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Abstract

Dispersal determines gene flow among groups in a population and so plays a major role in many ecological

and evolutionary processes, from biological invasions to species extinctions. Because patterns of gene flow

shape kin structure, dispersal is also important to the evolution of social behaviours that influence reproduc-

tion and survival within groups. Conversely, dispersal patterns depend on kin structure and social behaviour.

Dispersal and social behaviour therefore co-evolve but the nature and consequences of this interplay are

not well understood. Here, we model this co-evolution and show that it readily leads to the emergence and

maintenance of two broadly-defined social morphs: a sessile, benevolent morph expressed by individuals

who tend to increase the fecundity of others within their group relative to their own; and a dispersive, self-

serving morph expressed by individuals who tend to increase their own fecundity relative to others’ within

their group. This social polymorphism arises as a consequence of a positive linkage between the loci respon-

sible for dispersal and social behaviour, leading to benevolent individuals preferentially interacting with rel-

atives and self-serving individuals with non-relatives. We find that this positive linkage is favoured under

a large spectrum of conditions, which suggests that an association between dispersal proclivity and other

social traits should be common in nature. In line with this prediction, dispersing individuals across a wide

range of organisms have been reported to differ in their social tendencies from non-dispersing individuals.

Introduction

Dispersal, the movement away from natal habitat to reproduce, is an important step in the life-history of most

organisms (1, 2). At the population level, dispersal patterns shape kin structure which determines whether

individuals interact and compete with relatives. This in turn influences the evolution of social behaviour

such as helping or aggression (3, 4). At the same time, dispersal decisions are often influenced by kin and

social interactions (5, 6, 7, 1, 8), resulting in the co-evolution among dispersal between groups and social be-

haviours within groups (e.g., 9, 10, 11, 12). However, the consequences of this co-evolution for within-species
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behavioural diversity (e.g., 13) remain elusive. Here, we model the co-evolution between unconditional disper-

sal and social behaviours, and show that it readily leads to a stable social polymorphism whereby individuals

who disperse behave differently than non-dispersers.

To model social interactions within groups and dispersal between groups, we assume that the population is

structured according to the standard island model (14, 5, 15), in which individuals belong to local groups of

size N and interact socially only with other locals. As a baseline, we assume that individuals reproduce asexu-

ally and then die so that generations do not overlap. An offspring either remains in its natal population (with

probability 1−d), or disperses to another randomly chosen one (with probability d) at a cost cd. Social inter-

actions are modelled with a simple classical matrix game (16): individuals randomly pair up within their group

and each independently chooses between two actions denoted B (with probability z) and M (with probability

1−z). Depending on the action of each player, each reaps a material payoff (labelled R, S, T and P , Fig. 1a) that

in turn linearly increases its fecundity. We assume that T −S > 0, which means that an individual who plays B

more often that its partner increases the partner’s fecundity relative to its own, we therefore refer to action B

as benevolent and conversely, M as self-serving (M.1 for details).

Results

First, we study mathematically the co-evolution of the probability d of dispersing with the probability z of

adopting the benevolent action B when they are encoded by two linked loci that experience rare mutations

with small quantitative effects (17) (M.2 for mathematical method). Initially monomorphic for both traits d

and z, the population evolves gradually to converge towards an equilibrium for both traits. Whatever the initial

population, dispersal always converges to an interior equilibrium d∗ that depends on the cost of dispersal

and group size, in agreement with previous results (5, 18) (Fig. 1b). There are four possible outcomes for the

probability z of adopting the benevolent action B depending on payoffs (Fig. 1c): (1) when R > T and S > P , it

is always better to play B and so z evolves to one; (2) conversely, when R < T and S < P , it is always better to

play M so z evolves to zero; (3) when R > T and S < P , it is better to play the same action, B or M, as the rest of

the population, so z evolves to either one or zero, depending on the initial z in the population; and (4) when

R < T and S > P , it is better to play B in a M population and M in a B population, so z evolves to an interior

equilibrium value 0 < z∗ < 1.

