let us denote this dendritic position 73 

dependence of synapse k as vk, and call it as the unit EPSP, because vk corresponds to the 74 

somatic potential caused by a unit conductance change at the synapse (i.e. somatic EPSP per 75 

AMPA receptor). As depicted in Figure 1A, unit EPSP vk takes a small (large) value on a 76 

synapse at a distal (proximal) position on the dendrite. The second factor is the amount of 77 

AMPA receptors in the corresponding spine, which is approximately proportional to its spine 78 

size (Matsuzaki et al., 2004). If we denote this spine size factor as gk, the somatic EPSP 79 

caused by a synaptic input through synapse k is written as wk = gkvk. This means that even if 80 

the synaptic contact is made at a distal dendrite (i.e. even if vk is small), if the spine size gk is 81 

large, a synaptic input through synapse k has a strong impact at the soma (e.g. red synapse 82 

in Fig. 1A) or vice versa (e.g. cyan synapse in Fig. 1A).  83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 20, 2017. ; https://doi.org/10.1101/127407doi: bioRxiv preprint 

https://doi.org/10.1101/127407


 4 

 91 
Figure 1. A conceptual model of multisynaptic learning 92 
A) Schematic figure of the model consist of two neurons connected with K synapses. Curves 93 
on the left represent unit EPSP vk (top) and the weighted EPSP wk=gkvk(bottom) of each 94 
synaptic connection. Note that synapses are consistently colored throughout Figure 1 and 2. 95 
B) Schematics of non-parametric representation of the probability distribution by 96 
multisynaptic connections. In both graphs, x-axes are unit EPSP, and the left (right) side 97 
corresponds to distal (proximal) dendrite. The mean over the true distribution p(vc|x1:n,y1:n) 98 
can be approximately calculated by taking samples (i.e. synapses) from the unit EPSP 99 
distribution qv(v) (top), and then taking a weighted sum over the spine size factor gk 100 
representing the ratio p(vc|x1:n,y1:n)/qv(v) (bottom). C) Illustration of synaptic weight 101 
updating. When the distribution p(vc|x1:n+1,y1:n+1) comes to the right side of the original 102 
distribution p(vc|x1:n,y1:n), a synaptic weight gkn+1 become larger (smaller) than gkn at 103 
proximal (distal) synapses. D) An example of learning dynamics at K=100 and qv(v)=const. 104 
Each curve represents the distribution of relative spine size {gk}, and the colors represent the 105 
growth of trial number. E) Comparison of performance among the proposed method, the 106 
monosynaptic rule, and the exact solution (see A conceptual model of multisynaptic 107 
learning in Methods for details). The monosynaptic learning rule was implemented with 108 
η=10-4, 3x10-4, 10-3, 3x10-3, 10-2, 3x10-2, and the initial value was taken as vrm0 = 1 2 . Lines 109 
were calculated by taking average over 100 independent simulations. 110 
 111 

 112 
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On this model, we consider a simplified fear-conditioning task as an example. Here, 113 
the presynaptic neuron activity represents a tone stimulus ( xn ∈ 0,1{ } ), and the postsynaptic 114 

neuron activity represents an electric shock ( yn ∈ 0,1{ } ), where xn = 1 yn = 1( )  denotes the 115 

presence of the tone (shock), and subscript n stands for the trial number (Fig. 1A). In order 116 

to invoke appropriate fear responses, synaptic connections need to acquire the probability 117 
of the shock given the tone vc ≡ p yn = 1| xn = 1( )  (Madarasz et al., 2016). Below, we consider 118 

supervised learning of this parameter vc by multisynaptic connections, from the tone and the 119 

shock stimuli represented by pre and postsynaptic activities respectively. From finite trials 120 
up to n, this conditional probability is estimated as vcn = ′vcp ′vc | x1:n,y1:n( )d ′vc∫ , where 121 

x1:n={x1,x2,…,xn} and y1:n={y1,y2,…,yn} are the histories of input and output activities 122 
respectively, and p vc | x1:n ,y1:n( )  is the probability distribution of the hidden parameter vc 123 

after n trials. Importantly, in general, it is impossible to get the optimal estimation of vcn+1  124 

directly from vcn , because in order to calculate vcn+1 = ′vcp ′vc | x1:n+1,y1:n+1( )d ′vc∫ , one first needs to 125 

calculate the distribution p vc | x1:n+1,y1:n+1( )  by integrating the previous distribution 126 

p vc | x1:n ,y1:n( )  and the new observation at trial n+1: {xn+1, yn+1}. This means that for 127 

near-optimal learning, synaptic connections need to learn and represent the distribution 128 
p vc | x1:n ,y1:n( )  instead of the point estimation vcn . But, how can synapses achieve that? The 129 

key hypothesis of this paper is that redundancy in synaptic connections is the substrate for 130 

the non-parametric representation of this probabilistic distribution. Below, we show that 131 

dendritic summation over multisynaptic connections yields the optimal estimation from the 132 

given distribution p vc | x1:n ,y1:n( ) , and dendritic-position-dependent Hebbian synaptic 133 

plasticity updates this distribution.  134 

 135 

Dendritic summation as importance sampling 136 

We first consider how dendritic summation achieves the calculation of the mean conditional 137 
probability vcn = ′vcp ′vc | x1:n,y1:n( )d ′vc∫ . It is generally difficult to evaluate this integral by directly 138 

taking samples from the distribution p vc | x1:n,y1:n( )  in a biologically plausible way, because 139 

the cumulative distribution changes its shape at every trial. Nevertheless, we can still 140 

estimate the mean value by using an alternative distribution as the proposal distribution, 141 

and taking weighted samples from it. This method is called importance sampling(Robert and 142 
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Casella, 2013). In particular, here we can use the unit EPSP distribution qv(v) as the proposal 143 

distribution, because unit EPSPs {vk} of synaptic connections can be interpreted as samples 144 
depicted from the unit EPSP distribution (Fig. 1B top). Thus, the mean vcn  is approximately 145 

calculated as 146 

   vcn = ′vcp ′vc | x1:n,y1:n( )d ′vc∫ ≈ 1
K

p vc = vk | x1:n,y1:n( )
qv vk( ) vk

k=1

K

∑ = gknvkk∑ = wk
n

k∑ ,   (1) 147 

where gkn =
p vc = vk | x1:n,y1:n( )

Kqv vk( ) . Therefore, if spine size gkn represents the relative weight of 148 

sample vk, then dendritic summation over postsynaptic potentials wk
n ≡ gk

nvk  naturally 149 

represents the desired value (vcn ≈ wk
n

k∑ ). For instance, if the distribution of synapses is 150 

biased toward proximal side (i.e. if the mean vcn  is overestimated by the distribution of unit 151 

EPSPs as in Fig. 1B top), then synapses at distal dendrites should possess large spine sizes, 152 

while the spine sizes of proximal synapses should be smaller (Fig. 1B bottom).  153 

 154 

Synaptic plasticity as particle filtering 155 

In the previous section, we showed that redundant synaptic connections can represent 156 

probabilistic distribution p(vc=vk|x1:n,y1:n), if spine sizes {gk} coincide with their importance 157 

gkn =
p vc = vk | x1:n,y1:n( )

Kqv vk( ) . But, how can synapses update their representation of the probabilistic 158 

distribution p(vc=vk|x1:n,y1:n) based on a new observation {xn+1, yn+1}? Because 159 

p(vc=vk|x1:n,y1:n) is mapped onto a set of spine sizes {gkn} as in Equation 1, the update of the 160 
estimated distribution p vk | x1:n,y1:n( )→ p vk | x1:n+1,y1:n+1( )  can be performed by the update of 161 

spine sizes gk
n{ }→ gk

n+1{ } . By considering particle filtering(Doucet et al., 2000) on the 162 

parameter space (see The learning rule for multisynaptic connections in Methods for details), 163 

we can derive the learning rule for spine size as 164 

  gkn+1 =
1+ f xn+1,yn+1;vk( )
1+ f xn+1,yn+1;wn( ) gk

n , f x,y;v( ) ≡ 2v −1( )x 2y −1( ) .   (2) 165 

This rule is primary Hebbian, because the weight change depends on the product of pre and 166 

postsynaptic activity xn+1 and yn+1. In addition to that, the change also depends on unit EPSP 167 

vk. This dependence on unit EPSP reflects the dendritic position dependence of synaptic 168 

plasticity. In particular, for a distal synapse (i.e. for small vk), the position-dependent term 169 
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(2vk-1) takes a negative value (note that 0≤vk<1), thus yielding an anti-Hebbian rule as 170 

observed in neocortical synapses (Letzkus et al., 2006; Sjöström and Häusser, 2006).  171 

