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	4 

	5 

Confidence	 in	 a	 decision	 is	 defined	 statistically	 as	 the	 probability	 of	 that	 decision	 being	6 

correct.	Humans,	however,	tend	both	to	under-	and	over-estimate	their	accuracy	(and	hence,	7 

their	 confidence),	 as	 has	 been	 exposed	 in	 various	 experiments.	 Here,	 we	 show	 that	 this	8 

apparent	 irrationality	 vanishes	 when	 taking	 into	 account	 prior	 participants'	 biases	9 

measured	in	a	separate	task.	We	use	a	wagering	experiment	to	show	that	modeling	subjects’	10 

choices	 allows	 for	 classifying	 individuals	 according	 to	 an	 optimism	 -	 pessimism	 bias	 that	11 

fully	 explains	 from	 first	 principles	 the	 differences	 in	 their	 later	 confidence	 reports.	 Our	12 

parameter-free	 confidence	 model	 predicts	 two	 counterintuitive	 patterns	 for	 individuals	13 

with	different	prior	beliefs:	pessimists	should	report	higher	confidence	than	optimists,	and	14 

their	 confidences	 should	 depend	 differently	 on	 task	 difficulty.	 These	 findings	 show	 how	15 

apparently	 irrational	 confidence	 traits	 can	 be	 simply	 understood	 as	 differences	 in	 prior	16 

expectations.	Furthermore,	we	show	that	reporting	confidence	actually	impacts	subsequent	17 

choices,	increasing	the	tendency	to	explore	when	confidence	is	low,	akin	to	a	deconfirmation	18 

bias.			19 

	20 

A	level	of	confidence	accompanies	all	of	our	decisions	[1].	This	sense	of	confidence	can	be	reported	21 

explicitly,	 or	 implicitly	 through	behavioral	markers	 such	as	 the	 amount	of	 time	willing	 to	wait	 to	22 

obtain	a	response	[2]	or	reaction	times	[3],	the	predisposition	to	wage	[4]	or	opt-out	to	a	lower	but	23 

safe	reward	[5].	The	use	of	such	implicit	measures	has	shown	that	a	sense	of	confidence	is	present	24 

in	rodents	and	nonhuman	primates	(see	[6]	for	a	review).		25 
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A	 quantitative	 approach	 to	 confidence	 helps	 formalize	 the	 concept	 and	 unify	 its	 different	26 

manifestations.	In	statistical	decision	theory,	the	normative	definition	of	decision	confidence	is	the	27 

probability	of	a	certain	choice	being	correct	[7-10].	Many	models	of	how	confidence	emerges	in	the	28 

brain	have	been	proposed,	such	as	accumulators	[2,	11-13],	drift	diffusion	[3],	and	attractor	models	29 

[14,	15].	 In	 these	models,	 confidence	 is	 interpreted	as	an	algorithmic	 construction	 from	variables	30 

available	 in	the	decision-making	process,	rather	than	a	readout	from	a	Bayesian	representation	of	31 

knowledge	[15],	using	confidence	metrics	such	as	the	difference	between	decision	variables,	post-32 

decision	evidence	and	reaction	time	combined	with	evidence	[3,	13,	15,	17,	18].	Depending	on	the	33 

parameter	values,	these	models	can	be	close	approximations	to	confidence	as	the	probability	of	the	34 

decision	being	correct	or	instead	show	systematic	deviations	from	optimality.	35 

The	normative	account	of	human	decision	confidence	was	recently	put	to	test	in	[19],	which	shows	36 

that	 a	 statistical	 definition	 of	 confidence	 indeed	 predicts	 various	 aspects	 of	 human	 confidence	37 

reports,	 in	 both	 perceptual	 and	 knowledge-based	 tasks.	 This	 study	 is	 part	 of	 a	 resurgence	 of	38 

rationality	as	a	paramount	human	trait,	which	came	about	with	the	realization	that	probabilities	are	39 

the	proper	language	in	contexts	of	uncertainty	such	as	those	we	encounter	in	everyday	life	[20,	21,	40 

22].	 The	 Bayesian	 rationality	 program	 came	 a	 long	way	 in	 explaining	 human	 behavior	 in	 a	wide	41 

range	of	higher	cognitive	domains,	such	as	 intuitive	physics	 [23],	 intuitive	psychology	[24,	25],	or	42 

causal	inference	[26].	Multimodal	sensory	integration	remains	a	classic	illustration	of	the	flexibility	43 

and	optimality	of	our	inference	mechanisms	[27,	28].	44 

The	normative	account	and	those	supporting	results	 [19,	29]	may	seem	at	odds	with	the	 fact	 that	45 

people	 often	 deviate	 from	 the	 statistical	 definition	 of	 confidence	 and	 are	 typically	 over-	 or	46 

underconfident	 in	many	 tasks	 [8,	30-39].	For	example,	Griffin	and	Tversky	showed	cases	of	over-	47 

and	underconfidence	in	intuitive	 judgements,	proposing	that	those	biases	arise	because	people	do	48 

not	 take	 into	account	 the	reliability	 (a.k.a.	weight,	 credence)	of	 the	evidence	at	hand.	Since	 taking	49 

into	account	the	reliability	of	evidence	is	a	landmark	of	statistical	computations,	Griffin,	Tversky	and	50 

several	 others	 therefore	 dismissed	 the	 statistical	 framework	 as	 suitable	 for	 the	 understanding	 of	51 

confidence.		52 

However,	there	are	many	reasons	why	subjects	may	deviate	from	optimality.	It	may	indeed	be	the	53 

case	 that	 subjects’	 computation	 does	 not	 adhere	 to	 statistical	 principles.	 But	 departure	 from	54 

optimality	may	 arise	 even	when	 one	 adheres	 to	 such	 principles,	 but,	 for	 instance,	 computes	 only	55 

approximately,	 or	 uses	 incorrect	 priors	 [40,	 41].	 Indeed,	 theory	 predicts	 that	 Bayesian	 rational	56 
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agents	 with	 different	 prior	 beliefs	 will	 be	 relatively	 overconfident	 about	 the	 accuracy	 of	 their	57 

estimators	 [42].	 In	 this	 work,	 we	 build	 on	 this	 idea,	 performing	 and	 modeling	 a	 wagering	58 

experiment	to	ask	whether	the	apparent	irrationality	of	confidence	reports	can	be	reconciled	with	59 

the	 statistical	 account	 of	 confidence	 if	 participants’	 biases	 on	 prior	 expectations	 are	 taken	 into	60 

account.	 In	 line	with	 the	 heuristics	 and	 biases	 program,	 it	 has	 been	 thoroughly	 documented	 that	61 

humans	have	a	bias	for	optimism	[43-45],	for	which	even	neural	mechanisms	have	been	described	62 

[46].	 Recently,	 quantitative	 modeling	 has	 shown	 that	 in	 some	 contexts	 this	 bias	 can	 lead	 to	63 

counterintuitive	behaviors,	 such	as	optimists	being	sometimes	more	conservative	 in	 their	 choices	64 

[47].	 Independently	 of	 the	 nature	 of	 this	 phenomenon,	 we	 encode	 the	 expectation	 bias	 (be	 it	65 

optimistic	 or	 pessimistic)	 as	 the	 prior	 entering	 the	Bayesian	 inference	mechanism,	 and	 postulate	66 

that	it	is	necessary	and	sufficient	to	fully	explain	the	otherwise	irrational	biases	in	confidence.	67 

To	avoid	the	inherent	circularity	of	accounting	for	biases	with	priors	[48],	we	designed	a	task	that	68 

associates	a	popular	multi-armed	bandits	gambling	 task	 [49-51]	and	confidence	reports.	We	used	69 

the	 gameplay	 (not	 the	 confidence	 reports)	 to	 characterize	 the	 individual's	 prior	 bias	 about	 the	70 

machines’	reward	rates	according	to	how	much	they	explore,	exploit	and	get	rewarded	in	the	task.	71 

Therefore,	 the	 prior	 bias	 of	 each	 participant	 is	 defined	 independently	 of	 the	 potential	 impact	 on	72 

confidence	that	we	aim	to	explain.		73 

Having	 a	 full	 task	 model	 not	 only	 allows	 us	 to	 study	 whether	 priors	 that	 dictate	 choice	 also	74 

condition	the	confidence	reports.	It	also	serves	us	to	tackle	the	less	usual	question	attaining	to	the	75 

effect	 of	 reporting	 confidence.	 We	 directly	 compare	 experimental	 situations	 with	 and	 without	 a	76 

confidence	 prompt	 and	 show	 an	 effect	 of	 asking	 for	 confidence	 akin	 to	 a	 “de-confirmation”	 bias:	77 

when	confidence	is	low,	producing	a	confidence	response	decreases	subjects'	commitment	to	their	78 

prior	choice	in	the	task.	79 

Our	analytic	approach	was	the	following.	First,	we	assured	that	subjects	were	widely	distributed	in	80 

a	 pessimistic-optimistic	 scale,	 and	 that	 this	 trait	 was	 stable	 throughout	 the	 task.	 Second,	 using	81 