Once the population has converged to an interior equilibrium (d∗, z∗) for both dispersal and benevolence, the

population either is maintained at this equilibrium by stabilising selection (i.e., the population is at a local

ESS), or undergoes disruptive selection. Mathematical analysis reveals that disruptive selection occurs under

a wide range of model parameters (Fig. 1d), and that it favours the emergence of two morphs: a more benevo-

lent, sessile morph, and a more self-serving, dispersive morph (M.2 for details). To understand why selection

favours these two morphs, consider an individual that expresses the more benevolent, sessile morph. Social

behaviour and dispersal are genetically linked so its relatives are also more sessile, which in turn means that
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Figure 1: Equilibrium and polymorphism when dispersal and social behaviour co-evolve. a. Payoff to a player

according to its behaviour and its partner’s behaviour. b. Dispersal equilibrium d∗ for different group sizes N . c. Outcomes

for the probability z of adopting benevolent action B in terms of T −R and S −P : (1) convergence to one (blue region);

(2) convergence to zero (red region); (3) convergence to zero or one (yellow region); and (4) convergence to 0 < z∗ =
(S−P )/(S−P+T −R) < 1 (grey region with z∗ values shown by lines). d. Parameter region under which disruptive selection

leads to polymorphism at the interior equilibrium (d∗, z∗) (shaded region, here shown with T −R +S −P = 1). Disruptive

selection is therefore favoured when groups are small, dispersal cost is low and benevolence has large effects (measured

by T −S).

the recipients of its increased benevolence are more likely to be relatives. This positive interaction among kin

then favours the invasion of the sessile, benevolent morph. Conversely, an individual expressing the more

self-serving, dispersive morph is more likely to decrease the fitness of non-relatives, and this negative inter-

action among unrelated individuals favours the dispersive self-serving morph. When social behaviour and

dispersal are genetically linked, polymorphism therefore arises due to the combined effects of dispersal on

kin interaction and social behaviour on neighbours’ fitness. In line with this, when only one trait, dispersal or

benevolence, evolves and the other trait is fixed, the population remains monomorphic for a local ESS for all
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model parameters (M.2).

To check our mathematical analyses and investigate the long-term effects of disruptive selection, we ran com-

puter simulations under conditions that should lead to polymorphism (M.3 for details). As predicted, the

population first converges to the interior equilibrium for dispersal d∗ and the probability z∗ to adopt benev-

olent action B, and splits into two morphs, a more benevolent, sessile morph, and a more self-serving, disper-

sive morph (Fig. 2a). Competition among the two morphs then creates a positive feedback that favours more

extreme variants: benevolent individuals become increasingly benevolent and sessile to compensate for nox-

ious interactions with self-serving individuals, while self-serving individuals become increasingly self-serving

to take advantage of benevolence, and increasingly dispersive to avoid decreasing the fitness of relatives. The

population eventually stabilises for two highly-differentiated genetic morphs, resulting in a strong association

among dispersal and social behaviour (Fig. 2b).
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Figure 2: The emergence and maintenance of social morphs when dispersal and social behaviour co-evolve.

a. Dispersal d and benevolence z in a simulated population of 10’000 individuals (trait values of 50 individuals randomly

sampled every 500 generations, see colour legend for colouring scheme) and predicted interior equilibrium (solid black

line, with R = 50, S = 0, T = 100, P = −15, N = 8, cd = 0.1). b. Phenotypic distribution of whole population at generation

15×104 (same parameters as a.).

An important assumption made in the baseline model is that generations do not overlap. We relaxed this

assumption by performing a mathematical analysis of dispersal and social behaviour co-evolution when gen-

erations overlap (M.4). This revealed that polymorphism is also often favoured in this scenario. In fact, in

comparison to our baseline model, polymorphism is favoured for an even greater diversity of payoff variables,

which means that a greater diversity of social behaviours may become associated with dispersal when gener-
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ations overlap (M.4 for details).

We also determined the importance of genetic linkage in the emergence of highly-differentiated social morphs

by studying the effects of various levels of recombination between the loci that control dispersal and social be-

haviour in simulations. These revealed that the emergence of distinct morphs depends on the level of recom-

bination and that beyond a threshold, recombination prevents polymorphism and the population remains

monomorphic (Fig. 3a). This is because recombination breaks the positive genetic linkage among the dispersal

and social behaviour loci that is necessary for benevolent individuals to preferentially direct their benevolence

towards relatives, and self-serving individuals to avoid harming their own.

Since disruptive selection promotes an association among dispersal and social behaviour, it should also pro-

mote a genetic architecture that makes this association heritable (19). We tested this by adding a third locus

that controls recombination and let it evolve by introducing two alleles that mutate from one another, one

recessive wild-type that codes for a recombination probability of 1/2 and one dominant mutant that stops

recombination (M.5 for details). Starting with a wild-type population at the predicted equilibrium (d∗, z∗) for

dispersal and social behaviour, the mutant allele at the recombination modifier locus eventually invades so

that recombination is shut down, which then permits the emergence of distinct morphs (Fig. 3b). Disruptive

selection therefore leads to the genetic integration of dispersal and social behaviours to form a "supergene"

(20), which allows benevolent individuals to preferentially interact with relatives, and self-serving individuals

with non-relatives. This type of kin association through genetic and spatial assortment may constitute a first

step towards more complicated conditional dispersal (21) or conditional social behaviours (9, 22), which allow

individuals to fine tune their behaviours towards relatives.

