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Metabolite	 exchanges	 in	 microbial	 communities	 give	 rise	 to	 ecological	1	

interaction	networks	that	influence	ecosystem	diversity	and	stability1-6.	These	2	

exchanges	 depend	 on	 complex	 intracellular	 pathways	 thus	 raising	 the	3	

question	of	whether	 ecological	 interactions	 are	 inferable	 from	genomes.	We	4	

address	these	questions	by	integrating	genome-scale	models	of	metabolism7,	5	

to	compute	the	fitness	of	interacting	microbes,	with	evolutionary	game	theory,	6	

which	 uses	 these	 fitness	 values	 to	 infer	 evolutionarily	 stable	 interactions	 in	7	

multi-species	microbial	“games”.	After	validating	our	approach	using	data	on	8	

sucrose	 hydrolysis	 by	 S.	 cerevisiae,	 we	 performed	 over	 80,000	 in	 silico	9	

experiments	to	evaluate	the	rise	of	unidirectional	and	cross-feeding	metabolic	10	

dependencies	 in	 populations	 of	 Escherichia	 coli	 secreting	 189	 amino	 acid	11	

pairs.	 We	 found	 that,	 despite	 the	 diversity	 of	 exchanged	 amino	 acids,	 most	12	

pairs	 conform	 to	 general	 patterns	 of	 inter-species	 interactions.	 However,	13	

several	 amino	 acid	 pairs	 deviate	 from	 these	 patterns	 due	 to	 pleiotropy	 and	14	

epistasis	in	metabolic	pathways.	To	better	understand	the	emergence	of	cross-15	

feeding,	 we	 performed	 in	 silico	 invasion	 experiments	 and	 found	 possible	16	

evolutionary	 paths	 that	 could	 lead	 to	 such	 association.	 Overall,	 our	 study	17	

provides	 mechanistic	 insights	 into	 the	 rise	 of	 evolutionarily	 stable	18	

interdependencies,	 with	 important	 implications	 for	 biomedicine	 and	19	

microbiome	engineering	8-10.	20	

	21	

	22	

	23	

	24	

	25	

	26	
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Obligate	 dependencies	 among	microorganisms,	 through	 the	 exchange	 of	 essential	1	

metabolites	 have	 been	 hypothesized	 to	 be	 ubiquitous	 in	 microbial	 ecosystems	 1.	2	

Similar	interactions	have	also	been	engineered	in	laboratory	systems,	mainly	based	3	

on	 genetically	 induced	 auxotrophies	 3-6,11,12.	 However,	 the	 evolutionary	 rise	 and	4	

maintenance	of	these	interactions	constitutes	an	unresolved	puzzle,	since	genotypes	5	

that	do	not	produce	a	given	costly	metabolite	may	have	a	selective	advantage	over	6	

producers.	 One	 theory,	 known	 as	 the	 Black	 Queen	 Hypothesis	 13,	 suggests	 that	7	

metabolic	dependencies	could	arise	through	adaptive	gene	loss:	organisms	that	lose	8	

the	 capacity	 to	 produce	 a	 costly	 compound	 (non-producers)	will	 have	 a	 selective	9	

advantage	 over	 organisms	 that	 produce	 and	 inevitably	 leak	 that	 compound	10	

(producers).	 This	 could	 give	 rise	 to	 an	 obligate	 dependency	 of	 non-producers	 on	11	

producers	 13,	 or,	 in	 the	 case	 of	 more	 than	 one	 leaky	 function,	 to	 obligate	 cross-12	

feeding	(bidirectional	dependency)	14.	However,	little	is	known	about	the	conditions	13	

under	which	these	dependencies	would	be	established.		14	

	15	

A	 limited	number	of	 theoretical	studies	have	recently	explored	this	question	using	16	

ecological	 models	 15-18,	 evolutionary	 game	 theory	 (see	 19-21	 for	 comprehensive	17	

reviews)	 and	 concepts	 from	 economics	 22.	While	 these	 approaches	 have	 provided	18	

valuable	 phenomenological	 insight	 into	 the	 general	 principles	 of	 metabolic	19	

interdependencies,	they	generally	do	not	take	into	account	the	specific	details	of	the	20	

organisms,	pathways	and	molecules	involved:	behind	the	production,	leakiness,	and	21	

utilization	of	each	metabolite,	is	a	complex	network	of	biochemical	reactions,	which	22	

may	significantly	vary	 from	organism	to	organism,	and	across	different	conditions	23	

and	 exchanged	 metabolites.	 A	 powerful	 avenue	 to	 address	 this	 gap	 is	 the	 use	 of	24	

systems	 biology	 methods,	 such	 as	 stoichiometric	 models	 of	 metabolism	 7.	 These	25	

models	 take	 into	 account	 the	 full	 metabolic	 circuitry	 of	 a	 cell	 and	 provide	26	

quantitative	 predictions	 of	 its	 growth	 capacity	 and	metabolic	 fluxes.	 Recent	work	27	

has	started	applying	these	approaches	to	model	microbial	communities	(see	23	for	a	28	

recent	 review)	 and	 to	 study	 the	 evolution	of	 adaptive	diversification	 in	 long-term	29	

evolutionary	 experiments	 24.	 However,	 a	 systematic	 analysis	 of	 the	 underlying	30	

mechanisms	and	patterns	of	possible	equilibrium	states	of	inter-species	interactions	31	
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as	 a	 function	of	 the	 leakiness	 of	 different	metabolites	 is	 still	 unexplored.	Here	we	1	

propose	a	new	hybrid	modeling	approach	 that	 combines	 the	 theoretical	 insight	of	2	

evolutionary	game	theory	with	the	organism-specific	detailed	analysis	of	cell-wide	3	

metabolic	 networks.	 	 We	 demonstrate	 how	 this	 strategy	 allows	 us	 to	 map	 the	4	

landscape	 of	 possible	 inter-species	 interactions,	 for	 which	 genome-scale	 models	5	

provide	unique	mechanistic	insight.		6	

	7	

Our	 mechanistic	 evolutionary	 game	 theory	 approach	 uses	 estimates	 of	 microbial	8	

fitness	 (payoff),	 based	 on	 genome-scale	 metabolic	 models,	 (forming	 the	 “payoff	9	

matrix”	of	the	game).	These	payoffs	are	subsequently	utilized	to	compute	the	Nash	10	

equilibria	of	 “microbial	 interaction	games”	 (see	Methods).	A	Nash	equilibrium	 is	a	11	

central	concept	in	game	theory,	defined	as	a	state	where	no	player	can	increase	its	12	

payoff	by	a	unilateral	change	of	strategy.	These	payoffs	also	allows	us	to	determine	13	

which	 of	 the	 identified	 Nash	 equilibria	 are	 evolutionarily	 stable	 by	 modeling	 the	14	