Bayesian	probabilistic	learning,	we	inferred	subjects'	beliefs	about	the	machines'	reward	rates	and	82 

their	confidence	about	knowing	which	machine	payed	more	at	the	moment	of	the	confidence	report.	83 

The	 parameter-free	model	 predicts	 that	 normative	 statistical	 confidence	 should	 depend	 upon	 an	84 

interaction	between	the	prior	bias	(fitted	independently	from	confidence)	and	task	factors	such	as	85 

difficulty	 of	 the	 task,	 and,	 non-trivially,	 that	 confidence	 should	 be	 overall	 lower	 in	 optimistic	86 

subjects.	The	actual	human	patterns	of	confidence	reports	indeed	varied	in	the	predicted	way	as	a	87 
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function	 of	 their	 previously	 adjusted	 optimistic/pessimistic	 prior.	 In	 sum,	 our	 results	 resolve	 the	88 

tension	 between	 the	 normative	 rational	 account	 of	 behavior	 and	 the	 irrational	 trends	 seen	 in	89 

confidence	reports.			90 

Results	91 

Predictions from our model. 92 

In	the	popular	bandit	gambling	game,	a	subject	faces	several	machines	(two	here)	associated	with	93 

different	 reward	 rates.	 The	 subject	 repeatedly	 decides	 which	 machine	 to	 play,	 and	 observes	94 

whether	 this	 choice	 is	 rewarded	 or	 not	 at	 that	 specific	 trial.	 The	 machines’	 reward	 rates	 are	95 

unknown	 to	 the	 subject,	 but	 they	 can	be	 learnt	 over	 the	 course	 of	 the	 game.	Modeling	 actions	 in	96 

such	 an	 uncertain	 environment	 can	 be	 divided	 in	 two	 components:	 the	 learning	 component,	97 

through	which	 the	observer	updates	his	 representation	of	knowledge	given	 the	observations,	and	98 

the	decision	component,	 through	which	 the	observer	makes	a	decision	 towards	his	goal	based	on	99 

current	knowledge.	In	bandit	tasks,	the	goal	is	to	maximize	the	total	reward	over	a	fixed	number	of	100 

trials.	 The	 optimal	 solution	 for	 the	 decision	 component	 can	 be	 computed	 using	 dynamic	101 

programming,	but	it	requires	an	amount	of	calculations	that	grows	exponentially	with	the	amount	102 

of	trials	[52]	and	is	thus	unfeasible	as	a	psychological	mechanism.	By	contrast,	the	optimal	solution	103 

for	the	learning	component	is	much	cheaper	computationally.	It	 is	afforded	by	Bayesian	inference,	104 

which	represents	beliefs	about	the	machines’	payoffs	as	probability	distributions.		105 

For	the	learning	component,	observers	begin	each	experimental	block	(wherein	payoffs	were	fixed)	106 

with	a	prior	distribution	for	the	reward	probability	of	each	of	the	two	machines	in	the	experiment.	107 

We	parameterized	this	distribution	by	using	its	mean	b	and	a	weight	w,	which	quantifies	how	much	108 

does	the	agent	trusts	her	prior	beliefs	(see	Methods	for	details).	These	values	(b	and	w)	were	fitted	109 

to	subjects’	choices.	Low	values	of	the	prior	mean	b	correspond	to	a	pessimistic	perspective,	while	110 

high	 values	 of	 this	 parameter	 represent	 a	 more	 optimistic	 take.	 These	 distributions	 were	 then	111 

subjected	 to	 Bayesian	 updating	 after	 each	 machine	 choice	 and	 its	 corresponding	 outcome	 (see	112 

Methods).	We	posit	 (prediction	#1)	 that	 subjects	 from	 the	general	population	differ	 in	 their	prior	113 

beliefs:	there	is	a	range	of	optimistic/pessimistic	subjects	(classified	by	their	value	of	b),	and	those	114 

idiosyncratic	 priors	 should	 impact	 each	 subject’s	 behavior	 consistently	 across	 different	115 

experimental	conditions.		116 
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In	the	middle	of	a	block,	subjects	were	occasionally	asked	to	report	which	machine	payed	more,	and	117 

also	 to	 indicate	 their	 confidence	 in	 that	 answer.	 We	 formalized	 this	 confidence	 report	 as	 the	118 

probability	of	having	identified	correctly	the	best	machine.	The	probability	that	the	chosen	machine	119 

has	 a	 higher	 reward	 rate	 than	 the	 other	 one	 depends	 on	 two	 factors:	 the	 difference	 in	 the	120 

distributions’	means	(i.e.	one	minus	the	perceived	difficulty,	denoted	d),	and	the	precision	of	 those	121 

distributions	 (see	Methods	 for	 model	 details).	 Importantly,	 those	 confidence	 levels	 are	 read	 out	122 

from	 the	 learnt	 distributions	 directly,	 without	 parameter	 fitting	 and	 independently	 from	 the	123 

decision-making	process.	In	practice,	for	the	parameters	of	this	experiment,	the	optimal	confidence	124 

level	was	mostly	influenced	by	d,	and	comparatively	little	by	the	precision.		125 

Decisions	in	gameplay,	on	the	other	hand,	must	face	a	tension	between	maximizing	the	immediate	126 

reward	by	selecting	the	machine	that	apparently	pays	more	(a	behavior	known	as	exploitation)	and	127 

exploring	alternatives	to	more	accurately	learn	the	payoff	associated	to	all	machines	and	optimize	128 

future	decisions.	This	exploration-exploitation	tradeoff	implies	that	in	some	situations	the	rational	129 

action	(for	long-term	maximization	of	reward)	would	be	to	play	the	machine	with	the	lowest	payoff	130 

so	 far.	 Indeed,	when	 comparing	 two	decisions	with	 the	 same	machine	history,	 humans	 chose	 the	131 

machine	with	the	lowest	payoff	in	(12±4)%	of	gameplay	decisions,	and	only	(4±3)%	when	they	are	132 

asked	 which	 machine	 has	 the	 highest	 payoff	 so	 far	 (expressed	 as	 mean±s.d.	 ,	 t=8.83,	 p<0.0001	133 

(n=17)].	A	heuristic	solution	to	model	this	tradeoff	is	to	more	often	try	a	specific	machine	the	more	134 

it	 seems	 to	 pay	 than	 the	 other.	 We	 formalized	 this	 decision	 strategy	 with	 a	 sampling	 process	135 

characterized	 by	 the	 value	 of	 d	 and	 a	 parameter	 σ	 (adjusted	 and	 fixed	 to	 a	 single	 value	 for	 all	136 

subjects)	 which	 favours	 exploration	 by	 introducing	 uncertainty	 over	 the	 estimated	 value	 of	 the	137 

perceived	difficulty	d,	increasing	the	probability	of	exploring	the	machine	with	the	lowest	payoff	as	138 

d	increases	(see	Model	Details	in	Methods).	We	emphasize	that	the	normative	account	of	confidence	139 

in	the	‘which	machine	is	better’	decision	depends	only	on	the	learning	component	and	the	decision	140 

made	by	the	paricipant,	that	is,	it	is	independent	of	the	just	mentioned	process	that	may	have	given	141 

rise	to	the	decision.	142 

	143 

With	the	Bayesian	solution	to	the	 learning	component,	one	can	expect	two	distinct	 features	 in	the	144 

confidence	 reports	 when	 comparing	 high	 and	 low	 values	 of	 the	 prior	 bias	 b	 (optimists	 and	145 

pessimists,	respectively).	First,	pessimists	should	in	general	have	higher	confidence	than	optimists,	146 

particularly	 when	machines	 pay	more	 (prediction	 #2).	 Although	 it	 may	 appear	 counter-intuitive	147 

that	pessimistic	people	are	more	confident,	this	can	be	easily	understood:	expecting	less,	whenever	148 

they	 find	a	machine	that	pays	somewhat	well,	 they	are	very	confident	 that	 this	machine	 is	 indeed	149 
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the	best	 one.	This	 in	 turn	 is	 amplified	 in	high	 generosity	 sceneraios	 because	better	machines	 are	150 

played	more,	so	the	beliefs	of	the	unexplored	machine	remains	dominated	by	the	pessimistic	prior.	151 

Optimists	on	the	other	hand	expect	more,	so	playing	a	good	machine	does	not	separate	its	reward	152 

distribution	that	much	from	the	prior,	and	thus	confidence	is	lower.	This	effect	is	illustrated	in	Fig.	153 