Discussion

These analyses reveal that the co-evolution of dispersal and behaviour readily leads to a social polymorphism

and dispersal syndrome. Two broad-brush predictions can be made from our results. The first is that asso-

ciations between dispersal and social behaviour should be common. This prediction finds echo in multiple

organisms ranging from protozoa to primates (8, 23, 24, 25, 26, 27, 28, 29, 30). For example, in the ciliate

Tetrahymena thermophila, cooperative strains disperse at a lower rate than non-cooperative strains at inter-

mediate population densities (30). Similarly, in prairie voles Microtus pennsylvanicus, individuals that disperse

are more aggressive than those who do not (23).

The second prediction is that dispersal and social behaviour should be genetically linked when polymorphism

is present. Data to test this prediction are scarce because few studies combine dispersal, behavioural and

heritability assays. A notable exception is found in western bluebirds Sialia mexicana, for which a multi-

generational pedigree analysis revealed that dispersal and social behaviour are genetically correlated such that

dispersive males are more likely to produce aggressive offspring and non-dispersive males, non-aggressive
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Figure 3: The effect (a) and evolution (b) of genetic linkage between dispersal and social behaviour loci. a

Phenotypic distribution of whole population at generation 15×104 when recombination probability is fixed (value shown

above graphs, other parameters same as in Fig 2a, M.5 for details). b. Upper panel: effective recombination rate in the

population (number of recombination events/population size) every 100 generation when recombination evolves in a

population of 10’000 individuals (for 30 replicates, each replicate is shown by a grey line, average recombination rate over

replicates is shown in black). Lower panel: benevolence z of 50 individuals randomly sampled every 500 generations

(coloured according to colour legend in Fig 2) for one replicate (shown in green in upper panel). Polymorphism arose in

all 30 replicates.

offspring (31).

Eusocial species, who typically exhibit rich and variable patterns of dispersal and social behaviours, also pro-

vide a good model to test our predictions. Many ant species show a dispersal syndrome that associates dis-

persal with social organisation. Queens either disperse far away from their natal nest and form single-queen
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(monogyne) colonies, or disperse short distances and form multiple-queen (polygyne) colonies (32). In line

with the predictions of our model, individuals from monogyne colonies typically exhibit high intra-specific ag-

gression towards non-nestmates while individuals from polygyne colonies are much less aggressive (32). The

genetic underpinning of social organisation has been uncovered in two ant species, Solenopsis invicta (33)

and Formica selysi (34). Remarkably, in both cases, the social polymorphism and dispersal syndrome is con-

trolled by a large non-recombining region that has independently arisen in each species, which suggests that

integration of dispersal and social behaviour into a supergene like in our model can readily occur in nature.

Our simple model of course cannot explain all associations among dispersal and social behaviour which can be

influenced by many other factors, e.g., (28, 35). Yet, the selection that associates dispersal and social behaviour

that we revealed will act under most ecological settings because it only depends on kin structure which, due to

limited dispersal, is ubiquitous in nature (36). While current data support the notion that individuals who dis-

perse behave towards conspecifics in a way that is different to non-dispersers, further pedigree and genomic

analyses will provide a better picture of how associations among dispersal and social behaviour are genetically

constructed.

Materials and Methods

M.1 Matrix game

We use a pairwise matrix game (16) to model social interactions within groups. Here, we highlight some prop-

erties of this game and of the actions possible in this game. The payoff matrix (Fig 1a) entails that the average

payoff to a focal player who adopts action B with probability z1 against a partner who adopts this action with

probability z2 is

π(z1, z2) = Rz1z2 +Sz1(1− z2)+T (1− z1)z2 +P (1− z1)(1− z2). (1)

We assume that the payoff that an individual receives increases its fecundity linearly, in which case the fecun-

dity of the partner, relative to the fecundity of the focal player, can be written as

f0 +π(z2, z1)

f0 +π(z1, z2)
= 1+ (T −S)(z1 − z2)

f0 +π(z1, z2)
(2)

where f0 is a baseline fecundity that ensures that fecundity is positive. Eq. (2) shows that when T − S > 0

and the the focal is more likely to express B than its partner (z1 − z2 > 0), this results in an increase of its

partner’s fecundity relative to its own (note, eq. (2) also entails ∂[( f0+π(z2, z1)/( f0+π(z1, z2))]/∂z1|z1=z2 = (T −
S)/π(z2, z2) > 0 when T −S > 0). Conversely, when the focal is less likely to express B than its partner (z1 − z2 <
0), this results in a decrease of its partner’s fecundity relative to its own. The quantity T −S can therefore be

thought of as the relative fecundity effect of action B.