For instance, if the new data {xn+1, yn+1} indicates that the value of vc is in fact larger 172 

then previously estimated, then the distribution p(vc|x1:n+1,y1:n+1) shifts to the right side 173 

(upper panel of Fig. 1C). This means that the spine size gkn+1 becomes larger then gkn at 174 

synapses on the right side (i.e. proximal side), whereas synapses get smaller on the left side 175 

(i.e. distal side; bottom panel of Fig. 1C). Therefore, pre- and postsynaptic activity causes 176 

LTP at proximal synapses induces LTD at distal synapses as observed in experiments 177 

(Letzkus et al., 2006; Sjöström and Häusser, 2006). The derived learning rule (Eq. 2) also 178 
depends on the total EPSP amplitude wn ≡ wk

n
k∑ ≡ gk

nvkk∑ . This term reflects a normalization 179 

factor possibly modulated through redistribution of synaptic vesicles over the presynaptic 180 

axon(Staras et al., 2010).  181 

 We performed simulations by assuming a uniform spatial distribution for synapses; 182 

qv(v) = const. At an initial phase of learning, the distribution of spine size {gkn} has a broad 183 

shape (purple lines in Fig. 1D), whereas the distribution gets skewed as evidence is 184 

accumulated through stochastic pre- and postsynaptic activities (red lines in Fig. 1D). 185 

Indeed, the estimation performance of the proposed method is nearly the same as that of 186 

the exact optimal estimation, and much better than that of the standard monosynaptic 187 

learning rule (Fig. 1E; see Monosynaptic learning rule in Methods for details).  188 

 189 

Synaptogenesis as resampling 190 

As shown above, weight modification in multisynaptic connections enables a near optimal 191 

learning. However, to represent the distribution accurately, many synaptic connections are 192 

required (gray line in Fig. 2B), while the number of synapses between a excitatory neuron 193 

pair is typically less than 10 in the cortical microcircuits. Moreover, even if many synapses 194 

are allocated between presynaptic and postsynaptic neurons, if the unit EPSP distribution is 195 

highly biased, the estimation is poorly performed (gray line in Fig. 2C). We next show that 196 

this problem can be avoided by introducing synaptogenesis (Holtmaat and Svoboda, 2009) 197 

into the learning rule.  198 
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 199 

Figure 2. Synaptic rewiring for efficient learning 200 
A) Schematic illustration of resampling. Dotted cyan circles represent an eliminated synapse, 201 
and the filled cyan circles represent a newly created synapse. B, C) Comparison of 202 
performance with/without synaptic rewiring at various synaptic multiplicity K (B), and bias 203 
in initial-sampling λB (C). For each bias parameter λB, the unit EPSP distribution {vk} was set 204 

as v ′k = − log 1− 1−e−λB⎡⎣ ⎤⎦
′k
K( ) , as depicted in the inset. Lines are the means over 100 simulations. 205 

 206 

 207 

In the proposed framework, when synaptic connections are fixed (i.e. when {vk} are 208 

fixed), some synapses quickly become useless for representing the distribution. For 209 

instance, in Figure 2A, (dotted) cyan synapse is too proximal to contribute for the 210 

representation of p(vc|x,y). Therefore, by removing the cyan synapse and creating a new 211 

synapse at a random site, on average, the representation becomes more effective (Fig. 2A). 212 

Importantly, in our framework, synaptic weight is proportional to its informatic importance 213 

by definition, thus optimal rewiring is achievable simply by removing the synapse with the 214 

smallest spine size. Ideally, the new synapse should be sampled from p(vc|x,y) for an 215 

efficient rewiring, but random creation is more biologically plausible (Holtmaat and Svoboda, 216 

2009), and indeed sufficient as long as elimination is selectively performed as mentioned 217 

above (see also Hiratani and Fukai, 2016). 218 

 By introducing this resampling process, the model is able to achieve high 219 

performance even if the total number of synaptic connection is just around three (black line 220 

in Fig. 2B), or if the initial distribution of {vk} is poorly taken (black line in Fig. 2C). 221 

 222 
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Detailed single neuron model of learning from many presynaptic neurons 223 

In the previous sections, we found that synaptic plasticity in multisynaptic connections can 224 

achieve non-parametric near-optimal learning in a simple model with one presynaptic 225 

neuron. To investigate its biological plausibility, we next extend the proposed framework to 226 

a detailed single neuron model receiving inputs from many presynaptic neurons. To this end, 227 

we constructed an active dendritic model using NEURON simulator(Hines and Carnevale, 228 

1997) based on a previous model of a pyramidal neuron in the layer 2/3 (Smith et al., 2013). 229 

We randomly distributed 500 excitatory synaptic inputs from 50 presynaptic neurons on the 230 

dendritic tree of the postsynaptic neuron, while fixing synaptic connections per presynaptic 231 

neuron at K=10 (Fig. 3A; see Morphology in Methods for the details of the model). First, we 232 

added a small constant conductance for each synapse, and then measured the somatic 233 

potential change, which corresponds to unit EPSP in the model. As observed in cortical 234 

neurons(Stuart and Spruston, 1998), inputs at distal dendrite tended to show large 235 

attenuation at the soma, though variability was quite high (Fig. 3B). The calculated unit EPSP 236 

distribution was rather skewed, because more branches were located on distal dendrites (Fig. 237 

3C top). From this distribution, we set the initial weight distribution accordingly (Fig. 3C 238 

bottom), as described in Figure 1B.  239 

On this model, we considered a supervised classification task: the neuron should 240 

fire if the stochastic presynaptic spikes are generated from the target pattern not from a 241 

distractor (Fig. 3D). The supervised signal was stochastically given if the generate 242 

presynaptic spike pattern resembled the target pattern (see Classification task in Methods). 243 

We first applied the proposed synaptic plasticity rule without rewiring(see The learning rule 244 

for the detailed model in Methods). After a sufficient number of trials, indeed, the neuron 245 

learned to show large depolarization only for the target pattern not for distractors (Fig. 3E). 246 

Classification performance was better when EPSP was decoded from its height, compared to 247 

the decoding from the total EPSP area (Fig. 3F), suggesting an advantage of spike-based 248 

information processing with a threshold mechanism. 249 

 250 

 251 

 252 
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 253 
Figure 3. A detailed model of multisynaptic learning with multiple presynaptic neurons 254 
A) Schematic figure of the detailed neuron model. Colored points on the dendritic trees 255 
represent 500 synaptic inputs from 50 presynaptic neurons. Green, yellow, and blue points 256 
show examples of initial distributions of inputs from three presynaptic neurons.  B) 257 
Dendritic position dependence of unit EPSP. Each black dot represents a synaptic contact on 258 
the dendritic tree. C) Unit EPSP distribution (top) and the corresponding initial weights 259 
distribution (bottom) for the detailed neuron model. This figure corresponds to Figure 1B. 260 
D) Examples of input spike trains generated from the target and distractor stimuli. Vertical 261 
bars indicate each stimulation trial. Note that in the actual simulations, variables were 262 
initialized after each stimulation trial. See Classification task in Methods for details of the 263 
task configuration. E) Somatic membrane dynamics before and after learning. Thick lines 264 
represent the average response curves over 100 trials, and thin lines are trial-by-trial 265 
responses. F) The learning curves calculated from peak EPSP height (light-green line) and 266 
EPSP area (purple line). Error bars represent the standard derivations calculated over 50 267 
simulations. G) Correlations of relative spine sizes between two synapses projected from the 268 
same presynaptic neuron onto the same dendritic branch (left), and onto different dendritic 269 
branches (right). Branches longer than 40μm were excluded from the analysis. H) Mean 270 
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distribution of the relative strength of synapse at its dendritic position gk (red) and at the 271 
soma gkvk/vmax (black). In the left panel, we used αB=0.2 as in the rest of the figures, while in 272 
the right panel, we used αB=0.6 to reproduce a less sparse input configuration (see Input 273 
configuration in Methods for details).  274 