1.	154 

	155 

A	second,	subtler	effect,	 is	related	to	the	change	in	confidence	as	a	 function	of	the	difficulty	of	the	156 

task	for	agents	with	highly	definite	prior	biases	(w>2).	We	first	introduce	some	useful	nomenclature	157 

for	 this	 purpose.	 Selecting	 the	 best	machine	 is	 difficult	when	both	 have	 paid	 similarly	 so	 far.	We	158 

manipulated	 the	 generative	 difficulty	 of	 a	 block	 experimentally	 by	 systematically	 varying	 the	159 

difference	 between	 the	 real	 reward	 rates	 of	 machines.	 However,	 given	 that	 subjects	 experience	160 

those	reward	rates	only	through	noisy	observations,	subjects	may	experience	a	difficulty	level	that	161 

departs	from	the	generative	difficulty	level	that	we	manipulated	experimentally.	This	is	particularly	162 

clear	 when	 a	 machine	 is	 left	 unexplored.	 To	 quantify	 objectively	 the	 difficulty	 of	 choices	 that	163 

subjects	were	exposed	to,	we	computed	the	unbiased	difficulty,	namely,	the	difficulty	that	would	be	164 

perceived	 by	 a	 subject	 who	 is	 unbiased	 (neither	 optimistic	 nor	 pessimistic).	 Specifically,	 it	 is	165 

computed	 as	 one	 minus	 the	 difference	 in	 mean	 reward	 rates	 at	 the	 moment	 of	 the	 report,	 as	166 

estimated	by	an	agent	with	a	non-informative	prior	distribution	(i.e.	with	b	and	w	fixed	to	1	and	2).	167 

In	the	long	run,	if	all	options	are	repeatedly	explored,	prior	biases	(when	any)	will	fade	out	and	the	168 

perceived	difficulty,	which	 takes	 into	account	 the	prior	bias	of	each	subject,	will	be	approximately	169 

equal	to	the	unbiased	difficulty.		170 

In	our	model,	if	the	machines	pay	little,	both	machines	will	be	explored,	optimistic	and	pessimistic	171 

prior	biases	will	fade	out,	and	all	agents	will	experience	a	similar	difficulty.	Recall	from	above	that	in	172 

our	model,	confidence	should	normatively	mostly	reflect	the	perceived	difficulty	(d),	so	that	when	173 

machines	 pay	 little,	 all	 subjects	 will	 agree	 to	 report	 confidence	 according	 to	 the	 same,	 unbiased	174 

difficulty.	 However,	 if	 at	 least	 one	 machine	 pays	 generously,	 a	 difference	 will	 arise	 between	175 

optimists	and	pessimists.	Optimists,	expecting	more,	will	still	eventually	switch	machines	expecting	176 

a	higher	 reward,	making	prior	biases	vanish	and	 reporting	 confidence,	 as	before,	 in	 line	with	 the	177 

unbiased	difficulty.	Pessimists,	on	the	other	hand,	will	 tend	to	stick	 to	 the	higher	paying	machine,	178 

leaving	the	other	one	mostly	unexplored,	and	therefore	described	essentially	by	its	prior.	This	will	179 

in	turn	have	the	effect	that	for	pessimists	the	perceived	difficulty	will	be	largely	independent	from	180 

the	unbiased	difficulty	and	therefore	confidence	in	those	subjects	will	be	different	from	confidence	181 
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in	 optimistic	 subjects.	 This	 pattern	 of	 confidence	 changes	 across	 different	 difficulty	 levels	 is	 our	182 

prediction	#3.		183 

This	last	prediction	can	be	summarized	as	follows:	for	every	agent	with	highly	definite	prior	beliefs	184 

(w>2),	the	perceived	difficulty	will	be	different	from	the	unbiased	difficulty	of	the	task	when	some	185 

options	are	left	unexplored	(e.g.	in	high	generosity	situations).	In	this	scenario,	optimists	are	simply	186 

agents	with	a	more	explorative	behavior	than	pessimists,	and	therefore	are	less	influenced	by	this	187 

effect	than	pessimists.	188 

	189 

Importantly,	 the	 two	 last	 predictions	 pertaining	 confidence	 are	 clearly	 falsifiable.	 This	 is	 because	190 

since	the	optimism	levels	for	participants	are	estimated	from	independent	data	(i.e.	the	gameplay),	191 

the	 model	 for	 confidence	 has	 no	 adjustable	 parameters:	 its	 predictions	 are	 inescapable.	192 

Additionally,	these	predictions	are	caused	by	the	Bayesian	representation	of	knowledge,	not	by	the	193 

specific	 confidence	 readout	 from	beliefs’	 distributions.	 Therefore,	 similar	 effects	 of	 the	 prior	 bias	194 

can	be	predicted	not	only	on	the	computation	of	statistical	confidence,	but	also	on	other	metrics	like	195 

the	distance	between	the	means,	the	estimated	payoff	of	the	most	generous	machine,	or	the	average	196 

payoff	of	both	machines,	to	name	a	few.	The	critical	aspect	is	that	the	estimation	of	the	underlying	197 

distribution	should	take	into	account	the	subject’s	prior	expectations.		198 

	199 

Optimistic and pessimistic behaviors in gameplay 200 

Participants	 played	 a	 two	 armed	 bandit	 game.	 Their	 task	was	 to	maximize	 the	 total	 reward.	We	201 

varied	 the	 reward	 rates	 of	 machine	 only	 in	 distinct	 blocks,	 each	 comprising	 16	 trials	 (in	 total,	202 

36,720	 decisions	 and	 765	 confidence	 reports).	 There	 were	 three	 types	 of	 blocks:	 those	 with	 a	203 

question	 asked	 mid-block	 about	 which	 machine	 pays	 more,	 and	 the	 report	 of	 the	 continuous	204 

associated	 confidence	 level	 (‘confidence’	 blocks),	 and	 as	 a	 control,	 blocks	 with	 only	 the	 ‘which’	205 

question	(‘which’	block)	and	blocks	without	any	question	('no'	blocks),	see	Fig.	2	and	the	Methods	206 

section	for	details.		207 

We	first	model	human	gameplay	behavior	 ignoring	 the	confidence	report.	We	 fitted	 the	model	by	208 

varying	b,	w	 and	σ	across	 subjects.	The	simplest	model,	 in	which	only	b	was	varied,	was	 the	best	209 

one.	Bayesian	Model	Comparison	indicated	that	there	was	a	probability	xp>0.98	that	this	model	was	210 

better	 than	 a	model	 that	 varied	 only	w	 or	 σ,	 and	 a	 probability	 xp>0.69	 that	 it	was	 better	 than	 a	211 

model	that	varied	any	combination	of	b,	w	and	σ	(see	Analysis	Details	in	Methods).	In	contrast	with	212 

the	other	parameters,	when	varying	b	alone,	the	model	showed	a	range	of	behaviors	that	covers	the	213 

entire	region	displayed	by	human	participants	for	various	behavioral	summaries	(see	Figs.	3	and	4);	214 
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and	the	adjusted	value	of	b	 for	each	participant	 is	consistent	across	different	 task	conditions	(see	215 

below).	Therefore,	from	now	on,	we	consider	this	simple	model,	varying	only	b	across	subjects,	and	216 

fixing	w	 and	 σ	 to	 their	 best	 fitting	 value	 at	 the	 group	 level	 (8	 and	 0.05	 respectively).	 We	 also	217 

compare	this	model	against	two	common	strategies	used	in	bandit	problems	[53]:	Win-Stay-Lose-218 

Shift	(WSLS)	and	the	optimal	solution	by	dynamic	programming.	Neither	of	these	is	flexible	enough	219 

to	account	for	the	behavioral	palette	observed	in	humans	(see	Fig	3).		220 

We	now	move	to	our	first	hypothesis,	namely,	that	a	level	of	optimism	can	be	consistently	ascribed	221 

to	each	participant.	The	prior	bias	b,	which	captures	the	level	of	optimism,	was	fit	 individually	for	222 

each	 participant.	 To	 test	 the	 idiosyncratic	 nature	 of	 this	 prior,	 we	 verified	 that	 it	 consistently	223 

impacts	behavior	across	different	conditions.	More	precisely,	we	split	blocks	in	Generous	and	Easy,	224 

Generous	and	Hard,	Avaricious	and	Easy,	and	Avaricious	and	Hard	by	median	splitting	 the	blocks	225 

according	 to	 their	 generative	 difficulty	 and	 their	 generative	 generosity	 (i.e.	 their	 average	 real	226 

reward	 rates).	 Then,	 we	 took	 two	 behavioral	 summaries:	 the	 average	 rewards	 vs.	 persistence	227 

(defined	as	 the	proportion	of	 trials	 in	which	a	machine	was	chosen	 immediately	after	a	 failure	 in	228 

that	machine)	and	rewards	vs.	exploration	obtained	by	the	subjects	in	these	four	categories	(Figs.	4	229 

and	S1,	respectively),	plus	these	same	summaries	on	the	aggregate	blocks	(Fig.	3).	We	fit	the	value	230 

of	 b	 for	 each	 participant	 so	 as	 to	 minimize	 the	 squared	 error	 between	 their	 behavior	 and	 the	231 

model's	for	all	10	summaries	(the	10	panels	in	Figs.	3,	4	and	S1).	Figs.	3	and	4	show	the	values	of	b	232 

for	the	model	and	for	each	participant,	which	match	those	of	the	model	and	remain	stable	across	the	233 

different	categories.	This	amounts	to	a	consistent	assignment	of	prior	bias	for	each	participants.	In	234 

other	words,	participants	 labeled	as	optimistic	(pessimistic)	 in	one	category	behave	optimistically	235 