dynamics	 of	 genotype	 frequencies	 25	 (see	 Figure	 1	 and	 Methods).	 As	 a	 proof-of-15	

concept	of	our	approach,	we	modeled	the	yeast	sucrose	hydrolysis	system26:	when	16	

growing	on	sucrose,	S.	cerevisiae	 produces	 the	 surface	enzyme	 invertase	 (encoded	17	

by	the	suc2	gene),	hydrolyzing	sucrose	into	glucose	and	fructose,	part	of	which	serve	18	

as	a	public	good.	Since	invertase	production	is	metabolically	costly,	a	mutant	strain,	19	

which	has	lost	its	suc2	gene,	may	emerge	(see	Figure	2A).	Our	simulations	(based	on	20	

the	 iAZ900	 yeast	 metabolic	 model	 27)	 reproduced	 the	 three	 types	 of	 equilibria	21	

observed	 experimentally	 26,	 i.e.	 Prisoners’	Dilemma	 (non-producers	 dominate	 and	22	

the	 community	 collapses),	 Mutually	 Beneficial	 game	 (producers	 dominate),	 and	23	

Snowdrift	 game	 (producers	 and	 non-producers	 coexist)	 (see	 Figure	 2B-2F,	 and	24	

supplementary	text	for	details).	25	

	26	

We	next	sought	to	characterize	the	landscape	of	possible	ecological	interactions	in	a	27	

large	 set	 of	 strains	 and	 exchanged	 metabolites.	 In	 particular,	 we	 explored	 the	28	

evolution	of	metabolic	dependencies	mediated	by	the	leaky	production	of	individual	29	

amino	 acids	 in	 E.	coli	 and	 asked	 how	 the	 evolution	 of	 these	 dependencies	 varies	30	

across	the	20	amino	acids	and	different	leakiness	levels.	Here,	a	prototrophic	wild-31	
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type	(WT,	producer),	leaking	a	given	amino	acid	could	interact	with	a	mutant	strain	1	

(MT,	non-producer)	lacking	the	gene(s)	for	the	biosynthesis	of	that	amino	acid	(see	2	

Figure	2G).	The	 iJO1366	genome	scale	model	of	E.	coli	28	was	used	 to	 construct	 in	3	

silico	 producer	 and	 non-producer	 strains,	 and	 to	 explore	 what	 equilibria	 can	 be	4	

established	for	a	given	leakiness	level.	As	shown	in	Figure	2H,	Prisoner’s	Dilemma,	5	

Mutually	 Beneficial	 and	 Snowdrift	 outcomes	 are	 the	 major	 possible	 equilibria,	6	

similar	 to	 the	 yeast	 system	 (Figure	 2B)	 (with	 the	 amino	 acid	 cost	 replacing	 the	7	

sucrose	hydrolysis	cost).	However,	a	more	complex	pattern	is	observed	here	for	the	8	

Mutually	 Beneficial	 region	 (see	 supplementary	 text	 for	 details),	 highlighting	 the	9	

organism-	 and	product-specific	 nature	 of	 our	model.	 In	 addition,	 one	 can	 observe	10	

that,	for	each	amino	acid,	there	is	a	threshold	for	leakiness	level	above	which	non-11	

producer	 mutants	 (MT)	 dominate,	 leading	 to	 community	 collapse	 (i.e.,	 Prisoner’s	12	

Dilemma)	 (Figure	3H).	Thus,	we	may	expect	 the	amino	acids	secretion	 levels	 in	E.	13	

coli	 to	 lie	 below	 this	 threshold.	 Interestingly,	 the	 average	 of	 multiple	 published	14	

amino	acid	secretion	datasets	(see	Figure	3J)	displays	a	consistent	trend	of	leakiness	15	

levels	decreasing	with	increasing	cost.	To	assess	the	evolutionary	stability	of	above	16	

Nash	 equilibria	 we	 performed	 in	 silico	 invasion	 experiments,	 where	 a	 resident	17	

population	of	WT	is	invaded	by	a	low	frequency	MT	(and	vice	versa).	This	analysis	18	

showed	 that	 the	 equilibrium	 frequencies	 of	WT	 and	MT	 are	 independent	 of	 their	19	

initial	frequencies	(see	Figure	3I).	This	had	been	theoretically	14	and	experimentally	20	
14,29	 suggested	 to	 stem	 from	 the	 negative	 frequency	 dependence	 of	 fitness.	 In	21	

addition	 to	 recapitulating	 this	 pattern,	 our	 analysis	 provides	 a	 quantitative	22	

prediction	of	the	selection	coefficients	of	the	20	amino	acids.	As	shown	in	Figure	3K,	23	

the	 predicted	 selection	 coefficients	 display	 reasonable	 agreement	 with	 previous	24	

experimental	 reports	 for	E.	coli	 29.	 	 This	 establishes	 a	 nontrivial	 quantitative	 link	25	

between	metabolic	stoichiometry	and	important	ecological	parameters.	26	

	27	

We	further	extended	our	analysis	to	map	the	landscape	of	ecological	interactions	in	28	

communities	 with	 two	 leaky	 amino	 acids.	 Under	 what	 conditions	 would	 the	29	

increased	 number	 of	 exchangeable	 metabolites	 give	 rise	 to	 more	 complex	 inter-30	

species	 interdependencies,	such	as	reciprocal	exchanges?	Four	different	genotypes	31	
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are	possible	in	this	case	(see	Figure	3A):	a	prototrophic	genotype	that	produces	and	1	

leaks	 two	amino	acids	 (i.e.,	 a	 full	 producer,	 denoted	as	 ‘11’),	 two	partial	producer	2	

mutants	each	lacking	the	gene(s)	for	the	biosynthesis	of	one	amino	acid	(denoted	as	3	

‘01’	 and	 ‘10’),	 and	a	no-producer	mutant	 strain	 lacking	 the	biosynthesis	 genes	 for	4	

both	 amino	 acids	 (denoted	 as	 ‘00’).	 In	 a	 community	 composed	 of	 all	 these	 four	5	

genotypes,	 different	 types	 of	 interactions	 are	possible.	Here	we	 focus	 on	pairwise	6	

interactions,	such	as	cross-feeding,	[01,	10]	and	unidirectional	dependency,	[00,	11],	7	

though	higher-order	 interactions	among	 three	or	 four	genotypes	(e.g.,	 [00,	01,	10]	8	

and	[00,	01,	10,	11])	are	possible	as	well.	We	next	systematically	computed	all	Nash	9	

equilibria,	at	varying	leakiness	levels,	for	189	amino	acid	pairs,	corresponding	to	all	10	

possible	pairs	of	20	amino	acids	(see	Figure	3B)	except	for	one,	namely	the	(alanine,	11	

isoleucine)	 pair,	 because	 the	 00	 genotype	 for	 this	 pair	 is	 auxotrophic	 for	 a	 third	12	

amino	 acid,	 valine.	 (see	 supplementary	 Figures	 S2	 to	 S7	 for	 higher	 order	13	

interactions’	equilibria).	14	

	15	

As	shown	in	Figure	3B,	a	wide	spectrum	of	equilibria	ensues	across	different	amino	16	

acid	 pairs	 and	 across	 different	 leakiness	 levels	 (e.g.,	 see	 Figures	 4C	 and	 4D).	17	