 275 

 276 

 We further investigated consistency with experimental results. As observed in 277 

hippocampal neurons (Bartol et al., 2015), when two synaptic connections were made from 278 

the same presynaptic neuron to the same dendritic branch, their spine sizes were highly 279 

correlated (Fig. 3G left). In contrast, if synapses were connected to different branches of the 280 

postsynaptic neuron, spine size correlation vanished almost completely (Fig. 3G right). 281 

Furthermore, it is known that distal synaptic connections tend to have larger spine sizes 282 

than proximal connections, so that their somatic impacts are nearly the same with proximal 283 

synapses in hippocampus, and somewhat smaller in neocortex (Williams and Stuart, 2003). 284 

Our model replicated this correlation between the average spine size and the dendritic 285 

position (Fig. 3H) due to sparse stimulus representation used in the model. In addition, we 286 

found that under a denser stimulus representation, the average spine size of distal synapses 287 

became smaller, resulting in a spine size distribution closer to that of cortical neurons than 288 

of hippocampal neurons (Fig. 3H right compared to the left). This result is consistent with 289 

experimental observations of non-sparse selectivity at cortical pyramidal neurons (Rigotti et 290 

al., 2013).  291 

 We next changed the shape of distribution of synapses on dendritic tree. As 292 

expected, when synapses are biased toward the distal side, the performance improved 293 

faster than the opposite case, because the unit EPSP distribution provides a better prior 294 

distribution of optimal EPSPs (Fig. 4A). However, the performance after a long training was 295 

better when the distribution was skewed toward the proximal side (Fig. 4A), because strong 296 

signals are better represented when most synapses are proximal. 297 
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 298 
Figure 4. Effects of dendritic synaptic distribution and rewiring in the detailed model 299 
A) Learning curves for different synaptic distributions generated from three values of biased 300 
parameter: λB=0.1, 1.0, 1.9 (from light blue to black). Note that blue line in the center 301 
corresponds to the light-green line in Figure 3F. The inset represents the unit EPSP 302 
distributions in the three settings. B) Classification performance after 10000 trials with or 303 
without rewiring at various synaptic noise levels. C) Distributions of distance along the 304 
dendrite between two synapses projected from the same presynaptic neuron before (blue) 305 
and after (green) 10000 trials of rewiring. D) Effect of synaptic rewiring on the dendritic 306 
distributions of synapses from the same presynaptic neuron. 30 synaptic contacts from 3 307 
representative presynaptic neurons (color-coded) are depicted. In B-D, resampling 308 
threshold was set at gth=0.0001, and the potential location of newly created spines were 309 
limited to the dendritic branches to which the corresponding presynaptic neuron initially 310 
projected, because typically presynaptic axons and postsynaptic dendrites have a limited 311 
number of close contacts (see Details of the NEURON simulations in Methods for details of 312 
rewiring). All data points in A-C were calculated by taking average over 50 independent 313 
simulations. 314 

 315 

 316 

 Finally, we investigated effects of synaptic rewiring. Here we introduced synaptic 317 

noise that reflects stochastic signal transmission at individual synapses (see Details of the 318 

NEURON simulations in Methods). Although rewiring did not improve performance much 319 
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except in the regime of high synaptic noise (Fig. 4B), we found that the rewiring causes 320 

clustering of synapses from the same presynaptic neuron (Fig. 4D), and reduces the mean 321 

dendritic distance between two synapses projected from the same presynaptic neuron (Fig. 322 

4C). This result suggests that the clustering of synaptic contacts made by the same 323 

presynaptic neuron observed in adult neocortex (Kasthuri et al., 2015; Lee et al., 2016) 324 

could be the result of developmental synaptogenesis.  325 

 326 

Recurrent circuit model of unsupervised learning 327 

Results so far demonstrated that the proposed learning rule works efficiently in supervised 328 

learning tasks. However, supervised signals are often not available in the actual brain. Hence, 329 

we next show that the proposed framework is also applicable for unsupervised learning in 330 

recurrent networks in which lateral interactions enable self-organized learning. Let us 331 

consider acquisition of stochastic sequences by mutually connected firing-rate units (Fig. 332 

5A). In the model, external states are updated according to a hidden Markov model (Fig. 5A 333 

top). The chosen state is observed and represented stochastically by a layer of binary units 334 

(Fig. 5A middle), and then their outputs project to the recurrent network (Fig. 5A bottom). 335 

Here, we used an all-to-all recurrent network in which each neuron-to-neuron connection 336 

is realized by five synapses. The task is to infer both parameters and states of the hidden 337 

Markov process from a given sequence of observations. On this task, we implemented our 338 

multisynaptic learning rule, as well as previously proposed rules (Rabiner, 1989; Mongillo 339 

and Deneve, 2008) for comparison (see Recurrent circuit model in Methods for details).  340 

Although the learning performance of the proposed rule was not as good as that of 341 

the batch EM algorithm (Rabiner, 1989) due to lack of memory, still the proposed rule 342 

performed better than a stochastic gradient descent (SGD) rule during the most epochs of 343 

learning (Fig. 5B). A virtue of the proposed rule is that it does not require fine-tuning of 344 

learning rate unlike SGD learning, or online EM algorithm (Mongillo and Deneve, 2008)(Fig. 345 

5C). 346 

 347 

 348 
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 349 
Figure 5. Unsupervised learning of probabilistic sequences by a recurrent network 350 
with multisynaptic connections 351 
A) Schematic illustration of the model organization (left) and examples of model behaviors 352 
(right). External states generated from a hidden Markov model (top) are observed by 353 
stochastic binary units (middle), which in turn projected to a recurrent circuit in which every 354 
unit pair is connected with five synapses (bottom). B, C) Performance comparisons of the 355 
model and other methods at different times (trial numbers)(B) and learning rates(C). In C, KL 356 
divergence were calculated at t=5x105, and error bars are standard deviations calculated 357 
over trials. D) Relationship between spine size change and the distance from the soma, at a 358 
synapse where presynaptic input and postsynaptic firing having strong causal relationship 359 
(left), or anti-causal relationship (right). Here, rewiring was turned off to observe the pure 360 
effect of synaptic plasticity alone. Spine sizes were calculated at t=2500, and the distance 361 
from the soma was artificially determined by setting the characteristic length as 200μm. E) 362 
The influence of retraining on effective connectivity. We changed the hidden Markov process 363 
from a counter-clockwise dynamics to clockwise dynamics after 500 trials (inset). The 364 
effective connectivity was calculated by discarding the silent synapses with spine size gk < 365 
0.01. Averages were taken over 50 (B, C), and 5000 (D,E) simulations. In D and E, the 366 
feedforward projections were fixed, and only the recurrent connections were learned. See 367 
Recurrent circuit model in Methods for further details. 368 

 369 

 370 

 371 

 372 
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 We further looked into correspondence with the experimental results. In 373 

burst-dependent STDP, distal synapses show an anti-Hebbain STDP time window, while 374 

proximal synapses show the ordinary Hebbian STDP time window (Letzkus et al., 2006). 375 

Correspondingly, in the model, when the pre- and postsynaptic neurons had causal 376 

relationship, synapses on proximal dendrites were more likely potentiated compared to 377 

distal synapses (Fig. 5D left). This was because large unit EPSPs (i.e. proximal synapses) are 378 

preferred when the total synaptic weight should be large. In contrast, when two neurons had 379 

an anti-causal relationship, distal synapses were more likely potentiated (Fig. 5D right). 380 