(pessimistically)	in	all	other	categories.	We	confirm	the	consistency	of	fitted	b	values	by	analyzing	236 

their	 variance	 across	 categories	 and	 across	 individuals.	 A	 permutation	 test	 yields	 p	 <	 10-5	237 

(permutation	test,	see	Methods),	showing	that	the	within-subject	variance	of	fitted	b	values	across	238 

different	 categories	 is	much	 lower	 than	 the	between-subject	variance.	We	also	performed	a	 cross	239 

validation	test	by	fitting	each	subject	value	of	b	for	all	categories	except	one,	and	compare	this	fitted	240 

value	with	 the	one	 fitted	 independently	 in	 the	 left-out	 category,	yielding	R>0.71	 for	all	 categories	241 

(n=17	subjects	in	each	category,	p<0.01	for	all	categories),	reaffirming	the	intra-subject	consistency	242 

of	b	across	different	environments.	243 

Optimism inferred from gameplay behavior explains the bias in confidence	244 

Our	second	prediction	was	that	the	level	of	optimism,	fitted	onto	the	gameplay,	should	predict	the	245 

average	 confidence	 levels	 reported	 throughout	 the	 task.	 We	 examined	 participants'	 average	246 
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confidence	 reports	 for	 all	 payoff	 settings	 of	 the	 'confidence'	 type	 blocks	 after	 sorting	 participants	247 

into	 optimistic	 (n=10)	 and	 pessimistic	 (n=7),	 according	 to	whether	 their	 prior	 bias	b	 (fitted	 only	248 

from	gameplay,	without	the	use	of	the	confidence	reports)	was	greater	or	smaller	than	½.	The	other	249 

parameters	 (w	and	σ)	 showed	no	 significant	difference	between	 the	 two	groups.	As	predicted	by	250 

our	 model,	 optimistic	 participants	 were	 overall	 less	 confident	 in	 their	 answer	 to	 the	 question	251 

“which	machine	pays	more?”	 than	 the	pessimistic	 participants	 and	 the	difference	 grows	with	 the	252 

generosity	 of	 the	 task	 (Fig.	 5	 and	 Fig.	 S2a	 in	 Supplementary	 Information).	 The	 average	 reported	253 

confidence	for	optimists	and	pessimists	in	all	blocks	was	0.48±0.03	vs.	0.55±0.03	respectively,	and	254 

0.60±0.06	vs.	0.81±0.03	in	high	generosity	(>0.65)	blocks	(expressed	as	mean	±	s.e.m.).	The	average	255 

confidence	 reported	 by	 participants	 entered	 a	 two-way	 ANOVA	 with	 group	 (optimists	 and	256 

pessimists)	 and	 generosity	 condition	 (high	 and	 low)	 as	 between-	 and	 within-subjects	 factors,	257 

respectively.	The	ANOVA	showed	a	main	effect	of	the	optimistic/pessimistic	group	(F(1,15)=	5.445,	258 

p=<0.04)	 and	 a	 significant	 interaction	 between	 group	 and	 generosity	 (F(1,15)=	 8.385,	 p<0.02).	259 

Furthermore,	 although	 the	 average	 unbiased	 difficulty	 was	 approximately	 the	 same	 for	 all	260 

participants,	the	average	reported	confidence	per	participant	was	not.	Indeed,	it	decreased	with	the	261 

b	 value	 adjusted	 for	 that	 participant	 in	 the	 same	 way	 as	 the	 increase	 in	 the	 average	 difficulty	262 

perceived	by	an	optimal	agent	with	that	b	value	(see	Fig.	S2b	in	Supplementary	Information).	263 

	264 

We	now	 turn	 to	 our	 third	 prediction,	 that	 confidence	 reports	 in	 pessimists	 and	 optimists	 should	265 

depend	differently	on	the	difficulty	experienced	in	the	task.	The	results,	shown	in	Fig.	5,	are	striking:	266 

optimists	and	pessimists	show	very	different	confidence	patterns,	as	predicted	by	the	model.	267 

The	isoconfidence	lines	are	mostly	vertical	for	optimistic	agents,	signaling	a	direct	dependence	with	268 

task	difficulty.	For	pessimists,	however,	the	isoconfidence	lines	rotate	from	vertical	to	horizontal	as	269 

machine	generosity	increases,	indicating	a	weaker	dependence	with	the	unbiased	difficulty	in	high	270 

generosity	 situations.	 To	 further	 emphasize	 the	 importance	 of	 taking	 into	 account	 participants’	271 

prior	 beliefs,	we	 compare	 the	 predictions	 of	 our	model	with	 those	made	by	 a	model	with	 a	 non-272 

informative	 prior	 for	 every	 participant:	 without	 accounting	 for	 participants’	 biases,	 the	 model	273 

would	 show	 approximately	 vertical	 isoconfidence	 lines	 for	 both	 groups	 in	 Fig.	 5.	 Additionally,	274 

without	separating	optimists	from	pessimists,	human	confidence	report	would	be	overall	judged	as	275 

overconfident	 in	high	generosity	situations	and	underconfident	 in	 low	generosity	situations	when	276 

compared	with	the	model	with	a	non-informative	prior	(see	Fig.	S4	in	Supplementary	Information).	277 

However,	this	confidence	bias	is	precisely	what	is	expected	by	the	normative	model	after	including	278 

the	b	and	w	values	fitted	from	the	decision	part	of	the	task.	279 
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	280 

The Effect of Reporting Confidence	281 

One	corollary	of	the	last	section	is	that	we	have	a	good	model	to	predict	average	confidence	levels	in	282 

different	blocks	accurately,	as	can	be	tested	for	the	following	purpose	by	a	linear	fit	between	human	283 

average	block	confidence	and	model	prediction,	which	returns	R²=0.94	(p<0.001).	This	thus	allows	284 

us	to	answer	what	the	confidence	report	would	be	when	it	is	not	prompted	for,	which	can	in	turn	be	285 

used	to	compare	behavior	after	the	report	and	in	the	absence	of	such	report,	across	similar	levels	of	286 

(un)reported	confidence.	287 

We	 estimated	 the	 probability	 to	 shift	 away	 from	 the	 previously	 chosen	machine	 in	 high	 and	 low	288 

confidence	 blocks,	 splitting	 them	 at	 the	 median	 model	 confidence	 value	 (equal	 to	 0.79).	 After	289 

subjects	 were	 asked	 for	 confidence,	 this	 shift	 probability	 increased	 by	 comparison	 with	 the	 no-290 

report	 condition,	 and	 this	 shift	 was	 stronger	 in	 the	 low	 confidence	 blocks	 than	 in	 the	 high	291 

confidence	block	(see	Fig.	6).	The	fact	that	the	difference	between	producing	a	confidence	report	or	292 

not	appears	only	in	low	confidence	blocks	tells	us	that	this	really	amounts	to	an	effect	of	asking	for	293 

confidence,	 ruling	 out	 alternative	 explanations	 such	 as	memory	 effects.	When	 confidence	 is	 low,	294 

asking	for	it	alters	subsequent	behavior	strongly.	We	test	this	effect	and	the	interaction	through	a	295 

two-way	ANOVA,	which	showed	a	significant	effect	of	the	report	type	(which	report	vs.	confidence	296 

report)	on	the	shift	probability	after	the	report:	F(1,15)=5.60	(p<0.05),	and	also	significant	for	the	297 

interaction	 between	 confidence	 level	 and	 report	 type:	 F(1,15)=4.04	 (p<0.05),	 indicating	 that	 the	298 

shift	probability	is	different	for	different	report	types,	but	only	when	confidence	is	low.	299 

Of	course,	our	decision	model	as-is	is	incapable	of	explaining	this	effect,	since	it	has	no	information	300 

regarding	whether	 the	 confidence	was	 reported	 or	 not.	However,	we	 can	model	 the	 effect	 of	 the	301 

confidence	report	by	adding	a	 small	ad	hoc	 feature	 to	 the	 framework	developed.	When	asked	 for	302 

confidence,	the	model	increases	its	decision	variance	σ	(see	Methods)	by	a	factor	manually	fitted	to	303 