We assume throughout that T −S > 0 so that expressing action B increases the fecundity of its recipients (for all

z2 < 1) relative to its actor, and we therefore call behaviour B "benevolent". Conversely, expressing M increases
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the fecundity of its actor relative to its recipient (for all z2 > 0) , and we call behaviour M "self-serving". The

condition that T −S > 0 includes well-known games. For instance, when T > R > S > P , B behaviour is equiv-

alent to "Dove" in the Hawk-Dove game, or "Cooperate" in the Snow-Drift (or Volunteers’ dilemma) game.

When T > R > P > S, B is equivalent to "Cooperate" in the Prisoner’s dilemma game. B behaviour therefore

generally encompass cooperative and altruistic behaviours but not necessarily. Whether behaviour B is coop-

erative or altruistic sensu evolutionary biology depends on its fitness effects (15, 37), which themselves depend

on population structure and life-cycle.

M.2 Evolutionary invasion analysis in the island model

M.2.1 Invasion and the average mutant growth rate

In general, the fate of a mutation that codes for a rare mutant phenotype xm = (zm,dm) when the resident

population has phenotype x = (z,d) can be deduced from the geometric growth rate W (xm,x) of that mutation.

In a population of constant size, the geometric growth rate is given as the time-averaged mean cumulative

growth over different replicates or sample paths of the invasion dynamics (38, 39). If the geometric growth rate

is less or equal to one (W (xm,x) ≤ 1), then the mutation will eventually go extinct in the population, otherwise

it invades when rare (40, 41).

When the mutant and residents only differ by a small amount (‖xm −x‖ << 0), the growth rate can be approxi-

mated by Taylor expanding W (xm,x) close to resident phenotype x,

W (xm,x) ≈ 1+ (xm −x)TS(x)+ (xm −x)TH(x)(xm −x), (3)

where S(x) is a 2×1 vector and H(x) is a 2×2 matrix that respectively give the first- and second-order effects of

selection. When mutations are rare with weak phenotypic effects, evolutionary dynamics can be decomposed

into two time-scales (17), and S(x) and H(x) each capture a specific time-scale that we detail below for the

infinite island model.

M.2.2 Directional selection in the infinite island model

On a fast time scale, the population evolves under directional selection, whereby selected new mutations

rapidly sweep the population before a new mutation arises, so that the population “jumps" from one

monomorphic state to another (17). The direction of evolution under directional selection is indicated by

the selection gradient vector

S(x) =
Sz (x)

Sd (x)

=


∂W (xm,x)

∂zm

∣∣∣∣
xm=x

∂W (xm,x)

∂dm

∣∣∣∣
xm=x

 . (4)
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In the infinite island model, the selection gradient on trait u ∈ {z,d}, which captures the directional coefficient

of selection on trait u, has been shown (15, 12) to be equal to

Su(x) = ∂w(x1,x−1,x)

∂u1

∣∣∣∣ x1=x
x−1=x

+ (N −1)r2(x,x)
∂w(x1,x−1,x)

∂u2

∣∣∣∣ x1=x
x−1=x

, (5)

where w(x1,x−1,x) is the individual fitness of a focal individual that we arbitrarily label as individual "1" (i.e.,

the expected number of adult offspring produced by individual "1"), when he has phenotype x1 = (z1,d1), his

N −1 neighbours have phenotypes x−1 = (x2, . . . ,xN ), and the resident has phenotype x; and rl (xm,x) is defined

as the probability that l −1 randomly drawn (without replacement) neighbours of a mutant are also mutants

(i.e., that they all belong to the same lineage). In a monomorphic population (so that xm = x), rl (x,x) reduces to

the probability of sampling l individuals without replacement whose lineages are identical-by-descent, which

is the standard l th-order measure of relatedness for the island model (42). The selection gradient (eq. 5) is

therefore the sum of the direct fitness effects of trait u and the pairwise relatedness (r2(x,x)) weighted indirect

fitness effects of trait u (note: x−1 = x means x2 = x3 = . . . = xN = x) (15, 12).