Interestingly,	despite	the	diversity	of	strains	and	exchanged	metabolites,	a	majority	18	

of	pairs	are	found	to	conform	to	general	ecological	patterns:	for	example,	139	(out	of	19	

189,	 or	 73.5%)	 of	 amino	 acid	 pairs	 display	 a	 qualitatively	 identical	 region	 of	20	

leakiness	levels	(green	regions	in	Figures	4B,C),	where	a	unidirectional	association,	21	

[00,	11],	and	cross-feeding,	[01,	10],	simultaneously	emerge	as	Nash	equilibria.	The	22	

leakiness	 levels	 leading	 to	 this	mixed	 equilibrium	 are	 the	 ones	 for	which	 the	 full	23	

producer	 (i.e.,	 11	 genotype)	 can	 still	 sustain	 growth.	 We	 refer	 to	 this	 region	 as	24	

sustainable	 leakiness	 region	 (see	 Methods).	 This	 is	 analogous	 to	 the	 maximum	25	

leakiness	 level	 in	 the	 study	 of	 individual	 amino	 acid	 secretions	 (Figure	 2H):	 any	26	

leakiness	 levels	 for	 the	 two	 amino	 acids	 that	 lie	 outside	 this	 region	 would	 be	27	

expected	to	lead	to	extinction	of	the	wild-type.		28	

	29	

Another	feature	common	to	several	amino	acid	pairs	is	the	existence	of	a	region	in	30	

the	leakiness	plane	(shown	by	red	in	Figure	3C)	where	cross-feeding	(i.e.,	[01,	10])	31	
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is	the	only	viable	association,	since	excessive	leakiness	makes	the	full	producer,	11,	1	

non-viable.	This	region	is	contiguous	to	the	green	region	(with	[00,	11]	and	[01,	10]	2	

as	Nash	equilibria).	One	interesting	aspect	of	this	configuration	is	that	cross-feeding	3	

could	 initially	 ensue	 in	 the	 green	 region,	 coexisting	 with	 [00,	 11]	 genotypes,	 and	4	

gradually	move	 towards	 the	 red	 region	 (by	 evolving	 increased	 leakiness	 through	5	

selective	advantage	relative	to	the	ancestor	11),	leading	to	obligate	cross-feeding	as	6	

the	only	viable	association.		7	

	8	

In	addition	to	exploring	the	landscape	of	Nash	equilibria	across	different	 leakiness	9	

levels,	 it	 is	 interesting	 to	 ask	 whether	 the	 details	 of	 the	 biochemical	 networks	10	

underlying	the	genome-scale	metabolic	model	predictions	matter,	and	whether	they	11	

provide	direct	explanatory	power	at	the	ecological	level.	Notably,	for	50	amino	acid	12	

pairs,	 the	 region	 of	 sustainable	 leakiness	 levels	 does	 not	 conform	 to	 the	 general	13	

pattern	described	above.	For	some	pairs	this	region	is	partitioned	into	a	number	of	14	

sub-regions	each	corresponding	to	a	different	equilibrium	(e.g.	see	Figure	3D)	while	15	

in	some	extreme	cases	this	entire	region	corresponds	to	a	single	Nash	equilibrium,	16	

e.g.,	for	(arginine,	glutamate)	and	(glycine,	threonine)	(see	below).		17	

	18	

For	 the	 first	 anomalous	 pair,	 (arginine,	 glutamate),	 Nash	 equilibria	 in	 the	19	

sustainable	leakiness	region	includes	[10,	11]	and	[00,	11],	but	not	the	cross-feeding	20	

state	 [01,	 10]	 (see	 Figure	 3E).	 Inspection	 of	 the	 biosynthesis	 pathway	 of	 arginine	21	

and	 glutamate	 in	E.	coli	revealed	 that	 glutamate	 is	 required	 for	 the	 production	 of	22	

ornithine,	which	 serves	 as	 an	 essential	 precursor	 for	 the	 biosynthesis	 of	 arginine.	23	

This	 implies	 that	a	mutant	 strain	 lacking	 the	biosynthesis	pathways	 for	glutamate	24	

(i.e.,	strain	10)	will	not	be	able	to	synthesize	and	leak	arginine,	thus	acting	like	a	00	25	

genotype	 and	 preventing	 the	 occurrence	 of	 cross-feeding.	 This	 observation	 is	26	

consistent	 with	 a	 previous	 report	 on	 the	 inability	 of	 arginine	 and	 glutamate	27	

auxotrophic	mutant	 strains	 to	 grow	 in	 a	 co-culture	 under	 the	minimal	medium	 3.	28	

This	 effect	 is	 due	 to	 a	 pleiotropic	metabolic	 gene	 (i.e.	 a	 gene	whose	modification	29	

affects	more	than	one	metabolic	phenotype),	and	illustrates	how	core	biochemistry	30	

can	impact	ecological	interactions.	31	
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	1	

A	 more	 complex	 scenario	 occurs	 for	 the	 (glycine,	 threonine)	 pair,	 where	 cross-2	

feeding,	 [01,	 10],	 is	 the	 only	 Nash	 equilibrium	 that	 emerges	 in	 the	 sustainable	3	

leakiness	 region	 (see	 Figure	 3F).	 What	 prevents	 [00,	 11]	 from	 being	 a	 Nash	4	

equilibrium?	One	of	the	conditions	for	[00,	11]	to	be	a	Nash	equilibrium	is	that,	 in	5	

presence	of	11,	the	fitness	of	the	non-producer	(00)	should	be	higher	than	any	of	the	6	

partial	producers	(01	and	10)	(as	one	would	intuitively	expect,	because	00	does	not	7	

incur	the	production	cost	of	the	two	amino	acids).	In	this	case,	however,	it	turns	out	8	

that	00	is	less	fit	than	10	(𝑡ℎ𝑟$	mutant,	see	a	sample	payoff	matrix	in	supplementary	9	