Secondly, it is known that novel training increases the observed number of spines in 381 

task-related neurons (Yang et al., 2009; Xu et al., 2009). We forced novel learning on the 382 

network model by reversing the order of transitions among hidden states (Fig. 5E inset). Our 383 

model showed a similar increase in the number of effective connectivity right after the 384 

changes in the external environment (Fig. 5E). This is because, when the input structure 385 

changes due to novel training, the distributions of possible parameter values become 386 

broader, as a result, previously silent synapses are employed for representing these wider 387 

probabilistic distributions.  388 

 389 

Discussion 390 

In this work, first we have used a simple conceptual model to show: (i) Multisynaptic 391 

connections provide a non-parametric representation of probabilistic distribution of the 392 

hidden parameter using redundancy in synaptic connections (Fig. 1AB); (ii) Updating of 393 

probabilistic distribution given new inputs can be performed by a Hebbian-type synaptic 394 

plasticity when the output activity is supervised (Fig. 1C-E); (iii) Elimination and creation of 395 

spines is crucial for efficient representation and fast learning (Fig. 2A-C). In short, synaptic 396 

plasticity and rewiring at multisynaptic connections naturally implements an efficient 397 

sample-based Bayesian filtering algorithm. Secondly, we have demonstrated that the 398 

proposed multisynaptic learning rule works well in a detailed single neuron model receiving 399 

stochastic spikes from many neurons (Fig. 3). Moreover, the model suggests that the 400 

dendritic distribution of multisynaptic inputs provides a prior distribution of the expected 401 

synaptic weight (Fig. 4A), and rewiring of synaptic connection supports robust information 402 
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processing under synaptic noise (Fig. 4B). We have further extended the framework for 403 

unsupervised learning in recurrent circuits (Fig. 5A-C), and then shown that the model 404 

reproduces the experimentally known dendritic position dependences of plasticity, 405 

including anti-Hebbian plasticity at distal dendrites (Fig. 5D).  406 

 407 

Distribution of multisynaptic projections 408 

Our study provides several experimentally testable predictions on dendritic synaptic 409 

plasticity, and the resultant synaptic distribution. First, the model suggests developmental 410 

convergence of synaptic connections from each presynaptic neuron (Fig. 4CD). It is indeed 411 

known that in adult cortex, synaptic connections from the same presynaptic neuron are 412 

often clustered (Kasthuri et al., 2015; Lee et al., 2016). Our model interprets synaptic 413 

clustering as a result of an experience-dependent resampling process by synaptic rewiring, 414 

and predicts that synaptic connections are less clustered in immature animal. In addition, 415 

although the model does not provide direct insights on dendritic clustering of inputs from 416 

different presynaptic neurons (Takahashi et al., 2012), our results indicate that if two 417 

presynaptic inputs are tightly correlated with each other, these presynaptic neurons are 418 

more likely to make synaptic contacts on similar positions on the dendritic tree.  419 

Our result also suggests that position on the dendritic tree acts as a prior of the 420 

expected total connection strength, and supports rapid acquisition of desired synaptic 421 

weights. (Fig. 4A). For instance, primary inputs to the postsynaptic neuron should be 422 

proximal, since these inputs are typically expected to have stronger impacts on the soma 423 

than modulatory inputs. This is consistent with the synaptic organization on the dendrite of 424 

pyramidal cell where primary inputs are often projected to proximal dendrite, while 425 

modulatory inputs are typically more distal (Bittner et al., 2015; Manita et al., 2015).  426 

Anti-Hebbian plasticity at distal synapse (Letzkus et al., 2006; Sjöström and 427 

Häusser, 2006) can be interpreted in a similar way. Modulatory inputs are typically not 428 

tightly correlated with the output spike trains, because these inputs usually carry contextual 429 

information(Bittner et al., 2015), or delayed feedback signals(Manita et al., 2015). Hence, 430 

anti-Hebbian plasticity at distal synapse potentially helps neurons to select appropriate 431 

modulatory inputs.  432 
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Related works 433 

Previous theoretical studies often explain synaptic plasticity as stochastic gradient descent 434 

on some objective functions (Pfister et al., 2006; Nessler et al., 2013; Urbanczik and Senn, 435 

2014; Hiratani and Fukai, 2016), but these models require fine-tuning of the learning rate 436 

for explaining near-optimal learning performance observed in humans (Behrens et al., 437 

2007; Lake et al., 2015) and rats (Madarasz et al., 2016), unlike our model. Moreover, in this 438 

study, we proposed synaptic dynamics during learning as a sample-based inference process, 439 

in contrast to previous studies in which sample-based interpretations were applied for 440 

neural dynamics(Orbán et al., 2016). 441 

On the anti-Hebbian plasticity at distal synapse, previous modeling studies have 442 

revealed its potential phenomenological origins (Graupner and Brunel, 2012), but its 443 

functional benefits, especially optimality, have not been well investigated before. Particle 444 

filtering is an established method in machine learning (Doucet et al., 2000), and has been 445 

applied to artificial neural networks (Freitas et al., 2000), yet its biological correspondence 446 

had been elusive. 447 

Previous computational studies on dendritic computation have been emphasizing 448 

the importance of active dendritic process (Segev and London, 2000), especially for 449 

performing inference from correlated inputs (Ujfalussy et al., 2015), or for computation at 450 

terminal tufts of cortical layer 5 or CA1 neurons (Urbanczik and Senn, 2014). Nevertheless, 451 

experimental studies suggest the summation of excitatory input through dendritic tree is 452 

approximately linear (Cash and Yuste, 1999; Hao et al., 2009). Indeed, we have shown that a 453 

linear summation of synaptic inputs is suitable for implementing importance sampling. 454 

Moreover, we have demonstrated that even in a detailed neuron model with active dendrites, 455 

a learning rule assuming a linear synaptic summation works well.  456 
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Methods 592 

A conceptual model of multisynaptic learning 593 

The learning rule for multisynaptic connections 594 

In the model, tone stimulus and electric shock were represented by binary variables 595 
xn ∈ 0,1{ }  and yn ∈ 0,1{ } . At each trial n, tone was delivered with Pr xn = 1[ ] = π x , and electric 596 

shock was given only when xn=1, with probability Pr yn = 1| xn = 1[ ] = vc . For this task, the 597 

update rule for the spine size factor gkn+1 = 1
Kqv vk( ) p vc = vk | x1:n+1,y1:n+1( )  is given as, 598 

gkn+1 = 1
Kqv vk( ) p vc = vk | x1:n+1,y1:n+1( )

∝ 1
Kqv vk( ) p xn+1,yn+1 |vc = vk( )p vc = vk | x1:n,y1:n( )

∝ p yn+1 | xn+1,vc = vk( ) 1
Kqv vk( ) p vc = vk | x1:n,y1:n( )( )

= p yn+1 | xn+1,vc = vk( )gkn.