In two-dimensional phenotypic space, S(x) points towards the direction of directional selection close to the

resident, so adaptive dynamics will first settle for an equilibrium

x∗ = (z∗,d∗) such that S(x∗) = 0, (6)

when the equilibrium is an attractor of selection. The equilibrium is a local attractor, or a so-called conver-

gence stable point (43), if the Jacobean matrix

J(x∗) =


∂Sz (x)

∂z

∣∣∣∣
x=x∗

∂Sz (x)

∂d

∣∣∣∣
x=x∗

∂Sd (x)

∂z

∣∣∣∣
x=x∗

∂Sd (x)

∂d

∣∣∣∣
x=x∗

,

 (7)

is negative-definite, or equivalently if it has eigenvalues with negative real parts (44, 12).

M.2.3 Stabilising/disruptive selection in the infinite island model

Once the population is at an equilibrium x∗ that is convergence stable, the leading eigenvalue λ(x∗) of the

Hessian matrix,

H(x∗) =
hzz (x∗) hzd (x∗)

hzd (x∗) hdd (x∗)

=


∂2W (xm,x∗)

∂z2
m

∣∣∣∣
xm=x∗

∂2W (xm,x∗)

∂zm∂dm

∣∣∣∣
xm=x∗

∂2W (xm,x∗)

∂zm∂dm

∣∣∣∣
xm=x∗

∂2W (xm,x∗)

∂d 2
m

∣∣∣∣
xm=x∗

 , (8)

tells us whether selection is stabilising (when λ(x∗) ≤ 0 and all mutations close to the resident vanish) or dis-

ruptive (when λ(x∗) > 0). Note that the Hessian necessarily has real eigenvalues because it is symmetric with

real entries. In the infinite island model, it has been shown (12) that the huv (x∗) entry of the Hessian for

u ∈ {z,d} and v ∈ {z,d}, which is the quadratic coefficient of selection on traits u and v , can be decomposed as

huv (x∗) = hw,uv (x∗)+hr,uv (x∗), (9)
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where

hw,uv (x∗) =∂w(x1,x−1,x∗)

∂u1∂v1

∣∣∣∣ x1=x∗
x−1=x∗

+ (N −1)r2(x∗,x∗)

∂2w(x1,x−1,x∗)

∂u2∂v2

∣∣∣∣ x1=x∗
x−1=x∗

+ ∂2w(x1,x−1,x∗)

∂u1∂v2

∣∣∣∣ x1=x∗
x−1=x∗

+ ∂2w(x1,x−1,x∗)

∂u2∂v1

∣∣∣∣ x1=x∗
x−1=x∗


+ (N −1)(N −2)r3(x∗,x∗)

∂2w(x1,x−1,x∗)

∂u2∂v3

∣∣∣∣ x1=x∗
x−1=x∗

,

(10)

captures the second-order fitness effects when the relatedness among mutants is the same as among resi-

dents (since r2(x∗,x∗) and r3(x∗,x∗) are evaluated when the population is monomorphic for the resident at

equilibrium), and where

hr,uv (x∗) = (N −1)

∂w(x1,x−1,x∗)

∂u2

∣∣∣∣ x1=x∗
x−1=x∗

∂r (xm,x∗)

∂v

∣∣∣∣
xm=x∗

+ ∂w(x1,x−1,x∗)

∂v2

∣∣∣∣ x1=x∗
x−1=x∗

∂r (xm,x∗)

∂u

∣∣∣∣
xm=x∗

 , (11)

depends on the effects that the traits have on pairwise relatedness (i.e., on ∂r (xm,x∗)/∂v and ∂r (xm,x∗)/∂u).

For the models considered here, previous works (45, 46, 12) have shown that this effect can be expressed as

∂r (xm,x∗)

∂v

∣∣∣∣
xm=x∗

= 2r2(x∗,x∗)

1−m(x∗)

((
1+ (N −1)r2(x∗,x∗)

) ∂wP(x1,x−1,x∗)

∂v1

∣∣∣∣ x1=x∗
x−1=x∗

+ (
2r2(x∗,x∗)+ (N −2)r3(x∗,x∗)

)
(N −1)

∂wP(x1,x−1,x∗)

∂v2

∣∣∣∣ x1=x∗
x−1=x∗

)
,

(12)

where m(x∗) is the neutral backward probability of dispersal (i.e., the probability that a breeding spot is filled

by an immigrant in a population monomorphic for the resident), and wP(x1,x−1,x) is the expected number of

offspring of individual 1 that remain in the focal island (i.e., its expected number of philopatric offspring).