Figure	 S8)	 thereby	 preventing	 [00,	 11]	 from	 being	 a	 Nash	 equilibrium.	 This	10	

anomalous	 effect	 is	 due	 to	 the	 fact	 that	 the	 concurrent	 removal	 of	 glycine	 and	11	

threonine	 biosynthesis	 genes	 (in	 00)	 will	 lead	 to	 a	 reduction	 in	 the	 capacity	 to	12	

produce	other	essential	biomass	components	(such	as	serine).	Interestingly,	this	is	a	13	

case	of	diminishing-return	(or	“negative”)	epistasis,	in	which	the	effect	of	the	double	14	

mutation	 (00)	 is	 less	 severe	 than	expected	based	on	 the	 two	single	mutations	 (01	15	

and	10).	Negative	epistatic	interactions	preventing	the	appearance	of	[00,	11]	as	the	16	

Nash	equilibrium	can	be	observed	for	34	other	amino	acid	pairs	(see	supplementary	17	

Table	S1).	This	pattern	is	supported	by	existing	experimental	reports	showing	that	18	

epistasis	 correlates	 negatively	 with	 the	 expected	 fitness	 of	 multiple	 “genome	19	

streamlining”	 mutations	 in	 E.	 coli,	 thereby	 causing	 diminishing	 returns	 30.	 These	20	

results	 provide	 mechanistic	 insights	 into	 how	 epistatic	 interactions	 among	21	

intracellular	 pathways	 can	 affect	 ecological	 interactions,	 a	 feature	 that	 cannot	 be	22	

captured	by	abstract	phenomenological	models.		23	

	24	

It	 is	next	 interesting	to	ask	whether	our	approach	can	shed	light	onto	the	possible	25	

paths	 towards	 the	 rise	 of	 different	 interactions,	 especially	 cross-feeding.	 In	 the	26	

landscapes	 of	 identified	 Nash	 equilibria	 (Figure	 3B),	 cross	 feeding	 ([01,	 10])	27	

emerges	together	with	other	equilibria	(such	as	[00,	11],	e.g.	in	the	green	region	in	28	

Figure	3C).	 This	 raises	 the	question	of	whether	 and	under	what	 conditions	 cross-29	

feeding	would	be	evolutionarily	stable.	By	performing	a	number	of	targeted	in	silico	30	

invasion	 experiments	 (see	Methods),	 we	 found	 that	 this	 depends	 strongly	 on	 the	31	
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initial	frequencies	of	the	different	genotypes	(shown	in	Figure	3A).	In	particular,	our	1	

analysis	demonstrates	that	cross-feeders	(01	and	10)	will	go	extinct	 if	 they	invade	2	

the	 full	 producer	 (11)	 in	presence	of	 the	non-producer	 genotype	 (00)	 (see	Figure	3	

4A).	However,	 the	 cross-feeders	 can	 subsist	 if	 00	 invades	 at	 a	 later	 stage,	 e.g.	 if	 it	4	

arises	from	mutations	in	the	partial	producers	(01	or	10)	(see	Figures	4B	and	4C	for	5	

two	 such	mechanisms).	 An	 example	 of	 the	 latter	 scenario	 is	 the	 two-step	 process	6	

hypothesized	 in	 14:	 first,	 the	 biosynthetic	 capacity	 for	 one	 amino	 acid	 is	 lost,	 e.g.	7	

resulting	in	a	01	genotype,	which	could	equilibrate	and	co-exist	with	11	(see	Figures	8	

2G-2I).	In	the	second	step,	either	01	or	11	may	lose	their	capacity	for	producing	the	9	

second	amino	acid	(because	the	other	strain	can	compensate),	giving	rise	to	00	and	10	

10	 genotypes,	 respectively	 (see	 Figure	 4B).	 Here,	 we	 quantitatively	 explored	 this	11	

hypothesis	 by	assessing	 the	 evolutionary	 dynamics	 for	 the	 second	 step,	 assuming	12	

that	equilibration	of	the	first	step	has	already	occurred.	As	shown	in	Figure	4B,	the	13	

prototrophic	 (11)	 and	 no-producer	 (00)	 genotypes	 always	 survive	 in	 this	14	

competition,	while	cross-feeders	evolutionarily	emerge	only	at	high	leakiness	levels.	15	

Further	 in	silico	 invasion	 experiments	 demonstrate	 that	 established	 cross-feeding	16	

pairs	tend	to	be	resistant	to	invasion	by	non-producers	(see	supplementary	Figure	17	

S10)	 and	by	prototrophs	 (see	 supplementary	 Figure	 S11).	 Thus,	 once	 established,	18	

obligate	mutual	metabolic	exchange	could	be	evolutionarily	stable	against	invasion	19	

by	other	genotypes,	even	 in	a	homogenous	environment,	 consistent	with	previous	20	

experimental	reports	31.	Notably	this	stability	against	invasions	is	dependent	on	the	21	

specific	metabolites	exchanged	and	on	the	level	of	metabolic	exchange	(leakiness).	22	

	23	

We	demonstrated	here	that	by	adding	new	layers	of	details	 to	abstract	 theoretical	24	

ecology	models,	we	can	reveal	how	intracellular	molecular	mechanisms	(including	25	

pleiotropy	 and	 epistasis	 of	metabolic	 enzyme	 genes)	 lead	 to	 the	 rise	 of	 ecological	26	

interactions.	 The	 analysis	 we	 presented	 spans	 over	 80,000	 in	 silico	 experiments	27	

(across	 189	 amino	 acid	 pairs	 and	 441	 leakiness	 level	 combinations),	 which	 is	28	

beyond	 the	 current	 experimental	 capabilities.	 This	 study	 provides	 a	 guideline	 for	29	

the	 design	 of	 future	 targeted	 experiments,	 e.g.	 built	 upon	 previously	 established	30	

synthetic	communities	3-6,11.	For	example,	our	computational	results	could	be	used	31	
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to	suggest	choices	of	metabolite	pairs	and	ranges	of	engineered	leakiness	levels	that	1	

lead	 to	 the	 establishment	 of	 a	 specific	 inter-dependency,	 e.g.,	 unidirectional	 vs.,	2	

cross-feeding.	 In	 addition,	 our	 study	 offers	 a	 basis	 for	 better	 understanding	 of	3	

metabolic	interdependencies	in	natural	microbial	communities,	such	as	those	in	the	4	

human	 gut	microbiota	 8-10.	 From	 the	 perspective	 of	 biotechnological	 applications,	5	

our	 approach	 lays	 the	 foundation	 for	 proactively	 incorporating	 evolutionary	6	

concepts	in	the	de	novo	design	of	synthetic	microbial	consortia	that	are	resistant	to	7	

invasion	by	competing	strategies	23.		8	

Methods	9	

Background	 on	 evolutionary	 game	 theory.	 Evolutionary	 game	 theory	 is	 the	10	

application	of	 classical	 game	 theory	 to	model	 the	evolutionary	dynamics	of	mixed	11	

populations.	 Modeling	 microbial	 communities	 with	 evolutionary	 game	 theory	12	

involves	 two	steps:	 (i)	Considering	all	pairwise	 interactions	among	genotypes	and	13	

estimating	 the	 payoff	 (fitness)	 of	 a	 microbial	 player	𝑘	upon	 interacting	 with	 a	14	

partner	𝑘’.	 Higher	 order	 interactions	 can	 be	 similarly	 defined;	 These	 estimated	15	

payoffs	 are	 represented	 in	 the	 form	 of	 a	matrix,	 referred	 to	 as	 payoff	matrix.	 (ii)	16	