0.05	times	one	minus	the	reported	confidence.	With	this	extra	parameter,	we	are	able	to	reproduce	304 

the	post-report	behavior	(see	Fig.	6).		305 

Discussion	306 

We	 presented	 a	 two-armed	 bandit	 experiment	 in	 which	 participants	maximize	 their	 rewards	 by	307 

playing	machines	with	unknown	reward	rates.	Participants	explored	those	machines	and	they	were	308 

occasionally	 asked	 to	 report	 their	 confidence	 about	 knowing	which	machine	pays	more.	We	 first	309 
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showed	that	each	participant	can	be	identified	with	a	consistent	and	definite	optimistic/pessimistic	310 

prior	 bias	 according	 to	 how	 much	 they	 explore,	 exploit	 and	 get	 rewarded	 in	 the	 game,	311 

independently	of	 their	confidence	report.	Statistical	modeling	of	confidence	predicts	 that	subjects	312 

classified	 as	 pessimists	 should	 report	 higher	 confidence	 than	 subjects	 classified	 as	 optimists,	313 

specially	in	high	generosity	situations.	It	also	predicts	that	confidence	in	those	two	types	of	players	314 

should	 be	 impacted	 differently	 by	 task	 difficulty.	 Participants’	 behavior	 conformed	 to	 these	 two	315 

predictions.	 Our	 results	 indicate	 the	 variability	 of	 confidence	 reports	 across	 participants	 are	316 

rational	when	taking	into	account	their	different	prior	expectations.		317 

	318 

Taking	 into	 account	 participants’	 prior	 expectations	 can	 explain	 some	 apparently	 irrational	319 

behavior	in	various	contexts	[42].	For	instance,	we	can	revisit	the	result	of	Tversky	and	Griffin	[33]	320 

in	much	the	same	way.	Their	experiment	consisted	of	informing	participants	that	a	coin	is	biased,	321 

yielding	one	outcome	60%	of	time.	Subjects	were	not	informed	if	the	bias	was	toward	tails	or	heads.	322 

Outcomes	of	this	mysterious	coin	were	shown,	and	participants	were	asked	to	decide	if	the	bias	was	323 

toward	 tails	 or	 heads,	 and	 report	 their	 confidence	 in	 that	 decision.	 Subjects	 were	 typically	324 

overconfident	when	they	observed	a	few	tosses	with	a	strong	imbalance	and	underconfident	when	325 

they	observed	many	tosses	with	a	moderate	imbalance,	by	comparison	with	a	mathematical	model	326 

informed	 that	 the	 bias	 is	 exactly	 60%	 (a	 delta	 function),	 as	 the	 authors	 reported.	 If	 instead	 we	327 

model	 this	 prior	 with	 some	 uncertainty	 (with	 a	 Beta	 distribution	 centered	 on	 60%),	 then	 both	328 

humans	and	the	normative	model	display	the	same	pattern	of	overconfidence	and	underconfidence,	329 

and	 the	 magnitude	 of	 the	 confidence	 bias	 increases	 with	 the	 uncertainty	 of	 the	 prior	 (see	330 

Supplementary	 Information	 and	 Fig.	 S3).	 Although	 we	 did	 not	 reproduce	 Griffin	 and	 Tversky's	331 

experiment,	and	therefore	cannot	claim	that	participants’	prior	beliefs	in	that	task	are	indeed	better	332 

explained	by	a	more	permissive	prior,	 a	 similar	 logic	operates	 in	our	gambling	 task.	 If	we	 ignore	333 

participants'	prior	bias	from	gameplay,	and	use	the	‘reasonable’	non-informative	prior	instead,	they	334 

would	be	overall	misjudged	as	overconfident	(underconfident)	 in	high	(low)	generosity	situations	335 

(see	Fig.	S4).	We	showed	that	participants’	prior	beliefs	can	be	major	determinants	in	the	analysis	336 

of	 rationality	 in	 the	 human	 sense	 of	 confidence,	 and	 seemingly	 reasonable	 (but	 erroneous)	337 

assumptions,	like	a	non-informative	prior	would	be	in	our	experiment,	can	lead	to	serious	mistakes	338 

when	judging	rationality.	339 

	340 

Taking	 into	 account	 participants’	 prior	 beliefs	 appears	 key	 to	 evaluating	 the	 rationality	 of	 their	341 

behavior	in	our	task.	Such	an	approach	should	nevertheless	avoid	two	pitfalls.	The	first	is	circularity	342 
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(assuming	a	difference	by	appealing	to	priors	rather	than	explaining	it),	which	can	be	a	limitation	of	343 

Bayesian	models.	Indeed,	in	principle,	any	behavior	can	be	accounted	for	by	a	particular	set	of	prior	344 

beliefs	[48,	54].	The	second	is	overfitting	(improving	the	goodness-of-fit	by	resorting	to	more	free	345 

parameters).	Our	approach	avoids	 these	pitfalls	by	using	a	parsimonious,	general	Bayesian	model	346 

that	 accounts	 for	 both	 choice	 and	 confidence,	 resulting	 in	 a	 parameter-free	 confidence	 model.	347 

Indeed,	 we	 assumed	 that	 these	 two	 aspects	 of	 behavior	 (choice	 and	 confidence)	 are	 exclusively	348 

affected	 by	 the	 same	 set	 of	 prior	 beliefs.	 Similarly	 to	 cross-validation	 methods,	 where	 data	 are	349 

divided	 into	 “training	 and	 test”	 sets	 [55]	 in	 order	 to	 limit	 the	 complexity	 of	 the	 model	 (i.e.	 the	350 

number	 of	 free	 parameters),	 our	 experimental	 design	 is	 divided	 into	 “training	 and	 test”	 tasks	351 

(choices	and	confidence	report,	respectively).	Behavior	in	the	training	task	is	used	to	learn	-and	pin	352 

up-	the	prior	parameters	for	each	individual.	If	the	resulting	parameter-free	model	for	the	test	task	353 

predicts	 human	 data	 accurately,	 it	 is	 likely	 to	 generalize	 well	 to	 future	 data,	 limiting	 the	 risk	 of	354 

overfitting	[56].	A	different	way	to	learn	the	prior	beliefs	of	participants	is	by	iterated	learning	[57,	355 

58],	in	which	responses	given	in	one	trial	affect	the	data	shown	in	the	next.	It	can	be	shown	that,	if	356 

certain	 conditions	 are	 met,	 responses	 are	 eventually	 sampled	 from	 their	 prior	 distribution.	 In	357 

principle,	 this	 method	 could	 be	 implemented	 in	 our	 environment	 by	 a	 repetition	 of	 various	358 

experiments	in	which	a	participant	judges	the	payoff	of	a	machine	based	on	the	observed	outcomes	359 

in	that	trial,	and	the	real	payoff	of	the	machine	in	the	next	trial	would	be	equal	to	the	estimated	one	360 

by	 the	participant	 in	 the	previous	 trial	 (starting	with	a	random	payoff	 in	 the	 first	 trial).	As	 in	our	361 

approach,	 prior	 beliefs	 are	 then	 used	 to	 make	 parameter-free	 predictions	 in	 the	 test	 task	 and	362 

evaluate	the	generalization	potential	of	the	model.	363 

	364 

We	chose	to	display	the	confidence	in	a	two	dimensional	plane	instead	of	along	a	one-dimensional	365 

quantity	(e.g.	confidence	vs.	difficulty)	following	Aitchison	et.	al.	[29],	who	argue	that	there	is	always	366 

the	 freedom	 of	 reparameterizing	 confidence	 reports	 by	 a	 monotonous	 function,	 which	 in	 one	367 

dimension	would	allow	us	to	trivially	explain	any	observed	human	confidence	pattern	by	a	suitable	368 

such	 transformation.	 When	 plotting	 the	 results	 along	 two	 independent	 variables	 this	369 

reparameterization	 is	 no	 longer	 possible,	 and	 the	 arising	 pattern	 of	 isoconfidence	 lines	 is	 now	 a	370 

robust	 indicator	 of	 the	 participants'	 behavior.	 Specifically,	 there	 are	 (at	 least)	 two	 kinds	 of	371 

optimality.	The	two	dimensional	representation	only	analyzes	the	transformation	of	incoming	data	372 

into	 an	 internal	 representation	 from	which	 confidence	 is	 read	 out	 as	 a	 continuous	 variable	 (first	373 

type	of	optimality),	separating	it	from	the	mapping	of	this	continuous	variable	onto	some	external	374 

scale	 in	 order	 to	 report	 it	 (second	 type	 of	 optimality).	 Since	 the	 first	 type	 of	 optimality	 is	375 
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independent	of	rescaling	the	confidence	report	by	any	monotonous	function,	 the	two-dimensional	376 

analysis	 of	 human	 rationality	 is	 independent	 of	 a	 direct	 matching	 between	 the	 numerical	377 

probability	of	being	correct	and	the	human	confident	report	(i.e.	 the	calibration	of	confidence),	 in	378 

which	 humans	 do	 not	 seem	 to	 be	 optimal	 [8,	 35],	 and	 also	 independent	 of	 the	 different	ways	 in	379 

which	participants	may	use	 the	 confidence	bar,	 as	 long	 as	 it	 is	 consistent	 for	 each	participant.	 In	380 

particular,	 our	 two	 dimensional	 analysis	 studies	 how	 the	 knowledge	 of	 a	 rational	 agent	 should	381 

update	 in	 different	 situations	 (i.e.	 the	 45	 different	 blocks	 shown	 in	 Fig.	 5),	 and	what	 the	 relative	382 

values	 of	 confidence	 between	 these	 situations	 should	 be	 if	 it	 was	 a	 normative	 readout	 from	 the	383 

optimally	updated	knowledge.	The	predicted	differences	between	optimists	and	pessimists	strongly	384 

uphold	 human	 confidence	 as	 a	 readout	 from	 a	 probabilistic	 representation	 of	 knowledge	 that	 is	385 

optimally	(or	at	least	approximately	optimally)	updated	from	the	prior	[16].	386 

	387 

Although	 confidence	 reports	 have	 traveled	 a	 winding	 road	 in	 the	 psychology	 and	 neuroscience	388 

literature,	recent	work	is	settling	in	on	a	statistically	normative	account	of	confidence	[9,	19].	This	389 

study	 contributes	 to	 this	view,	 showing	how	 traits	 that	have	been	 traditionally	 seen	as	 irrational	390 

can	be	in	fact	understood	as	differences	in	prior	expectations.	This	further	fuels	the	view	of	humans	391 

as	rational	animals,	and	signs	off	another	success	of	the	Bayesian	rationality	program	[59].		392 