 599 

In particular, in our problem setting, vc does not provide any information about yn when 600 

xn=0, thus approximately (see Supplementary Information for the proof of convergence), 601 

 
p yn+1 | xn+1,vc = vk( ) ≈ xn+1 vkyn+1 + 1−vk( ) 1− yn+1( )⎡⎣ ⎤⎦ +

1
2 1− xn+1( )

∝1+ 2vk −1( )xn+1 2yn+1 −1( ).
  602 

Because the normalization factor is determined by 603 

1= p ′vc | x1:n,y1:n( )d ′vc∫ ≈ 1
K

p ′vc = vk | x1:n,y1:n( )
qv vk( )k∑ = gknk∑ , 604 

the sum of {gkn+1} should also be normalized to 1. Thus the update rule is given as 605 

 gkn+1 =
1+ f xn+1,yn+1;vk( )⎡⎣ ⎤⎦gk

n

1+ f xn+1,yn+1;v ′k( )⎡⎣ ⎤⎦g ′k
n

′k∑
=
1+ f xn+1,yn+1;vk( )
1+ f xn+1,yn+1;wn( ) gk

n ,  606 

where f x,y;v( ) ≡ 2v −1( )x 2y −1( )  and wn ≡ wk
n

k∑ = gk
nvkk∑ . As for the resampling process, at 607 

every trial n, if spine k satisfied gk < gth, unit EPSP was resampled uniformly from [0,1), and 608 

the spine size was set at gk = gth.  609 

 610 

Monosynaptic learning rule 611 

 For comparison, we implemented a monosynaptic learning rule, by expanding the 612 
exact solution vcn = x ′n y ′n′n∑ x ′n′n∑  as 613 

 vcn = xnyn + x ′n y ′n′n =1

n−1∑( ) xn + x ′n′n =1

n−1∑( ) ≈vcn−1 1+ xn yn −vcn−1( ) x ′n y ′n′n =1

n−1∑( ).   614 

Hence, by using a single variable vrmn, the learning rule is given as vrmn = vrmn−1 1+ηxn yn −vrmn−1( )( ) , 615 
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where η represents the learning rate (Nessler et al., 2013). 616 

 617 

Details of the conceptual model 618 

In the simulations, we used πx=0.3, and vc was randomly chosen from [0,1) 619 

uniformly at each simulation (not at each trial). The number of connections was kept at 620 

K=100 except for Figure 2B in which K=2 to 1000 were used. Initial value of k-th connection 621 

vk was set as vk=k/K except for Figure 2C in which the initial distribution was biased by 622 

choosing vk as v ′k = − log 1− 1−e−λB⎡⎣ ⎤⎦
′k
K( )  where λB is the bias parameter. Resampling was 623 

performed with the threshold gth=0.0001, and a new unit EPSP vk was uniformly sampled 624 

from [0,1).  625 

 626 

Detailed single neuron model 627 

Morphology 628 

We constructed a detailed neuron model based on a model of layer 2/3 pyramidal neuron 629 

with active dendrites (Smith et al., 2013) using NEURON simulator (Hines and Carnevale, 630 

1997). We distributed 500 excitatory synaptic inputs from 50 presynaptic neurons randomly 631 

on the dendrite. Synaptic input was modeled as a double exponential conductance change 632 

with the rise time τrise=0.5ms and the decay time τdecay=2.5ms. For each synapse k from 633 

presynaptic neuron j, we first applied a synaptic input with a constant weight factor 634 

γg=1.5nS, and then determined the unit EPSP vjk of synapse k by measuring somatic 635 

membrane potential change. In the simulation of the task, using malleable spine size factor 636 

gjk, we set the weight factor of synapse k as γggjk.  637 

 638 

Classification task 639 

 Using this neuron model, we considered learning of pattern classification. In 640 

particular, here we defined the problem as an acquisition of a latent variable model (Everett, 641 

2013). We first constructed a discrete latent variable model p yt( ) = p yt | x t = x j( )p xt = x j( )j=1

M∑  
642 

where x ∈ x1,...,xM{ }and y ∈ 0,1{ } represent the input and the output variable, M is the total 643 

number of presynaptic neurons, and t represents trial number. Suppose the firing rate of 644 
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presynaptic neurons rjt represent p(xt=xj), and the total synaptic weight from presynaptic 645 
neuron j satisfies w j ∝ p y = 1| x = x j( ) , then dendritic summation over all presynaptic inputs 646 

naturally reflects the probability p(yt=1) (i.e. w jrj
t

j∑ ∝ p yt = 1( ) ). Let us define the true latent 647 

model (or the target of learning) as w j
trg ≡ p y = 1| x = x j( ) , and the distribution of the hidden 648 

variable x at trial t (i.e. the firing rate distribution of input neurons at trial t) as ρ j
t ≡ p xt = x j( ) . 649 

In this configuration, the task can be defined as the acquisition of the target model 650 

{wjtrg} from presynaptic spikes generated from {ρtj} and the stochastic teaching signal yt 651 

given by Pr y t = 1⎡⎣ ⎤⎦ = w j
trgρ j

t
j=1

M∑ . When input signal {ρtj} is generated from the target model 652 

{wjtrg} as ρ j
t ∝w j

trg , the probability Pr[yt=1] typically takes a large value, while the probability 653 

becomes small if {ρtj} is randomly generated. Thus, we can evaluate learning performance by 654 

considering the classification of inputs generated by the target distribution from those 655 

generated by other distributions (i.e. distractors), through observation of somatic 656 

membrane dynamics. In the simulation, we first performed training of synaptic weights by 657 

presenting stimuli generated from both the target and the distractors with corresponding 658 

stochastic supervised signals. Then, evaluated the performance by comparing the somatic 659 

responses for the target stimuli and the distractors. 660 

 661 

The learning rule for the detailed model 662 

 We next derived the multisynaptic learning rule for this task. By Bayesian filtering, 663 
 p w j

trg =w j
k | y 1:t ,ρ j

1:t( )∝ p yt ,ρ j
t |w j

trg =w j
k ,y 1:t−1,ρ j

1:t−1( )p w j
trg =w j

k | y 1:t−1,ρ j
1:t−1( ) . 664 

Because ρtj does not depend on wjtrg nor previous activities {y1:t-1, ρj1:t-1}, 665 

 
p yt ,ρ j

t |w j
trg =w j

k ,y 1:t−1,ρ j
1:t−1( )∝ p yt |w j

trg =w j
k ,ρ j

t ,y 1:t−1,ρ j
1:t−1( )

≅ y t w + w j
k −w( )ρ j

t⎡⎣ ⎤⎦ + 1− y t( ) 1−w( )− w j
k −w( )ρ j

t⎡⎣ ⎤⎦,
  (3) 666 

where w = w j
trg

j
. In the neuronal implementation, presynaptic activities are not directly 667 

given as the firing rates ρ j
t ≡ p xt = x j( ) , but given as spike trains, yet we can still apply this rule 668 

by approximating ρtj by the spike count stj as ρ j
t ≈ sj

t Ap , with amplification factor Ap. More 669 

specifically, we have chosen the factor Ap as Ap = 0.2M, so that each presynaptic neuron 670 

emits 0.2 spikes in each trial on average. Similarly, representation of wkj by unit EPSP of the 671 
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k-th synapse vkj can be implemented as w j
k = γV v j

k −vmin( ) . In the model, vmin was set at 672 

0.41mV (Fig. 3B), and γv was defined as γ v ≡ 1 vmax −vmin( )  where vmax=1.45mV. Thus, by 673 

representing the importance of each sample by the spine size factor as 674 

g j
k ,t = p w j

trg = γ v v j
k −vmin( ) | y 1:t ,ρ j

1:t( ) Kqv v j
k( ) , from Equation (3), the learning rule of {gjk,t} is 675 

approximately given 676 

 g j
k ,t+1 =

wt + γ v v j
k −vmin( )−wt⎡⎣ ⎤⎦sj

t Ap( )g j
k ,t Z j

t           (if  yt = 1)

1−wt⎡⎣ ⎤⎦ − γ v v j
k −vmin( )−wt⎡⎣ ⎤⎦sj

t Ap( )g j
k ,t Z j

t   (if  yt = 0),

⎧
⎨
⎪

⎩⎪
  677 

where  678 

Z j
t =

wt + γ v v j
t −vmin( )−wt⎡⎣ ⎤⎦sj

t Ap( )           (if  yt = 1)

1−wt⎡⎣ ⎤⎦ − γ v v j
t −vmin( )−wt⎡⎣ ⎤⎦sj

t Ap( )   (if  yt = 0).