Using	the	payoff	matrix	to	identify	the	Nash	equilibrium(s)	–	a	fundamental	concept	17	

in	game	theory	defined	as	a	state	where	no	player	has	an	 incentive	 to	unilaterally	18	

change	 its	 current	 strategy,	 because	 it	 cannot	 improve	 its	 payoff	 by	 doing	 so.	 An	19	

evolutionary	stable	strategy	 is	a	similar	concept	in	evolutionary	game	theory:	It	is	a	20	

Nash	 equilibrium,	 which	 is	 evolutionarily	 stable,	 i.e.,	 natural	 selection	 alone	 is	21	

sufficient	 to	prevent	 invasion	by	competing	mutant	 strategies.	Evolutionary	stable	22	

strategies	can	be	 found	by	modeling	 the	evolutionary	dynamics	of	 the	game	using	23	

the	 computed	 payoffs	 (see	 the	 following	 sections).	 In	 this	 text,	 by	 ‘evolutionary	24	

dynamics’	 we	 mean	 how	 the	 relative	 genotype	 abundances	 (frequencies,	 or	25	

community	structure)	change	over	time	following	evolutionary	game	theory	25,	and	26	

microbial	ecology	literature	32.	This	aspect	of	evolutionary	dynamics,	as	opposed	to	27	

the	 simulation	 of	 de	 novo	mutations	 and	 subsequent	 selection	 processes	 (which	28	

have	been	pursued	in	other	studies	33),	is	the	main	focus	of	our	analysis.	29	
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	1	

Background	on	Flux	Balance	Analysis	(FBA).	FBA	(described	in	detail	elsewhere,	2	

e.g.	34)	is	a	linear	optimization	problem	that	uses	genome-scale	metabolic	models	to	3	

make	 quantitative	 predictions	 about	 the	 cell’s	 growth	 rate,	 intracellular	 reaction	4	

fluxes	 and	 secretion	 rates	 of	metabolites	 that	 are	 potentially	 excreted	 by	 the	 cell	5	

under	 a	 given	 condition.	 In	 the	 most	 common	 formulation,	 this	 is	 achieved	 by	6	

maximizing	 the	 flux	of	 a	pseudo-reaction	 called	biomass	reaction	 (𝑣()*+,--)	whose	7	

reactants	 are	 precursors	 required	 for	 growth	 and	 whose	 flux	 is	 indicative	 of	 the	8	

cell’s	growth	capacity.	This	is	subject	to	constraints	imposing	the	steady-state	mass	9	

balance	for	each	metabolite	in	the	network	(see	Constraint	1	below)	and	lower	and	10	

upper	bounds	on	reactions	fluxes	to	impose	the	reversibility	of	reactions	and	uptake	11	

and	aeration	conditions	(see	Constraint	2	below).	The	standard	formulation	of	FBA	12	

is	as	follows:	13	

maximize	𝑣()*+,--	 	

subject	to	 	

𝑠)=𝑣=
=∈?

= 0,																					∀𝑖 ∈ 𝐼,	 (1)	

𝐿𝐵= ≤ 𝑣= ≤ 𝑈𝐵=,															∀𝑗 ∈ 𝐽,	 (2)	

	14	

where,	𝐼	is	 the	 set	 of	metabolites,	𝐽	is	 the	 set	 of	 reactions,	𝑠L= 	is	 the	 stoichiometric	15	

coefficient	of	metabolite	𝑖	in	 reaction	𝑗	(known	 from	 the	metabolic	model),	𝐿𝐵= 	and	16	

𝑈𝐵= 	denote	 lower	 and	 upper	 bounds	 on	 flux	 of	 a	 reaction	𝑗	(provided	 as	 inputs),	17	

respectively,	and	𝑣= 	is	the	flux	of	a	reaction	𝑗	(optimization	variables).		18	

	19	

Using	 genome-scale	 models	 and	 FBA	 to	 compute	 payoffs	 for	 interacting	20	

microbes.	 We	 used	 FBA	 to	 provide	 organism-specific	 and	 genomically-informed	21	

estimates	of	the	payoffs	upon	specific	pairwise	interactions	(see	also	Figure	1).	For	a	22	

given	pair	of	genotypes	𝑘	and	𝑘′,	we	solve	a	separate	FBA	problem	for	𝑘	and	𝑘′.	Each	23	

FBA	problem	involves	two	new	types	of	constraints	added	to	the	standard	FBA:	(i)	24	

The	 first	 type	 of	 constraints	 pertains	 to	 implementing	 in	silico	 the	 gene	 deletions	25	
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that	 correspond	 to	 the	 genotype	under	 consideration	 (see	Equation	3	below).	 For	1	

example,	 if	 genotype	𝑘	is	 auxotroph	 for	 lysine,	 this	 auxotrophy	can	be	 in	principle	2	

induced	by	knocking	out	gene	lysA,	which	codes	for	diaminopimelate	decarboxylase.	3	

(DAPC).	 In	 the	 FBA	model,	 this	 gene	 deletion	 is	 simulated	 by	 setting	𝑣NOPNQ = 0.	4	

More	 complex	 gene-to-reaction	 mappings	 could	 lead	 to	 more	 complex	 set	 of	5	

constraints.	 In	 cases	where	 several	different	 choices	are	possible	 for	genes	whose	6	

deletion	would	 induce	a	 given	auxotrophy,	we	 select	one.	 	 (ii)	The	 second	 type	of	7	

constraints	(Equations	4	and	5)	simulates	the	exchange	of	metabolites	between	the	8	

genotype	under	consideration	and	 its	partner(s).	 In	our	calculations,	 for	any	given	9	

exchanged	 metabolite	 (e.g.,	 amino	 acid	 or	 amino	 acids	 pair),	 we	 systematically	10	

explore	 the	 effects	 of	 a	 range	 of	 possible	 leakiness	 levels.	 Thus	 in	 each	 in	 silico	11	

experiment,	the	leakiness	levels	of	amino	acids	secreted	by	each	genotype	are	fixed	12	

at	 a	 pre-specified	 value.	 Similarly,	 metabolites	 leaked	 by	 the	 partner	 are	 made	13	

available	to	this	genotype	through	appropriate	upper	bounds	on	import	fluxes.	The	14	

optimal	value	of	biomass	flux	obtained	upon	solving	this	FBA	problem	provides	an	15	

estimate	of	the	growth	rate	of	each	genotype	in	a	given	pairwise	interaction,	which	16	

we	use	as	a	proxy	for	its	payoff.	For	example,	the	payoff	of	𝑘	when	facing	𝑘R	(𝑎TTU)	is	17	

𝑣()*+,--T 	and	the	payoff	of	𝑘′	when	facing	𝑘	(𝑎TUT)	is	𝑣()*+,--TU .	The	general	form	of	the	18	

FBA	formulation	for	each	genotype	is	mathematically	formulated	as	follows:	19	

maximize	𝑣()*+,--	 	

subject	to	 	

𝑠)=𝑣=
=∈?