	393 

The	importance	of	principled,	quantitative	and	robust	behavioral	models	is	not	only	theoretical,	but	394 

also	 practical.	 Here,	 the	 availability	 of	 a	 successful	 model	 for	 confidence	 allowed	 us	 to	 study	 a	395 

further,	'higher	order'	phenomenon:	how	reporting	confidence	affects	later	behavior.	This	question,	396 

despite	its	simplicity,	seems	to	have	been	overlooked	in	the	literature	so	far.	To	our	knowledge,	we	397 

present	 the	 first	 contribution	 in	 this	 direction.	We	 report	 that	 probing	 subjects	 for	 a	 confidence	398 

report	 increases	explorative	behavior	 in	subsequent	 trials,	as	 if	 subjects	relied	 less	on	 their	prior	399 

experience.	 An	 accurate	 model	 of	 confidence	 is	 useful	 here	 to	 disprove	 alternative	 low-level	400 

explanations	such	as	that	the	time	spent	answering	the	confidence	question	washes	out	the	carried	401 

knowledge	 representation.	 Indeed,	 by	 telling	 low	and	high	 confidence	 regimes	 apart	 through	 the	402 

use	 of	 the	model,	we	 are	 able	 to	 show	 that	 the	 change	 in	 behavior	 is	 specific	 to	 low	 confidence	403 

situations,	hence	ruling	out	an	explanation	in	term	of	forgetting.		404 

	405 

However,	our	model	for	gameplay	choices	does	not	explain	 this	 increased	explorative	behavior.	 In	406 

the	 context	 studied,	participants	 should	have	a	 fairly	 robust	 idea	of	 the	machine's	payoffs	by	 the	407 

time	 they	 get	 to	 the	 confidence	 question,	 such	 that	 increasing	 exploration	 at	 that	 stage	 proves	408 
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indeed	 suboptimal.	 An	 interesting	 possibility	 is	 that	 participants	 could	 interpret	 a	 confidence	409 

prompt	as	a	hint	that	they	are	 in	the	wrong	track,	and	hence	 increase	their	exploration.	Although	410 

this	 is	 partially	 responded	 by	 the	 separation	 between	 high	 and	 low	 confidence	 trials,	 it	 is	411 

nevertheless	 a	 matter	 for	 further	 inquiry.	 Similar	 interaction	 between	 behavior	 and	 the	412 

experimenter’s	question	was	reported	in	other	experiments,	 including	studies	on	causal	 inference	413 

in	development.	 In	 such	studies,	 children	are	asked	repeatedly	 the	 same	question.	Their	answers	414 

are	typically	modeled	as	samples	from	a	distribution	[60].	However,	when	the	same	person	asks	the	415 

same	question	twice,	children	tend	to	think	that	they	have	provided	an	incorrect	answer,	and	thus	416 

change	their	answer	the	second	time	[61].		417 

	418 

Our	results	also	illustrate	that	principled	quantitative	models	prove	particularly	informative	when	419 

they	 predict	 non-trivial,	 maybe	 even	 counterintuitive	 behaviors	 [47]:	 a	 pessimistic	 agent	 should	420 

yields	 higher	 confidences	 than	 an	 optimistic	 one.	 This	 is	 particularly	 relevant	 in	 relation	 to	 the	421 

“irrational”	optimism	bias,	by	which	we	tend	to	expect	more	from	the	world	than	what	 it	actually	422 

gives	us	[43].	This	bias	towards	high	expectations	would	thus	mean	that	we	should	typically	display	423 

underconfidence	 with	 respect	 to	 an	 unbiased	 agent,	 according	 to	 the	 aforementioned	 relation.	424 

However,	 we	 found	 that	 a	 given	 individual	 can	 display	 both	 under	 and	 overconfidence,	 with	 a	425 

tendency	 to	 the	 latter	 in	 most	 domains	 [62].	 Here,	 we	 propose	 an	 explanation	 in	 a	 given	 task,	426 

showing	 that	 apparently	 irrational	 confidence	 judgements	 can	 be	 simply	 understood	 as	 varying	427 

prior	 biases.	How	general	 the	 form	of	 this	 connection	 is,	 and,	 how	optimism	and	overconfidence	428 

may	coexist	are	interesting	new	avenues	for	research.	429 

	430 

	431 

Methods	432 

Experiment Details 433 

A	 total	 of	 18	 adult	 participants	 played	 a	 two	 armed	 bandit	 game	 for	 which	 they	 were	 asked	 to	434 

maximize	total	reward.	One	participant	was	excluded	from	the	analysis	for	obtaining	a	total	reward	435 

consistent	with	 random	play.	Each	participant	 completed	135	blocks	of	16	 trials,	 giving	a	 total	of	436 

36720	 individual	 decisions	 and	 765	 confidence	 reports.	 Participants	 were	 informed	 they	 were	437 

going	to	play	a	series	of	unrelated	blocks	in	each	of	which	the	payoff	of	the	machines	was	unknown	438 
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but	fixed,	and	their	aim	was	to	maximize	the	total	reward	in	order	to	win	a	monetary	prize.	Blocks	439 

were	 clearly	 delineated	 from	 one	 another	 by	 pauses,	 and	 there	 was	 a	 message	 reminding	440 

participants	that	separate	blocks	were	independent	from	one	another.	441 

In	 the	 ‘which’	 type	of	block,	participants	were	asked	to	choose	which	machine	they	thought	has	a	442 

higher	 nominal	 payoff,	 based	 on	 their	 limited	 experience	 at	 the	 moment	 of	 the	 report.	 In	 the	443 

‘confidence’	type	of	block,	they	were	also	required	to	make	a	continuous	judgement	of	confidence	in	444 

their	decision.	As	mentioned	before,	the	statistical	account	for	this	measure	is	the	probability	that	445 

the	decision	made	is	correct.	Finally,	'no'	blocks	included	no	question.	446 

The	 nominal	 reward	 rates	 for	 the	 machines	 were	 chosen	 homogeneously	 between	 0	 and	 1	 and	447 

repeated	for	each	type	of	block	(45	blocks	of	each	type).	This	choice	was	made	in	order	to	get	the	448 

widest	 possible	 spectrum	 of	 payoffs,	 this	 being	 the	 reason	we	 do	 not	 see	 the	 strong	 inverted	 U-449 

shape	 in	 the	 plots	 of	 rewards	 vs.	 exploration	 characteristic	 of	 bandit	 experiments.	 The	 order	 of	450 

blocks	was	randomized	for	each	participant,	and	each	participant	completed	6	demonstration	trials	451 

before	begining	the	task.	452 

The	 task	 was	 designed	 and	 implemented	 in	 Python	 using	 the	 PyGame	 library	 [63],	 and	 lasted	453 

around	one	hour	during	which	the	participant	was	left	alone	in	a	quiet	room.	Average	performance	454 

did	not	show	a	significant	decay	during	the	task.	455 

Model Details 456 

Bayesian	knowledge	update.	Observers	begin	each	block	with	a	prior	distribution	Beta(ps,pf)	for	the	457 

reward	probability	of	each	of	 the	two	machines,	where	ps	and	pf	encode	fictitious	prior	successes	458 

and	 failures,	 respectively.	 A	 natural	 reparameterization	 of	 this	 distribution	 is	 by	 using	 its	 mean	459 

b=ps/(ps+pf),	 which	 is	 a	 prior	 measure	 of	 the	 expected	 payoff,	 and	w=ps+pf,	 which	 encodes	 the	460 

weight	of	prior	evidence.	Due	to	the	conjugacy	between	the	beta	prior	and	the	binomial	likelihood	461 

assumed	 for	 the	 rewards,	 the	 posterior	 distribution	 after	 experiencing	 s	 successes	 and	 f	 failures	462 

results	 in	a	Beta(ps+s,pf+f).	 Intuitively,	 low	values	of	the	prior	mean	b	correspond	to	a	pessimistic	463 

perspective,	while	high	values	of	this	parameter	represent	a	more	optimistic	take.	464 

	465 

Computation	 of	 statistical	 confidence.	 The	 normative	 statistical	 confidence	 that	 the	 agent	 should	466 

report	after	deciding	(using	any	decision	process)	that	machine	B	has	a	higher	payoff	that	machine	467 

A	is:	468 

!"#$! ∝ !"#! !  1 − !"#! !  !"
!