⎧
⎨
⎪

⎩⎪
  679 

Mean values v j
t{ }  and wt  were estimated as v j

t = g j
k ,tv j

k
k=1

K∑  and wt = γ v v j
t −vmin( ) Mj=1

M∑ .  680 

 681 

Input configuration 682 

 In the simulations, we first constructed the mean presynaptic spike probabilities 683 

{ρj} for target and distractor stimuli, and then generated input spike trains {stj} according to 684 

{ρj}. Mean spike probabilities {ρjtrg} for the target stimulus were randomly generated from a 685 

Beta distribution as 
 ρ j

trg = !ρ j
trg Ztrg where 

 
!ρ j
trg ←Beta αB ,1( )  and 

 
Ztrg = αB +1( ) !ρ j

trg
j=1

M∑ MαB ,with αB 686 

being the sparseness parameter. Here, Beta distributions were used due to the constraint on 687 
{ρjtrg} ( 0 ≤ ρ j

trg <1). Mean responses for the distractors {ρjdst,μ} (μ=1,…,10) were defined in the 688 

same way. Based on these models, we generated presynaptic spikes {stj} with a doubly 689 

stochastic process to reproduce high variability typically observed in cortical activity 690 

(Churchland et al., 2011; Tsubo et al., 2012). In trial t with the target stimulus, we 691 
determined the number of spikes sjt emitted from presynaptic neuron j as sjt = Apρ j

t +ζ⎢⎣ ⎥⎦  692 

where 
 
ρ j
t = !ρ j

t !ρ j
t

j∑ , 
 
!ρ j
t ←Gamma ρ j

trg ,1( ) , ζ  is a random variable uniformly sampled from 693 

[0,1), and x⎢⎣ ⎥⎦  is the largest integer smaller than x. In a distractor trial, we instead sampled 694 

 
!ρ j
t  from one of the distractor distributions {ρjdst,μ} as 

 
!ρ j
t ←Gamma ρ j

dst ,µ,1( ) , and generated {stj} 695 

from the chosen distribution. In either trial, supervising signal yt was stochastically given 696 
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with probability Pr y t = 1⎡⎣ ⎤⎦ = w j
trgρ j

t
j=1

M∑ . Finally, spike timings of the m-th spike from 697 

presynaptic neuron j at trial t was determined as 0.1ζG
j ,t +m −1( )Δtstimulus s j

t  where 698 

Δtstimulus=10ms, and ζGj ,t  is a Gaussian random variable.  699 

During training phase, the target stimulus {ρjtrg} were presented in 20% of trials, 700 

and each distractor {ρjdst,μ} (μ=1,…,10) were presented in 8% of trials. In the test phase, we 701 

provided 200 stimuli, of which 100 stimuli were generated from {ρjtrg}, and the rest were 702 

from {ρjdst,μ}. The classification performance was measured by the ratio of target trials in 703 
which the maximum EPSP height Δvn

trg  exceeded the threshold 704 

θ = mtrg σ trg
2 +mdst σ dst

2( ) 1σ trg
2 +1σ dst

2( ),  to the total of 100 trials, where mtrg =E Δvn
trg⎡⎣ ⎤⎦  and 705 

σ trg
2 = Var Δvn

trg⎡⎣ ⎤⎦  were calculated over 100 test stimuli. Although the evaluations were made 706 

solely on false negatives, we also observed significant decrease of false positives during 707 

learning (Fig. 3E). In the purple line of Figure 3F, we used the total EPSP area instead of the 708 

maximum EPSP height for the measurement.  709 

 710 

Details of the NEURON simulations 711 

 Initial values of spine sizes {gjk} were chosen such that gjk~1/qv(vjk) is satisfied. To 712 

this end, we first estimated the unit EPSP distribution qv(v) through a sampled-based 713 

approximation qv n( ) ≡ n ⋅dv ≤v j
k < n +1( ) ⋅dv⎡⎣ ⎤⎦+k=1

K∑i=1

N∑ ∝qv n ⋅dv ≤v j
k < n +1( ) ⋅dv( ) , and then 714 

calculated gjk by  g j
k =

1 qv nj
k( )

1 qv nj
k( )k∑

, where njk is the integer that satisfies nj
k ⋅dv ≤v j

k < nj
k +1( ) ⋅dv . 715 

In Figure 4A, to generate a biased synaptic distribution, we randomly sampled a position 716 

from the whole dendritic tree with probability ′L
Lmax( )λB −1 ⋅ ′L

Lmax( )1−λB 10 ⋅B λB,2 − λB( ) , and added a 717 

synapse until 500 synapses are created on the dendritic tree. Here, L’ is the distance from 718 

the soma, Lmax is its maximum length, λB is the bias parameter, and B(x,y) is the Beta 719 

function.  720 

In Figures 4B and C, we replicated synaptic noise independent of presynaptic 721 
activity by introducing a fluctuation term, ξ jk ←Gamma 1 snoise ,snoise( ) , into the spine-size factor 722 

as γ gg j
k →γ gg j

kξ j
k . The threshold for synaptic elimination was set as gth =0.0001, and the 723 
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spine size of the new synapse was initialized at gk=gth. In the detailed model, we restricted 724 

the position of newly created synapse within the dendritic branches for which the 725 

presynaptic neuron was initially projected to. Thus, in the presented simulations, one 726 

presynaptic neuron can make synaptic contact with at most on 10 dendritic branches. We 727 

introduced this restriction in order to reproduce limited number of close contacts between 728 

the axons and the dendrite (Markram et al., 1997; Feldmeyer et al., 1999). Further details of 729 

the model are available at ModelDB (http://modeldb.yale.edu/225075 with access 730 

code ”1234”). 731 

 732 

Recurrent circuit model 733 

In the model, the hidden Markov model had five states, and the transition probabilities 734 
among them aµν ≡ p xt = µ | x t = ν( )  were defined as aμν=0.5 if μ=ν, aμν=0.4 if μ=ν+1 (mod. p), 735 

and aμν=0.333 otherwise. In the latter half of Figure 5E, we instead set as aμν=0.4 if μ=ν-1 736 

(mod. p). Stochastic observation {yt} was defined as 737 
p yt | x t = µ( ) = p yit | x t = µ( )i=1

N∏ ≡ h yit;biµ( )i=1

N∏  where N=30, and h(y;b) is a Bernoulli process with 738 

probability b. In the simulation, observation matrix {biμ} was randomly generated from a 739 

uniform distribution [0.1, 0.9). In Figures 5B and C, both transition matrix {aμν} and 740 

observation matrix {biμ} were learned to compare performance with other learning method, 741 

while in Figures 5D and E, only the transition matrix was acquired by synaptic plasticity. KL 742 

divergence in Figures 5B and C was evaluated as argmin
perm

x µ
opt logx µ

opt − logxperm µ( )
est( )µ=1

p∑ , where xμopt 743 

is the estimation from the true internal model, xμest is the estimation by each learning 744 

method, and perm denotes permutation over hidden states. See the Supplementary 745 

Information for the further details of the model.  746 
  747 
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Supplementary Information 748 

1.Proof of convergence of the learning rule for the conceptual model 749 

The derived learning rule can be rewritten as 750 
logp vc = vk | x1:n,y1:n( ) = log 1+ 2vk −1( )x ′n 2y ′n −1( )⎡⎣ ⎤⎦′n∑ + const ,  751 

so in order to prove convergence, we need to show that ϕ v( ) ≡ log 1+ 2vk −1( )x ′n 2y ′n −1( )⎡⎣ ⎤⎦ ′n
 is 752 

maximized at true vc. By considering Taylor expansion, the above equation is expanded as 753 

log 1+ z( ) = −1( )m+1

m zm
m=1

∞∑ . In this form, the average is calculated as 754 

2vk −1( )x ′n 2y ′n −1( )( )m = 2vk −1( )m x ′n y ′n + −1( )m x ′n 1− y ′n( )
= 2vk −1( )mvcπ x + 1− 2vk( )m 1−vc( )π x