= 0,																					∀𝑖 ∈ 𝐼,	 (1)	

𝐿𝐵= ≤ 𝑣= ≤ 𝑈𝐵=,															∀𝑗 ∈ 𝐽,	 (2)	

𝑣= = 0,																					∀𝑗 ∈ 𝐽+VW,XW	 (3)	

𝑣YZ_)(]) ≥ −𝑢),						∀𝑖 ∈ 𝐼,Vb*Wc*de	 (4)	

𝑣YZ_)(]) ≥ 𝑒),										∀𝑖 ∈ 𝐼g],Th	 (5)	

	20	

where,	𝐽+VW,W)*X 	denotes	 the	 set	 of	 reactions	 corresponding	 to	 specific	 gene	21	

mutations	 for	 the	 genotype	 under	 consideration.	 In	 addition,	 𝐼,Vb*Wc*de ⊂ 𝐼	22	
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represents	 the	 set	of	metabolites	 that	 this	 genotype	 is	 auxotroph	 for,	 but	 that	 are	1	

provided	 by	 other	 genotypes,	 and	 𝐼g],Th ⊂ 𝐼 	is	 the	 set	 of	 leaky	 (secreted)	2	

metabolites	 by	 the	 genotype	 under	 consideration.	 	𝑣YZ_)(])	denotes	 the	 flux	 of	3	

exchange	reaction	for	a	metabolite	𝑖.	𝑢	) > 0	and	𝑒	) > 0	denote	the	pre-specified	net	4	

uptake	and	export	flux	of	a	metabolite	𝑖,	respectively.	Input	parameters	for	this	FBA	5	

problem	include:	(i)	The	list	of	metabolites	that	each	genotype	is	leaking	and	those	6	

available	 for	 uptake	 from	 the	 partner	 genotype	 in	 a	 pairwise	 (or	 higher	 order)	7	

interaction,	(ii)	The	leakiness	level	of	exchanged	metabolites,	and	(iii)	the	net	uptake	8	

and	export	 fluxes	of	exchanged	metabolites	(i.e.,	𝑒) 	and	𝑢L)	calculated	based	on	the	9	

fixed	leakiness	levels	and	the	specific	interacting	genotypes	(see	supplementary	text	10	

for	 details).	 Constraint	 (3)	 sets	 to	 zero	 the	 flux	 of	 reactions	 corresponding	 to	 the	11	

specific	gene	mutations	in	the	genotype	under	consideration.	Constraints	(4)	allows	12	

for	 the	 uptake	 of	metabolites	 available	 from	partner	 genotype(s)	 in	 a	 pairwise	 or	13	

(higher-order)	interaction.	Constraint	(5)	requires	the	export	of	leaky	metabolites	at	14	

the	pre-specified	 level	𝑒) .	The	payoff	of	 the	genotype	under	consideration	 is	 set	 to	15	

the	optimal	value	of	the	biomass	flux,	or	to	the	death	rate	(a	negative	value),	in	the	16	

case	of	an	infeasible	problem.	An	infeasible	FBA	problem	may	occur	due	the	lack	of	17	

enough	carbon	source	to	satisfy	maintenance	ATP	requirements	in	the	model	or	due	18	

to	imposing	a	high	level	of	leakiness	for	a	leaked	metabolite.	Imposed	leakiness	level	19	

causing	this	infeasibility	are	referred	to	‘unsustainable	leakiness	levels’.	The	details	20	

of	specific	 formulations	 for	the	presented	case	studies	with	S.	cerevisiae	and	E.	coli	21	

are	 given	 in	 the	 supplementary	 text.	 Additional	 environmental/strategic/genetic	22	

conditions	 can	 be	 incorporated	 through	 the	 addition	 of	 appropriately	 defined	23	

constraints.	 In	 addition,	 one	 can	 use	 a	 different	 objective	 function	 (e.g.,	 the	24	

minimization	 of	 metabolic	 adjustment	 35)	 or	 other	 constraint-based	 community	25	

modeling	tools	e.g.,	36,37	as	an	alternative.		26	

	27	

Optimization-driven	 automated	 identification	 of	 the	 Nash	 equilibria.	 Upon	28	

constructing	 the	 payoff	 matrix,	 as	 described	 above,	 one	 can	 identify	 the	 Nash	29	

equilibrium(s)	 of	 the	 game.	 We	 developed	 an	 efficient	 optimization-based	30	
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procedure	 called	NashEq	Finder	 to	 automate	 the	 identification	of	 all	 pure	 strategy	1	

Nash	equilibria	of	a	game	given	its	payoff	matrix.	NashEq	Finder	is	an	integer	linear	2	

program	 (ILP),	 which	 relies	 on	 binary	 variables	 to	 decide	 on	 whether	 or	 not	 a	3	

particular	entry	of	 the	payoff	matrix	satisfies	 the	conditions	of	a	Nash	equilibrium	4	

(see	 supplementary	 text	 for	 a	 detailed	 formulation).	 This	 algorithm	 is	 able	 to	5	

identify	all	possible	Nash	equilibria	of	a	game	with	any	number	of	players	and	thus	6	

can	be	reliably	used	for	the	rapid	identification	of	the	equilibrium	states	of	complex	7	

communities.		8	

	9	

Modeling	 the	 evolutionary	 dynamics	 at	 a	 genome-scale	 resolution.	 Following	10	

standard	approaches	in	evolutionary	game	theory	we	model	evolutionary	dynamics	11	

using	 the	 Replicator	 Equation	 25.	 In	 particular,	 to	 take	 into	 account	 interactions	12	

higher	than	pairwise,	we	used	an	extended	form	of	the	classical	Replicator	equation	13	
25	 .	 This	 equation	 predicts	 the	 changes	 in	 the	 relative	 abundance	 (frequencies)	 of	14	

genotypes	over	time	according	to	their	reproductive	fitness	under	the	assumption	of	15	

a	 roughly	 constant	 population	 size	 25	 (see	 supplementary	 text	 for	 the	 difference	16	

between	 this	 equation	 and	 multi-species	 dynamics	 flux	 balance	 analysis	 38).	 Our	17	

formulation,	following	39,	can	be	expressed	as	follows:	18	
𝑑𝑥T
𝑑𝑡 = 𝑓T 𝒙 − 𝜙 𝒙 𝑥T	,							𝑘 = 1,2, … , 𝐾,	 (6)	