The quadratic coefficient of selection on a single trait (hzz (x∗) and hdd (x∗)) tell us about selection on that

trait when it is evolving in isolation from the other. For instance, when hzz (x∗) ≤ 0, selection on z is stabilis-

ing, but when hzz (x∗) > 0 selection is disruptive and z will diversify whether or not dispersal is also evolving.

Meanwhile, the quadratic coefficient of selection on z and d , hzd (x∗), captures the types of associations or

correlations among z and d that are favoured by selection. It is therefore referred to as the correlational co-

efficient of selection (47). When hzd (x∗) is positive, selection favours a positive correlation among both traits

close to the resident and conversely, when it is negative, selection favours a negative correlation. It follows

from standard linear algebra results (48), that if

hzd (x∗)2 > hzz (x∗)hdd (x∗), (13)

then the leading eigenvalue of H(x∗) is positive (λ(x∗) > 0), which in biological terms means that if the correla-

tional coefficient of selection is strong relative to the quadratic coefficient of selection on both traits, it causes

selection to be disruptive and polymorphism arises.
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M.2.4 Fitness and genetic structure for baseline model

We now use eqs. (5)–(12) to derive the dynamics for the baseline model set out in the main text, in which

generations do not overlap (i.e., Wright-Fisher life cycle). We first express the necessary components for our

analysis in terms of z and d : the individual fitness function (of individual "1", w(x1,x−1,x)), and pairwise and

three-way relatedness (r2(x,x) and r3(x,x)). The fecundity of individual "1" is

f (x1,x−1) = f0 +
N∑

j=2

π(z1, z j )

N −1
, (14)

where recall that f0 is a baseline fecundity that ensures that fecundity is positive and the payoff function π

is given in eq. (1). According to the life-cycle set out in the main text, the expected number of philopatric of

individual "1" is

wP(x1,x−1,x) = (1−d1) f (x1,x−1)∑N
i=1(1−di ) f (xi ,x−i )/N +d(1− cd) f (x,x)

, (15)

and the overall fitness of individual 1 is

w(x1,x−1,x) = wP(x1,x−1,x)+ d1(1− cd) f (x1,x−1)

(1−dcd) f (x,x)
. (16)

We turn to pairwise and three-way relatedness that appear on the selection gradient (eq. 5) and Hessian matrix

(eqs. 9-12). The neutral backward probability of dispersal, which recall is the probability that a breeding spot

is filled by an immigrant in a monomorphic population, is given by

m(x) = d(1− cd)

1−d +d(1− cd)
, (17)

the ratio of the number immigrant offspring to the total number of offspring in a group. Pairwise and three-

way relatedness are found using m(x) and standard identity-by-descent arguments (49, 15), giving

r2(x,x) = (1−m(x))2

N − (N −1)(1−m(x))2 , (18)

and

r3(x,x) = (1−m(x))3(1+3(N −1)r2(x,x))

N 2 − (N −1)(N −2)(1−m(x))3 . (19)

We now have all that is necessary to infer on the adaptive dynamics of dispersal and benevolence using the

selection gradient and Hessian matrix (eqs. 5–12).

M.2.5 Directional selection on dispersal

Equilibrium dispersal. We first look at the selection gradient on dispersal. Substituting eqs. (16) and eq. (18)

into eq. (5) (with u = d) gives the selection gradient on dispersal,

Sd (x) = 1− cd

1− cdd
× l (d)

h(d)
, (20)

where

l (d) = 1− (1+2cdN )d + cd(1+ cd)N d 2,

h(d) = 1−2(1− (1− cd)N )d + (
1− (1−c2

d)N
)

d 2 > 0.
(21)
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The equilibrium d∗ for dispersal then solves l (d∗) = 0, which gives

d∗ =
1+2N cd −

√
1+4N (N −1)c2

d

2N cd(1+ cd)
, (22)

in agreement with previous works on the evolution of dispersal e.g., eq. (14) of (45).

Convergence stability of equilibrium dispersal. The equilibrium eq. (22) is an attractor when dispersal is

evolving in isolation from z if
∂Sd (x)

∂d

∣∣∣∣
x=x∗

= (1− cd)l ′(d∗)

(1− cdd∗)2h(d∗)
< 0, (23)

which is always the case because the derivative l ′(d) =−1−2cd(N (1−d)−d) < 0 is always negative (since N ≥ 2,

0 ≤ cd < 1 and 0 < d ≤ 1).