!
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where	!"#! ! 	 is	 the	 value	 of	 the	 Beta	 distribution	 of	machine	 A	 (at	 the	moment	 of	 the	 report)	469 

evaluated	at	!	and	 1 − !"#! !  is	the	proportion	of	the	Beta	distribution	of	machine	B	that	lies	in	470 

values	higher	than	! .	The	confidence	!"#$!	that	machine	A	is	better	than	B	is	analogous.	471 

Intuitively,	 the	process	of	computing	confidence	 in	 the	decision	 that	machine	B	pays	more	 than	A	472 

can	 be	 seen	 as	 taking	 an	 infinite	 number	 of	 samples	 from	A,	 and	 for	 each	 sample	 calculating	 the	473 

proportion	of	the	distribution	of	B	that	lies	over	it.	474 

	475 

Decision-making	 model	 and	 motivation.	 The	 confidence	 report	 depends	 only	 on	 the	 learning	476 

component,	 whose	 optimal	 solution	 is	 presented	 above.	 By	 contrast,	 the	 optimal	 solution	 for	477 

deciding	which	machine	to	play	given	the	experience	so	far	in	order	to	maximize	future	rewards	is	478 

more	difficult.	However,	this	is	a	well	studied	problem	that	has	been	solved	in	finite-horizon	bandit	479 

problems	 by	 dynamic	 programming	 -looking	 at	 all	 possible	 outcomes	 from	 the	 last	 trial	 to	 the	480 

current	one-,	an	approach	that	requires	an	amount	of	calculations	that	grows	exponentially	with	the	481 

number	of	remaining	trials	[52,	53].	482 

Several	 heuristics	 have	 been	 developed	 in	 order	 to	 approximate	 the	 optimal	 solution,	 or	 mimic	483 

human	judgements	[53,	64].	We	modeled	the	decision	of	which	machine	to	play	as	follows.	First,	we	484 

define	 the	 variable	 d	 (perceived	 difficulty)	 as	 one	 minus	 the	 absolute	 value	 of	 the	 difference	485 

between	the	means	of	both	machines’	posterior	distribution.	A	sample	decision	value	is	then	taken	486 

from	a	normal	distribution	with	mean	(1-d)	and	standard	deviation	σ	which	we	set	equal	 to	0.05	487 

throughout.	If	the	sample	is	negative,	then	the	machine	with	the	lower	estimated	payoff	is	chosen	(a	488 

decision	to	explore).	If	the	percept	is	positive,	the	arm	with	the	higher	estimated	payoff	is	chosen	(a	489 

decision	to	exploit).	490 

Several	 arguments	 support	 the	 choice	 of	 this	 heuristic	 as	 a	 model	 for	 the	 decision-making	491 

component.	 First,	we	 compare	different	 alternative	decision	models	 according	 to	 their	mean	per-492 

trial	 likelihood	 in	 different	 conditions	 (see	 [64]	 for	 the	 strategy	 used	 to	 compare	 stochastic	with	493 

deterministic	models)	and	 found	 that	our	model	presented	a	high	overall	 agreement	with	human	494 

data	when	 compared	 to	 other	 alternatives	 (see	 Fig.	 S5	 in	 Supplementary	 Information).	 Second,	 it	495 

captures	 the	proportion	of	explorative	decisions	 (choosing	 the	machine	with	 the	 lowest	payoff	 so	496 

far)	seen	in	humans	as	a	function	of	the	perceived	and	unbiased	difficulty	of	the	task,	which	is	not	497 

the	case	for	most	other	heuristics	(like	ε-greedy,	which	predicts	a	constant	function)	or	the	optimal	498 

model,	which,	 for	 two-armed	bandits,	almost	always	choose	the	machine	with	the	highest	success	499 

ratio	 so	 far.	 Third,	 by	 only	 accounting	 for	 d,	 this	 heuristic	 ignores	 the	 uncertainty	 about	 the	500 

estimated	reward	rates	(w)	and	assume	a	fixed	randomness	of	choice	across	individuals	(σ),	so	that	501 
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all	 the	variation	 in	 the	behavior	of	different	participants	 can	be	accounted	 for	only	by	a	different	502 

prior	mean	b	 (Figs.	 3,	 4	 and	 S1).	 This	 assumption	 agrees	with	 the	 statistical	 analysis	 of	 the	data,	503 

which	 shows	 that	 the	model	 that	 varies	 only	b	was	 a	 better	model	when	 compared	 to	 any	 other	504 

model	with	 one,	 two	 or	 three	 degrees	 of	 freedom	 (xp>0.69	 -exceedance	 probability-,	 see	 below).	505 

Additionally,	it	is	not	possible	to	cover	the	entire	spectrum	of	behavioral	summaries	seen	in	Figs.	3,	506 

4	 and	 S1	 just	 by	 varying	w	 or	 σ,	 and	 neither	w	 nor	 σ	 are	 as	 consistent	 as	b	 for	 each	 participant	507 

across	different	environmental	conditions.		508 

 509 

Analsis Details	510 

 511 
Consistency	of	the	prior	bias.	Participants’	gameplay	is	shown	with	black	triangles	in	Figures	3,	4	and	512 

S1,	which	 use	 the	 following	 summary	measures	 for	 the	 axes:	 average	 reward	 per	 block,	 average	513 

exploration	 per	 block	 (proportion	 of	 trials	 in	 which	 there	 is	 a	 change	 in	 machine	 choice),	 and	514 

average	persistence	per	block	(proportion	of	trials	where	a	machine	is	chosen	immediately	after	a	515 

no-reward	trial	in	that	machine).	Each	person	is	labeled	with	a	unique	color	in	all	regimes,	namely	516 

the	value	of	b	that	minimizes	the	squared	distance	to	the	model	predictions	summed	across	the	10	517 

summaries	 of	 Figures	 3,	 4	 and	 S1.	 It	 is	 visually	 evident	 from	 these	 figures	 that	 the	 color	 label	 is	518 

consistent,	in	the	sense	that	if	a	participant	is	best	represented	by	a	pessimistic	(optimistic)	value	of	519 

the	prior	mean	b	 in	one	condition,	then	this	participant	will	 likely	be	represented	by	a	pessimistic	520 

(optimistic)	value	of	b	in	all	other	conditions.		521 

We	 can	 check	 the	 statistical	 validity	 of	 this	 assertion	 by	 performing	 a	 permutation	 test	 in	 the	522 

following	 manner.	 For	 each	 participant,	 we	 compute	 the	 variance	 of	 the	 values	 of	 b	 that	 best	523 

represent	 his	 or	 her	 behavior	 in	 each	 of	 the	 10	 different	 conditions	 separately.	 For	 example,	 if	 a	524 

participant	 is	best	represented	by	an	optimistic	behavior	 in	some	conditions,	but	by	a	pessimistic	525 

behavior	in	others,	their	value	of	the	variance	will	be	high.	A	within-subject	variance	that	is	smaller	526 

than	 the	between-subject	 variance	 indicates	 that	 the	optimistic/pessimistic	difference	pertains	 to	527 

the	 group	 level	 rather	 than	 for	 individual	 subjects.	 Therefore,	 the	 test	 consisted	 on	 performing	528 

100,000	 random	permutations	 between	 the	participants’	 labels	 across	 conditions,	 and	measuring	529 

the	 variance	 for	 each	 surrogate	 across	 the	 10	 conditions.	 For	 every	 permutation,	 the	 calculated	530 

variance	 for	 all	 surrogates	 was	 higher	 than	 the	 variance	 of	 all	 participants	 without	 permuting,	531 

yielding	p<(1/100,000).	532 

	533 
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Two-dimensional	presentation	of	the	results.	Since	the	iso	confidence	lines	in	Fig.	5	do	not	change	if	534 

we	reparameterize	confidence	by	a	monotonous	function,	and	therefore	neither	does	the	prediction	535 