𝑓T 𝒙 = 𝑎TTR𝑥TR

t

TUuv

+ 𝑎TTUTUU𝑥TR𝑥TUU
t

TUUuv

t

TUuv

+ ⋯ ,								𝑘 = 1,2, … , 𝐾,	 (7)	

𝜙 𝒙 = 𝑓TU 𝒙 𝑥TR

t

TUuv

.	 (8)	

Here,	𝐾	denotes	 the	 set	 of	 community	 members	 and	𝒙 = 𝑥v, 𝑥z, … , 𝑥t { 	is	 the	19	

composition	 of	 the	 community	with	𝑥T 	being	 the	 frequency	 of	 genotype	𝑘.	𝑓T(𝒙)	is	20	

the	 average	 reproductive	 fitness	 of	 genotype	𝑘	that	 depends	 not	 just	 on	 other	21	

genotypes	it	may	encounter	but	also	on	their	frequencies.	𝑎TTR	and	𝑎TTUTUU 	denote	the	22	

payoffs	of	genotype	𝑘	when	encountering	another	genotype	𝑘R	in	a	two-player	game	23	
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(i.e.	pairwise	interaction)	or	two	other	genotypes	𝑘R	and	𝑘RR	in	a	three-player	game,	1	

respectively.	Finally,	𝜙 𝒙 	is	the	average	fitness	of	the	entire	community.		2	

	3	

Here	 we	 use	 the	 replicator	 equation	 to	 perform	 targeted	 in	 silico	 invasion	4	

experiments,	in	which	a	newly	emerged	low	frequency	genotype	invades	an	existing	5	

resident	genotype.	While	such	in	silico	experiments	are	based	only	on	evolutionary	6	

dynamics	 (modeled	 through	 the	 Replicator	 equation),	 future	 developments	 could	7	

take	into	account	additional	aspects	such	as	eco-evolutionary	feedback	32,40-42.		8	

	9	
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	6	

	7	

Figures’	Legends	8	

Figure	 1.	Outline	 of	 the	 proposed	 genome-driven	 evolutionary	 game	 theory	9	

approach.	 Annotated	 genomes	 of	 community	 members	 are	 used	 to	 construct	10	

genome-scale	 metabolic	 models.	 For	 each	 possible	 pair	 of	 genotypes	 in	 the	11	

community,	 constraint-based	 analysis	 tools	 for	 metabolic	 models	 such	 as	 Flux	12	

Balance	Analysis	34	are	used		to	estimate	the	fitness	(or	“payoff”)	of	each	genotype	as	13	

they	 engage	 in	 a	 specific	metabolite-mediated	 interaction.	 These	 payoffs	 form	 the	14	

payoff	matrix	of	the	game.	Based	on	this	payoff	matrix	we	identify	all	Nash	equilibria	15	

of	 the	 game,	 using	 a	 newly	 developed	 automated	 tool	 (NashEq	 Finder,	 see	16	

supplementary	 text).	 The	 payoff	 matrix	 also	 allows	 us	 to	 model	 evolutionary	17	

dynamics	 (i.e.,	 how	 genotype	 frequencies	 change	 over	 time)	 25	 and	 to	 determine	18	

which	of	the	identified	Nash	equilibria	are	evolutionarily	stable	(see	Methods).		19	

	20	

Figure	 2.	Metabolic	 dependencies	 in	 populations	 of	 S.	 cerevisiae	 growing	 on	21	

sucrose	 and	 in	 populations	 of	 E.	 coli	 secreting	 an	 amino	 acid.	 (A)	 Metabolic	22	

interactions	 between	 producer	 (wild-type,	 WT)	 and	 non-producer	 (mutant,	 MT)	23	

genotypes	of	S.	cerevisiae	growing	on	sucrose	26.	Here,	𝑒	represetns	 the	percentage	24	

of	 glucose/fructose	 that	 diffuses	 away	 and	 serves	 as	 a	 public	 good.	 (B)	 Nash	25	

equilibria	and	(C)	the	equilibrium	frequency	of	WT	for	the	community	shown	in	(A)	26	

as	 a	 function	 of	 the	 capture	 efficiency	 of	 the	 glucose/fructose	 and	 the	 invertase	27	

production	cost	 (modeled	by	changing	 the	stoichiometric	 coefficient	of	ATP	 in	 the	28	

sucrose	 hydrolysis	 reaction,	 indicated	 as	𝑥).	 An	 alternative	 in	silico	 formulation	 of	29	

the	energetic	cost	of	invertase	production	that	reproduces	exactly	the	setup	used	in	30	

the	 experiment	 by	 Gore	 et	 al	 26	 (based	 on	 histidine	 auxotrophy)	 proved	 to	 be	31	
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qualitatively	equivalent	to	the	analysis	presented	here	(see	supplementary	text	for	1	

details).	 The	 equilibrium	 frequency	 of	 WT	 was	 obtained	 from	 in	 silico	 invasion	2	

experiments	 (see	 Methods)	 for	 two	 cases	 of	 a	 small	 fraction	 of	 MT	 invading	 a	3	

resident	 population	 of	 WT	 and	 vice	 versa	 demonstrated	 that	 the	 equilibrium	4	

frequency	of	WT	is	the	same	in	both	cases.	(D)	Metabolic	interactions	between	WT	5	

and	 MT	 when	 additional	 glucose	 is	 provided	 in	 the	 growth	 medium	 (see	6	

supplementary	 text	 for	 details).	 (E)	 Nash	 equilibria	 and	 (F)	 the	 equilibrium	7	

frequency	 of	 WT	 in	 the	 presence	 of	 glucose	 in	 the	 growth	 medium.	 The	 entire	8	

Snowdrift	game	region	and	part	of	the	Mutually	Beneficial	region	in	(B)	are	replaced	9	

by	the	Prisoner’s	Dilemma	game,	in	(E),	which	is	consistent	with	previous	reports	26	10	

and	serves	as	an	additional	verification	of	our	modeling	approach.	This	is	because	in	11	

the	presence	of	glucose,	MT	is	less	dependent	on	WT	thereby	increasing	the	average	12	

fitness	of	MT.	(G)	Possible	genotypes	in	populations	of	E.	coli	leaking	an	amino	acid	13	

include	 a	 prototrophic	wild-type	 strain	 (WT)	 self-synthesizing	 a	 leaky	 amino	 acid	14	

and	a	mutant	strain	(MT)	lacking	the	gene(s)	for	the	biosynthesis	of	this	amino	acid.	15	