  755 

Note that (xn)m=xn if m>0, because xn=0 or 1. Thus, by substituting the above equation into 756 

the Taylor expansion form, 757 

 
ϕ v( ) = π xvc log 1+ 2v −1( )⎡⎣ ⎤⎦ +π x 1−vc( )log 1+ 1− 2v( )⎡⎣ ⎤⎦

= π x vc logv + 1−vc( )log 1−v( )⎡⎣ ⎤⎦ + const.
  758 

Therefore, φ(v) is maximized at v = vc. 759 

 760 

2. Details of recurrent circuit model 761 

Let us consider a hidden Markov model in which state xt is updated with xt ~ p(xt|xt-1), and 762 

the observation yt is given as yt ~ p(yt|xt). Here, we denote the total number of hidden state 763 

as p, the number of independent observation as N, transition probabilities as 764 
p xt = µ | x t−1 = ν( ) ≡ aµν , and the probabilistic distribution of the observation as 765 

p yt | x t = µ( ) = p yit | x t = µ( )i=1

N∏ ≡ h yit;biµ( )i=1

N∏ . The objective of the task is to estimate A={aμν}, 766 

B={biμ}, and x1:t={x1,x2,…,xt} from given observations y1:t={y1,y2,…,yt}. Note that due to 767 

symmetry, there are at least p! numbers of {A, B} which gives the same system with the true 768 

{A*, B*}, and in that sense, the problem is ill-posed. However, it is still possible to acquire 769 

one of such {A, B} asymptotically (Rabiner, 1989). 770 

 771 

2.1 Particle filtering in parameter space 772 

From Bayes rule, inference of xt is given as 773 
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p xt | y 1:t( )∝ p yt | x t ,y 1:t−1( )p xt | y 1:t−1( )
= p yt ,B | x t ,y 1:t−1( )dB∫( ) p xt ,x t−1,A | y 1:t−1( )dA∫xt−1∑( )
= p yt | x t ,B( )p B | y 1:t−1( )dB∫( ) p xt−1 | y 1:t−1( ) p xt | x t−1,A( )p A | y 1:t−1( )dA∫xt−1∑( ).

  774 

The last line holds because xt-1 and A are independent given y1:t-1. Hence, if we denote 775 
rµt ≡ p xt = µ | y 1:t( ) , the likelihood rμt is given as, 776 

 
rµ
t = p B | y 1:t−1( ) h yi

t;biµ( )dBi∏∫( ) rν
t−1 p A | y 1:t−1( )aµν dA∫ν∑( )

≈ p biµ | y
1:t−1( )h yi

t;biµ( )dbiµ∫( )i∏ rν
t−1 p aµν | y

1:t−1( )aµν daµν∫ν∑( ).
  777 

Thus, for the given observation y1:t, state xt can be inferred recurrently. Here, we assumed 778 
independence of elements of the transition matrix A as p A | y 1:t−1( ) ≈ p aµν | y

1:t−1( )ν∏µ∏  779 

although they are mutually constrained by a boundary condition aµν = 1µ∑ . Similarly, we 780 

assumed independence of elements of the observation matrix B.  781 

The integral over aμν and biμ are generally not analytically calculable, but still 782 

approximately attainable by using particle filtering (Freitas et al., 2000). By taking K samples 783 
{akμν} from a proposed distribution qA(a), and by defining α µν

k ,t ≡ p aµν
k | y 1:t( ) KqA aµν

k( ) , the 784 

integral can be approximated as 785 

p aµν | y
1:t−1( )aµν daµν∫ ≈ α µν

k ,t−1aµν
k

k=1

K∑ .  786 

Similarly, by taking samples from a distribution qB(b) as {bkiμ} ~ qB(b), the integration over b 787 
is approximated as p biµ | y

1:t−1( )h yi
t;biµ( )dbiµ∫ ≈ βiµ

k ,t−1h yi
t;biµ

k( ),k∑  where βiν
k ,t ≡ p biµ

k | y 1:t( ) KqB biµ
k( ) . 788 

Therefore, the update rule of rμt is given as 789 

 rµ
t = exp Jiµ

t + log w µν
k ,t−1rν

t−1
k∑ν∑( )− I ti∑⎡⎣ ⎤

⎦,   790 

where w µν
k ,t−1 ≡ α µν

k ,t−1aµν
k ,  Jiµ

t ≡ log βiµ
k ,t−1h yi

t;biµk( )k∑⎡⎣ ⎤⎦,  and I t ≡ log exp Jiν
t + log wνρ

k ,t−1rρ
t−1

k∑ρ∑( )i∑⎡⎣⎢
⎤
⎦⎥ν∑( ) . 791 

The equation roughly corresponds to the firing dynamics of a recurrent network in which 792 

each neuron pair is connected with K number of synapses, assuming rμt is the firing rate of 793 

neuron μ, Jtiμ are the feed-forward inputs, and It is the global inhibition.  794 

 We next consider estimation of the importance weights. Because elements of 795 

matrix A are not independent, marginalization over all the other a ′µ ′ν{ } ′µ , ′ν( )≠ µ,ν( )
 is in general 796 
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necessary to obtain p(aμν|y1:t) (i.e. p aµν | y
1:t( ) = p A | y 1:t( )da ′µ ′ν′µ , ′ν( )≠ µ,ν( )∏∫ ). However, if each aμν is 797 

successfully learned under the assumption of independence, constraints over {aμν} should be 798 

satisfied naturally. Thus, p(aμν|y1:t) is calculated as 799 

 p aµν | y
1:t( )∝ p aµν | y

1:t−1( ) 1+ paµν −1
p −1

rν
t−1 prµ

f ,t −1( )⎛
⎝⎜

⎞
⎠⎟
, 800 

by using following approximation: 801 

 802 

p aµν | y 1:t( )∝ p aµν | y 1:t−1( )p yt |aµν ,y 1:t−1( )
= p aµν | y 1:t−1( ) p yt | x t = ρ,y 1:t−1( )p xt = ρ | x t−1 = λ,aµν ,y 1:t−1( )p xt−1 = λ | y 1:t−1( )ρ∑λ∑

≈ p aµν | y 1:t−1( ) 1
p
p yt | x t = ρ,y 1:t−1( )p xt−1 = λ | y 1:t−1( )ρ∑λ≠ν∑⎛⎝⎜

        +
1−aµν

p −1
p yt | x t = ρ,y 1:t−1( )p xt−1 = ν | y 1:t−1( )ρ≠µ∑ +aµνp yt | x t = ρ,y 1:t−1( )p xt−1 = ν | y 1:t−1( )⎞⎠⎟

∝ p aµν | y 1:t−1( ) 1− rνt−1

p
+

1−aµν

p −1
1− rµf ,t( )rνt−1 + rµf ,taµνrνt−1⎛

⎝⎜
⎞
⎠⎟

∝ p aµν | y 1:t−1( ) 1+
paµν −1
p −1

rνt−1 prµf ,t −1( )⎛
⎝⎜

⎞
⎠⎟
,

 803 

where rµf ,t ≡ p yt | x t = µ,y 1:t−1( ) p yt | x t = ρ,y 1:t−1( )ρ∑⎡⎣ ⎤
⎦ . Therefore, the update rule of spine size is 804 

given as, 805 

 
 

!α µν
k ,t = 1+

paµν
k −1( )rνt−1 prµ

f ,t −1( )
p −1

⎛

⎝
⎜

⎞

⎠
⎟ α µν

k ,t−1,    α µν
k ,t = !α µν

k ,t !α µν
′k ,t

′k∑ .   806 

By defining the total synaptic weight as w µν
t ≡ α µν

k ,taµν
k

k∑ , this rule can be rewritten as, 807 

 α µν
k ,t =

1+ fa rν
t−1,rµ

f ,t;aµν
k( )

1+ fa rν
t−1,rµ

f ,t;w µν
t−1( )α µν

k ,t−1 , fa rpre ,rpost;ak( ) ≡ pak −1( )rpre prpost −1( ) p −1( ) .   808 

Similarly, importance weights βiµ
k ,t{ }  of observation matrix B are derived as 809 

 
 