M.2.6 Directional selection on benevolence

Equilibrium benevolence. To look at the selection gradient on the probability z of adopting benevolent be-

haviour B, it is advantageous to use the following transformation for payoffs (50, 51, 52)

B = T −P,

C = P −S,

D = R −S −T +P,

(24)

which results in a payoff matrix with the form B −C +D −C

B 0

 . (25)

If transformation (24) can be used to study any symmetric game between two players, it is particularly useful

for cooperative problems wherein a B-player gives benefit B > 0 to its partner at cost −C < 0, but if the partner

is also B, there is a synergistic bonus D > 0 or discount D < 0 (eq. 25). Note that in terms of these new payoff

variables, our assumption that action B is benevolent, T −S > 0, is B +C > 0. Substituting eqs. (16) and eq. (18)

into eq. (5) (with u = z) gives the selection gradient,

Sz (x) = (1− r2(x,x)) (Dz −C )

f (x,x)
, (26)

so that the equilibrium x∗ which solves Sz (x∗) = 0 is

z∗ = C

D
, (27)

in agreement with previous works on the evolution of z alone (53) eq. (9) with κ=0. Substituting the original payoff

variables eq. (24) then gives the equilibrium value presented in Fig. 1c. Eq. (26) shows that dispersal has no

effect on the convergence of z to an equilibrium here. This is because how limited dispersal influences con-

vergence of z depends on the effects of dispersal on genetic relatedness, which favours benevolent behaviour,

and on kin competition, which favours self-serving behaviour (54), and when local population size is constant

(fixed N ) and generations do not overlap, these effects cancel out regardless of payoffs (55).
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Convergence stability of equilibrium benevolence. The equilibrium eq. (27) is an attractor point when z is

evolving alone if
∂Sz (x)

∂z

∣∣∣∣
x=x∗

= (1− r2(x,x))D

f (x∗,x∗)
< 0, (28)

which occurs when D < 0 (since 0 < m(x) ≤ 1). So, in order for an internal equilibria to be an attractor, we must

have 0 <C /D < 1 and D < 0, i.e., R < T and P > S, which we will assume for the rest of this section.

M.2.7 Directional selection when dispersal and benevolence co-evolve

When both traits co-evolve, whether the point x∗ = (z∗,d∗) is an attractor depends on the eigenvalues of the

Jacobean matrix (eq. 7). Since both off-diagonal entries of the Jacobean are zero, i.e.,

∂Sd (x)

∂z

∣∣∣∣
x=x∗

= ∂Sz (x)

∂d

∣∣∣∣
x=x∗

= 0, (29)

the eigenvalues of the Jacobean are equal to the diagonal entries (eqs. 23 and 28), and so the conditions for

x∗ = (z∗,d∗) =

 C

D
,

1+2N cd −
√

1+4N (N −1)c2
d

2N cd(1+ cd)

 , (30)

to be an attractor are the same as for z∗ and d∗ to be attractors when evolving in isolation from one another,

which we have already derived. Thus, provided 0 < C /D < 1 and D < 0, the population will converge to x∗ =
(z∗,d∗) under directional selection. Note that these conditions preclude the existence of a convergence stable

internal equilibrium for cooperative behaviour since it requires that the cost of cooperation is positive −C > 0.

The conditions for the other possible outcomes for the evolution of z (convergence to zero or one) are found

similarly, by considering the selection gradient at z = 0 and z = 1.

M.2.8 Stabilising selection on dispersal and benevolence

Substituting eqs. (15), (16), (18) and (19) into eqs. (9)-eqs. (12) (with u = v = d), we find that we can express the

quadratic coefficient of selection on dispersal at the equilibrium as a product

hdd (x∗) =−Fdd (x∗)Gdd (x∗) (31)

where

Gdd (x∗) = N 2
(
N + (N −1)(1−m(x∗))2

)(
N + (N −1)(1−m(x∗))(2−m(x∗))

)
N − (N −1)(1−m(x∗))2 > 0,

Fdd (x∗) = 2(1−m(x∗))2m(x∗)

N
(
N − (N −1)(1−m(x∗))2

)(
N 2 − (N −1)(N −2)(1−m(x∗))3

)
(1−d∗)2

> 0.

(32)

So, hdd (x∗) < 0 is negative, and selection on dispersal when it is evolving alone is always stabilising (as previ-

ously found for this life-cycle (45)).