(H)	The	identified	Nash	equilibria	for	various	leakiness	levels	(as	a	percentage	of	an	16	

in	silico	 determined	maximum:	 see	 supplementary	 text)	across	all	20	amino	acids.	17	

Amino	acids	are	shown	here	by	using	their	standard	three-letter	code	in	the	order	of	18	

increasing	 in	 silico	 growth	 cost	 (see	 also	 supplementary	 Figure	 S1).	 (I)	 The	19	

equilibrium	 frequency	 of	WT	 as	 a	 function	 of	 the	 leakiness	 level	 and	 amino	 acid	20	

type.	 In	 silico	 invasion	 experiments	 for	 two	 cases	 of	 MT	 invading	 WT	 and	 WT	21	

invading	MT	revealed	that	the	equilibrium	frequencies	are	insensitive	to	the	initial	22	

frequencies.	 (J)	 Experimentally	 reported	 leakiness	 levels	 of	 amino	 acids	 averaged	23	

over	 three	different	datasets	 43,44.	Values	 in	each	dataset	were	normalized	 to	 their	24	

maximum	 (see	 supplementary	 Table	 S1	 for	 values	 of	 data).	 Error	 bars	 show	25	

standard	 deviation	 over	 the	 three	 datasets.	 	 (K)	 Predicted	 selection	 coefficients	26	

across	all	amino	acids	and	leakiness	levels	vs.	the	experimentally	reported	ones	for	27	

E.	coli	 29.	 Empty	 circles	 show	 the	 average	 predicted	 selection	 coefficient	 for	 each	28	

amino	 acid.	 The	 black	 and	 blue	 lines	 show	 the	 fitted	 lines	 to	 the	 predicted	 and	29	

experimental	values	29,	respectively.	The	equation	for	the	fitted	line	to	experimental	30	

data	was	inferred	from	a	graph	of	reference		29.	31	
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	1	

Figure	 3.	 Equilibrium	metabolic	 dependencies	 in	 populations	 of	 E.	 coli	 with	2	

two	leaky	amino	acids.	(A)	Genotypes	involved	include	a	prototrophic	strain	self-3	

synthesizing	two	leaky	amino	acids	(i.e.,	11),	two	single-mutant	strains	each	lacking	4	

the	gene(s)	for	the	biosynthesis	of	one	amino	acid	but	synthesizing	and	leaking	the	5	

other	(i.e.,	01	and	10),	and	a	mutant	strain	lacking	the	genes	for	the	biosynthesis	of	6	

both	leaky	amino	acids	(i.e.,	00).	Here,	‘1’	and	‘0’	denote	the	presence	or	absence	of	7	

biosynthesis	 pathways	 (genes)	 for	 an	 amino	 acid,	 respectively.	 (B)	 The	 identified	8	

Nash	equilibria	of	two-player	games	(i.e.,	pairwise	interactions)	for	all	amino	acids	9	

pair	across	different	leakiness	levels,	zoomed	in	for	four	selected	pairs	including	(C)	10	

(lysine,	 isoleucine),	 (D)	 (glutamate	 and	 leucine),	 (E)	 (arginine,	 glutamate)	 and	 (F)	11	

(glycine,	 threonine).	 A	 sample	 payoff	 matrix	 of	 the	 game	 is	 shown	 in	 (C)	 for	 a	12	

leakiness	 level	of	15%	for	both	 lysine	and	 isoleucine.	Non-viable	equilibria	 signify	13	

associations	between	genotypes	that	are	non-viable	leading	to	community	collapse.	14	

Nash	equilibria	of	three-	and	four-player	games	for	a	selected	number	of	amino	acid	15	

pairs	are	also	given	in	supplementary	Figures	S2-S7.	Metabolic	maps	in	(E)	And	(F)	16	

show	 the	 metabolic	 pathways	 involved	 in	 the	 synthesis	 of	 the	 respective	 amino	17	

acids.	Sample	payoff	matrices	in	the	region	of	sustainable	leakiness	levels	in	(E)	and	18	

(F)	are	given	in	supplementary	Figure	S8.	19	

	20	

Figure	 4.	 Impact	 of	 the	 initial	 genotype	 frequencies	 on	 the	 evolutionary	21	

emergence	of	metabolic	dependencies	in	populations	of	E.	coli	with	two	leaky	22	

amino	 acids.	 Here,	 we	 have	 shown	 the	 results	 of	 targeted	 in	 silico	 invasion	23	

experiments	 for	 a	 representative	 amino	 acid	 pair	 (lysine,	 isoleucine)	 (see	 also	24	

Figure	 3c).	 (A)	 00,	 01	 and	 10	 simultaneously	 originate	 from	 11	 (i.e.,	 wild-type)	25	

through	 genome	 streamlining	 and	 invade	 an	 existing	 population	 of	 11	 genotypes.	26	

(B)	A	small	population	of	10	and	00	invade	a	resident	population	of	the	11	and	01.	27	

This	 simulates	 the	 second	 step	 of	 a	 two-step	 process	 for	 the	 loss	 of	 the	 leaky	28	

functions	hypothesized	in	14	(see	the	main	text	and	also	supplementary	Figure	S9).	29	

(C)	A	small	population	of	01	and	10	invades	a	resident	population	of	11.	This	models	30	

an	 alternative	 scenario	 for	 the	 two-step	 loss	 of	 leaky	 functions	 leading	 to	 stable	31	
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cross-feeders:	Two	partial	producer	mutant	genotypes	 (01	and	10)	originate	 from	1	

11,	 followed	 by	 the	 rise	 of	 the	 00	 genotype	 from	 01	 and/or	 10.	 As	 shown	 here,	2	

cross-feeders	can	evolutionarily	stabilize	and	co-exist	with	11	genotypes	in	the	first	3	

step.	Further	analysis	showed	that	cross-feeders	are	also	resistant	to	invasion	by	00	4	

genotypes	arising	in	the	second	step	(see	supplementary	Figure	S10).	Dynamic	plots	5	

in	(A)–(C)	show	the	sample	evolutionary	dynamics	of	the	system	for	selected	equal	6	

leakiness	 levels	 for	 both	 lysine	 and	 isoleucine.	 Pie	 charts	 show	 the	 equilibrium	7	

frequencies	of	each	genotype	starting	 from	the	 initial	genotype	frequencies	shown	8	

in	 each	 panel.	 These	 equilibrium	 frequencies	 are	 given	 only	 for	 the	 sustainable	9	

leakiness	region	(green	region	in	Figure	3C).		10	
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