#3	of	our	model,	we	chose	to	display	the	data	as	was	reported	by	the	participant	in	the	continuous	536 

confidence	 bar	 between	 0	 and	 1,	 without	 any	 calibration	 function.	 If	 we,	 for	 example,	 assign	537 

quantiles	to	the	answers	of	each	subject,	then	prediction	#2	of	the	model	(namely,	pessimists	report	538 

higher	 confidence	 than	 optimists)	 is	 partially	 opaqued.	 However,	 since	 the	 strength	 of	 this	539 

asymmetry	between	optimists	and	pessimists	increases	when	one	option	is	played	more	frequently	540 

than	the	other,	we	still	see,	after	reparametrization,	that	optimists	and	pessimists'	confidence	varies	541 

in	 a	 different	 way	 with	 the	 generosity	 of	 the	 task	 (which,	 in	 practice,	 is	 proportional	 to	 the	542 

difference	between	 the	 exploitation	 of	 different	 options),	 both	 for	 humans	 and	 for	 the	normative	543 

model.	This	is	shown	in	Fig.	S2a	(see	Supplementary	Information).		544 

To	give	 the	relevant	 information	about	 the	machines'	 reward	history,	 four	numbers	are	required:	545 

the	successes	and	failures	in	each	machine	until	that	point.	Therefore,	it	is	possible	that	two	points	546 

in	the	same	location	of	the	two-dimensional	space	constructed	by	displaying	generosity	vs.	difficulty	547 

in	Fig.	5	actually	correspond	to	two	different	points	 in	the	four-dimensional	space,	 i.e.	 to	different	548 

machine	 histories.	 This	 effect	 is	 particularly	 important	 when	 comparing	 high	 generosity	 points	549 

between	 optimists	 and	 pessimists.	 For	 the	 latter,	 the	 points	 in	 this	 area	 correspond	 to	 a	 higher	550 

exploitation	 (choosing	 one	 machine	 more	 often	 than	 the	 other)	 than	 the	 points	 in	 this	 area	 for	551 

optimists.	As	explained	before,	this	 is	part	of	the	reason	we	find	horizontal	 isoconfidence	lines	for	552 

pessimists	but	not	for	optimists.		553 

We	also	note	that	the	patterns	we	observe	persist	even	when	using	the	generative	generosity	and	554 

difficulty	instead	of	the	unbiased	generosity	and	difficulty;	they	are	simply	more	noisy.	Finally,	note	555 

that	not	all	regions	in	this	space	are	allowed,	for	instance,	the	block	cannot	be	easy	if	both	machines	556 

pay	very	little.		557 

	558 

Model	 comparison.	The	exceedance	probability	 (xp)	of	a	model	quantifies	 the	probability	 that	 this	559 

model	is	more	frequent	than	the	others	(within	the	tested	set)	in	the	general	population	of	subjects.	560 

We	computed	exceedance	probabilities	 from	the	model	evidence	using	the	software	developed	by	561 

[65].	 The	 evidence	 for	 each	 model	 and	 each	 subject	 was	 calculated	 by	 integrating	 each	 model's	562 

mean	 likelihood	 over	 its	 parameters,	 under	 the	 i.i.d	 data	 assumption.	 The	 integral	 was	563 

approximated	by	a	sum	over	a	discrete	grid.	Grid	points	(10	points	for	b	and	w,	8	for	σ)	were	spaced	564 

linearly	 for	parameters	b	and	w	and	exponentially	 for	σ	(which	corresponds	 to	a	non-informative	565 

prior	 in	 log-space,	 a	 natural	 choice	 for	 variance	 parameters).	 The	 final	 result	 depends	 on	 the	566 
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integration	limits	chosen	for	each	parameter.	The	parameter	b	is	bounded	between	0	and	1,	but	w	567 

and	 σ	 are	 unbounded.	 Limits	 were	 chosen	 so	 that	 the	 behavior	 of	 the	 model	 did	 not	 change	568 

significantly	 for	 parameter	 values	 beyond	 them	 (w	 between	 2	 and	 120;	 σ	 between	 !!3	 and	 !4).	569 

However,	the	results	are	robust	to	the	choice	of	these	limits:	similar	exceedance	probability	values	570 

are	 obtained	 when	 the	 limit	 was	 moved	 plus	 or	 minus	 two	 points	 in	 the	 chosen	 scale	 for	 each	571 

parameter.	572 

	573 

Data	availability.	The	behavioural	data	are	available	here:	574 

https://figshare.com/articles/Behavioral_data/4788823	575 
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Figure 1. A probabilistic model of the task, pessimists 
should report more con�idence than optimists. Initially 
(left), the prior belief distribution over the payoff of both 
machines lies in high values for optimists (high bo) and low 
values for pessimists (low bp). In situations in which one 
option is chosen more frequently than the other, optimists 
and pessimists are expected to differ largely in the 
con�idence they report after receiving the exact same 
history of successes and failures in both machines (in this 
case, one failure in the blue machine and 6 successes in the 
red one). In practice, one necessary condition for choosing 
one option more frequently is to receive more reward from 
one of the options (represented by the distribution in red). 
In this situation, the distribution from the option left behind 
(blue) will not be far from the prior, yielding two distribu-
tions that overlap more in optimistic than pessimistic, and 
hence a lower perceived dif�iculty for pessimists than 
optimists (dp < do), and a higher con�idence report for 
pessimists than optimists. 
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Figure 2. The bandit gambling task. Each block consisted 
of 16 trials. Depending on the type of block being played, 
the block was played without interruption (No report); the 
participant was required to choose which machine had the 
higher nominal payoff (Which report); or same as the 
Which report plus a continuous report between 0 and 1 for 
the con�idence in that decision (Con�idence report). Each 
participant played 45 of each type of blocks, each with 
different, �ixed machine payoffs.
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Figure 3. A range of behaviors accounted for by the optimism 
level. Average persistence per block corresponds to the proportion 

of trials in which a machine is chosen immediately after a no-reward 

trial in that machine. Average exploration per block is the proportion 

of trials in which there is a change in machine choice. Average 

reward per block is to the proportion of trials in which a reward was 

obtained. Participants are shown with blacked-edge triangles. The 

color within each triangle corresponds to the value of b �itted from 
these two panels together with the eight panels in Figs. 4 and S1. 

Each of these two panels shows behavior averaged over all 135 

blocks. The prior bias corresponds to values of  b = ps/(ps+pf) 

between 0 (pessimistic) and 1 (optimistic). The coloured clouds 

correspond to 140 runs of the model. In each run, prior parameters 

ps and pf were sampled from a discrete uniform distribution from 1 

to 7, with the constraint that w=ps+pf=8 in every run.  Since the 

values of w and σ were �itted globally, the entire variation of human 
behavior can therefore be accounted for solely by the variation of the 

prior mean b. In comparison, the entire range of behaviors for the 

optimal (red) and Win-Stay-Lose-Shift (green) models are much 

more restricted and incompatible with the data. 

Figure 4. The optimism level is an idiosyncratic trait, 
stable across conditions. Average rewards vs. average 

persistence in different regimes. Legend as in previous 

�igure. Each panel shows the averaged results from 10 to 15 
different blocks, all belonging to a different regime (Gener-

ous and Easy, Generous and Hard, Avaricious and Easy, and 

Avaricious and Hard) according to the generative dif�iculty 
and generosity of the block. The coloured clouds corre-

spond to 700 runs of the model, generated as in previous 

�igure. The prior biases (colors) are assigned consistently to 
participants across regimes. This can be seen by noting that 

pessimist (optimist) participants tend to be represented by 

pessimist (optimist) values of the model in every regime. 

We validated this observation with a permutation test and a 

cross validation test (see the results in main text, details in 

Methods). 
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Figure 5. Over- and under-con�idence are explained by the prior optimism level measured in gameplay. Con�idence levels 
reported by humans and the normative model as a function of the unbiased dif�iculty and unbiased generosity on the block. Unbiased 
dif�iculty (generosity) is computed as the distance (average) between the means of machines’ reward rates at the moment of the 
report, as estimated objectively given the exact observations received by subjects. Squares correspond to the 45 ‘con�idence’ type 
blocks, each with a different nominal payoff. The color of the squares represents the average reported con�idence for all subjects in that 
block (10 optimists, 7 pessimists), and the position corresponds to the average uniform generosity and uniform dif�iculty in those 
blocks.  The dotted isocon�idence lines were computed by �irst interpolating, then separating regions with polynomial isocon�idence 
curves and then performing linear �its over these curves. Humans are classi�ied as pessimistic or optimistic based on their prior bias 
b, obtained separately from their decisions in gameplay. The differences between optimists and pessimists are accurately captured by 
the normative co�idence model. First, pessimists report higher con�idence than optimists on average, and this is particularly salient in 
the region of high generosity (see Fig. 1 for an explanation of this effect). Second, isocon�idence lines are more horizontal for pessimists 
than for optimists in situations of high generosity.  Note that a model with a non-informative prior for every participant would show 
approximately vertical isocon�idence lines for both groups. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127399doi: bioRxiv preprint 

https://doi.org/10.1101/127399


0

0.25

0.5

0

0.25

0.5

Which WhichConfidence Condifendce

High Confidence High ConfidenceLow Confidence Low Confidence

P
(s

h
if
t)

 a
ft

e
r 

re
p
o
rt

P
(s

h
if
t)

 a
ft

e
r 

re
p
o
rt

Humans Model

Which WhichConfidence Condifendce

*
*

n.s. *
*

n.s.

Figure 6. Probing con�idence induces a decon�irmation bias in 
subsequent choices. In low con�idence situations, the probability of 
shifting to the other option after the report is bigger in blocks in which 
con�idence is reported ('con�idence') than in blocks in which only the 
best machine is reported ('which'). The model results corresponds to 
the average results in 17 runs of the full task (corresponding to the 17 
participants). The model was provided with a 'report mechanism' that 
distinguishes both types of block. Signi�icant interactions (p<0.05) are 
indicated with “*” between the groups, non signi�icant with “n.s.”. Error 
bars indicate s.d. across participants (n=17).

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/127399doi: bioRxiv preprint 

https://doi.org/10.1101/127399