!βiµ
k ,t ∝βiµ

k ,t−1 1+
h yi

t;biµ
k( )−hi yit( )( ) r̂µt −π µ( )
hi yi

t( ) ⋅ 1−π µ( )
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,    βiµ

k ,t = !βiµ
k ,t !βiµ

′k ,t
′k∑ ,   810 

where π µ ≡ p xt = µ( ),  and hi yit( ) ≡ p yt = yi
t( ).  Here, for the sparseness constraint, instead of rµt ,  811 

we used a discretized version r̂µt ≡ x̂ t = µ⎡⎣ ⎤⎦+  for the learning rule, where the estimated state 812 

x̂ t  is sampled from a probabilistic distribution rµ
t{ } .  813 

 814 
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2.2 Online approximation of Baum-Welch formula 815 

For the comparison, we also implemented three different rules. The standard rule for 816 

discrete HMM is Baum-Welch formula(Rabiner, 1989), which is described as 817 

 aµν
n( ) =

p xt = ν,x t+1 = µ | y 1:T ,θ (n−1)( )t=1

T −1∑
p xt = ν | y 1:T ,θ (n−1)( )t=1

T −1∑
,  bjµ

n( ) =
p xt = µ,y j

t = 1| y 1:T ,θ (n−1)( )t=1

T −1∑
p xt = µ | y 1:T ,θ (n−1)( )t=1

T −1∑
,  818 

where θ(n) is the set of parameters at n-th estimation. This standard machine learning 819 

method is an off-line learning rule, meaning that entire observation sequence is required for 820 

each update, thus not suitable for neural implementation.  821 

 By taking online approximation of the Baum-Welch formula, an online learning rule 822 

is obtained(Mongillo and Deneve, 2008). This rule can be extended to our problem setting 823 

straightforwardly as described below. Let us define  824 

 ψ µν
λ ≡ 1

T
P xt = µ,x t−1 = ν,xT = λ | y 1:T( )

t=1

T

∑ ,  φµ j
λ ≡ 1

T
y j
t = 1⎡⎣ ⎤⎦+P xt = µ,xT = λ | y 1:T( )

t=1

T

∑ .  825 

Because  826 
P xt = µ,x t−1 = ν,xT = λ | y 1:T( ) = γ λρ yT( )P xT −1 = ρ,x t = µ,x t−1 = ν | y 1:T −1( )ρ∑ , 827 

where γ λρ yT( ) ≡ P yT | xT = λ( )P xT = λ | xT −1 = ρ( )
P yT | y 1:T −1( )  , ψ µν

λ T( )  satisfies a recursive formula: 828 

ψ µν
ρ T( ) = γ λρ yT( ) ψ µν

ρ T −1( ) + 1
T δνρδ µλqρ T −1( )−ψ µν

ρ T −1( )⎡⎣ ⎤⎦( )ρ∑   with qρ T −1( ) ≡P xT −1 = ρ | y 1:T −1( ) . 829 

Similarly, φµ j
λ T( )  is recursively calculated by 830 

 φµ j
λ T( ) = γ λρ yT( ) φµ j

ρ T −1( ) + 1
T y j

t = 1⎡⎣ ⎤⎦+ δ µλqρ T −1( )−φµ j
ρ T −1( )⎡

⎣
⎤
⎦( )ρ∑ .  831 

In addition, γ λρ yT( )  and qρ T( )  are given as 832 

 γ λρ yT( ) =
h y j

T ;bjλ( )j∏( )aλρ

h y j
T ;bj ′λ( )j∏( )a ′λ ′ρ q ′ρ T −1( )

′ρ∑′λ∑
, qλ T( ) = γ λρ yT( )qρ T −1( )

ρ∑ . 833 

Therefore, with a learning rate parameter η t( ) , an online EM algorithm is given as 834 

 ψ µν
ρ T( ) = γ λρ yT ;A T −1( ),B T −1( )( ) ψ µν

ρ T −1( ) +η T( ) δνρδ µλqρ T −1( )−ψ µν
ρ T −1( )⎡⎣ ⎤⎦( )ρ∑ ,  835 

 φµ j
λ T( ) = γ λρ yT ;A T −1( ),B T −1( )( ) φµ j

ρ T −1( ) +η T( ) y j
t = 1⎡⎣ ⎤⎦+ δ µλqρ T −1( )−φµ j

ρ T −1( )⎡
⎣

⎤
⎦( )ρ∑ , 836 
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 aµν T( ) =
ψ µν

λ T( )
λ∑

ψ µν
λ T( )

λ∑′µ∑ , bjµ T( ) =
φµ j

λ T( )
λ∑
ψ µ ′ν

λ T( )
λ∑′ν∑

.  837 

In the simulation, we normalized ψ µν
ρ{ }  and φµ j

λ{ }  to ensure stability of learning. To this end, 838 

we introduced auxiliary variables of φµ j
λ T( )  as  839 

 φµ j
λ T( ) = γ λρ yT ;A T −1( ),B T −1( )( ) φµ j

ρ T −1( ) +η T( ) y j
t = 0⎡⎣ ⎤⎦+ δ µλqρ T −1( )−φµ j

ρ T −1( )⎡
⎣

⎤
⎦( )ρ∑ .   840 

Normalization was performed as φµν
λ ←φµν

λ φ ′µ ′ν
′λ +φ ′µ ′ν

′λ( )
′µ , ′ν , ′λ
∑ , φµν

λ ←φµν
λ φ ′µ ′ν

′λ +φ ′µ ′ν
′λ( )

′µ , ′ν , ′λ
∑  and 841 

ψ µν
ρ ←ψ µν

ρ ψ ′µ ′ν
′ρ

′µ , ′ν , ′ρ
∑ .  842 

 843 

2.3 Stochastic gradient descent rule 844 

In addition to the above learning rules, we implemented a stochastic gradient descent (SGD) 845 

rule by considering gradient descent on the likelihood of input y1:t as 846 

 
 
!rµ
t = h y j

t ;bjµ
t−1( )j∏( ) aµν

t−1rν
t

ν∑( ),  rµt = !rµt !r ′µ
t

′µ∑ ,  847 

 aµν
t = aµν

t−1 +ηsgd rµ
t −aµν

t−1( )rνt−1,  b jµ
t = b jµ

t−1 +ηsgd yi
t −b jµ

t−1( )rµt .   848 

 849 

2.4 Details of simulations 850 

In the simulation, we set p=5, N=30, and we generated the hidden transition matrix {aμν} as 851 

aμν=0.5 if μ=ν, aμν=0.4 if μ=ν+1 (mod. p), aμν=0.333 otherwise. Observation matrix was 852 
randomly generated by bjµ = bmin + bmax −bmin( )ζ jµ , where bmin=0.1, bmax=0.9, and ζ jµ  is a 853 

random variable uniformly sampled from [0,1). For the probabilistic distribution h(y;b), we 854 

used a Bernoulli distribution with mean b.  855 
 In the multisynaptic learning rule, initial values of aµν

k{ }  and bjµ
k{ }  were uniformly 856 

sampled from [0,1), and [bmin, bmax) respectively. Rewiring of aµν
k{ }  and bjµ

k{ }  were 857 

performed in the same manner with the thresholds αth=10-4, βth=10-6. In Figure 5E, we set 858 

the weight of new spine as αnew=1.1x10-4, and βnew=1.1x10-6 to avoid repetitive rewiring, 859 

and we additionally defined a threshold for effective connectivity αeff=10-2 to discount silent 860 

synapses.  861 

 In SGD learning and online EM learning rules, the initial values of estimated 862 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 20, 2017. ; https://doi.org/10.1101/127407doi: bioRxiv preprint 

https://doi.org/10.1101/127407


 34 

parameters {aμν} and {bjμ} were uniformly sampled from 1− Δainit( ) p⎡⎣ , 1+ Δainit( ) p )  and 863 

1− Δbinit( )bavg⎡⎣ , 1+ Δbinit( )bavg ) , where Δainit = 0.05 , Δbinit = 0.1 and bavg=(bmax+bmin)/2. Additionally, 864 

in online EM learning rules, ψ µν
ρ{ }  and φµ j

λ{ }  were initialized with random values uniformly 865 

sampled from 0.9bavg p2 ,1.1bavg p2⎡⎣ )  and 0.9 p3,1.1 p3⎡⎣ )  respectively. 866 

 867 

 868 
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