Similarly, substituting eqs. (15), (16), (18) and (19) into eqs. (9)-(12) (with u = v = z), the quadratic coefficient

of selection on z at the equilibrium can be expressed as

hzz (x∗) =−Fzz (x∗)
(
Gzz (x∗)(B +C )2 −Kzz (x∗)D f (x∗,x∗)

)
, (33)
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where

Gzz (x∗) = m(x∗)(1−m(x∗)) ≥ 0

Kzz (x∗) = N + (1−m(x∗))(N + (N −2)(1−m(x∗))) > 0

Fzz (x∗) = 2N (1−m(x∗))2m(x∗)(
N − (N −1)(1−m(x∗))2

)(
N 2 − (N −1)(N −2)(1−m(x∗))3

)
f (x∗,x∗)2

≥ 0,

(34)

Then, since we assume D < 0 here, hzz (x∗) < 0 is non-positive, and mutations that only change z will eventu-

ally vanish. So, selection on z when it is evolving alone is stabilising for all model parameters.

M.2.9 Disruptive selection on dispersal and benevolence when they co-evolve

Correlational coefficient of selection. When dispersal and benevolence co-evolve, selection at the equilib-

rium also depends on the correlational coefficient of selection, and by substituting eqs. (15), (16), (18) and (19)

into eqs. (9)-eqs. (12) (with u = z and v = d), we find that it can be expressed as

hzd (x∗) =−
√

Fdd (x∗)Fzz (x∗)Gzd (x∗)(B +C ), (35)

where

Gzd (x∗) =−N 2 − (N −1)(N −2)(1−m(x∗))3

2d∗ +N (N −1)(1−m(x∗))(2−m(x∗))

+ N 3(1− (1−m(x∗))2)+N 2(1−m(x∗))

N − (N −1)(1−m(x∗))2 > 0,

(36)

is positive (showing Gzd (x∗) > 0 can be easily achieved with an algebraic computer program (56) once having

substituted for the dispersal equilibrium eq. 22). Since we assume B +C > 0, eq. (35) shows that the correla-

tional coefficient of selection is negative, hzd (x∗) < 0.

Disruptive selection. Substituting eqs. (31), (33) and (35) into eq. (13) shows that the correlational coefficient

of selection will cause disruptive selection whenever

Gzd (x∗)2(B +C )2 >Gdd (x∗)
(
Gzz (x∗)(B +C )2 −Kzz D f (x∗,x∗)

)
. (37)

This can be re-arranged to

1

Kzz (x∗)

(
Gzz (x∗)− Gzd (x∗)2

Gdd (x∗)

)
< D

(B +C )2 f (x∗,x∗), (38)

so that the left hand side only depends on ecological variables: group size N and dispersal cost cd. Meanwhile,

the right hand-side D/(B +C )2 f (x∗,x∗) only depends on the properties of the game and can be re-arranged as

D

(B +C )2 f (x∗,x∗) = D

(B +C )2

(
f0 + (B +C )z∗−Dz∗2

)
. (39)

Substituting for the original payoff variables (eq. 24) into eq. (39), which is in turn substituted into eq. (38) then

allows to produce Fig. 1d (with T −R +S −P = 1 and f0 = 1).
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In summary, the correlational coefficient of selection can cause polymorphism when z and dispersal co-

evolve. In order to gain more understanding about this result, let us consider a mutation that arises in

a monomorphic population for the equilibrium x∗ and that changes dispersal by ∆d = dm − d∗ and z by

∆z = zm − z∗. This mutation will invade whenever its growth rate is greater than one, i.e., whenever

W (xm,x∗) = 1+∆2
d hdd (x∗)+∆2

z hzz (x∗)+∆d∆z hzd (x∗) > 1. (40)

From eq. (35), the correlational coefficient of selection hzd (x∗) < 0 is negative. Then, since hdd (x∗) < 0 and

hzz (x∗) < 0, eq. (40) shows that the only mutations that have a chance of invading are those that have opposite

effects on dispersal and z, i.e., mutations with ∆d∆z < 0. Thus, two types of mutation can invade the popu-

lation, one type that increase z and decrease d and another type that decreases z and increases d . Further

insights can be brought by looking at the correlational coefficient of selection when dispersal cost is low (i.e.,

when cd is small),

hzd (x∗) = cd(1− cd)
B +C

f (x∗,x∗)︸ ︷︷ ︸
∂w(x1,x−1,x∗)

∂z1∂d1
|x∗

−2cd︸ ︷︷ ︸
∂r (xm,x∗)

∂d |x∗

× B +C

f (x∗,x∗)︸ ︷︷ ︸
(N−1)

∂w(x1,x−1,x∗)
∂z1

|x∗

+O(c2
d) =−cd(1+ cd)

B +C

f (x∗,x∗)
+O(c3

d), (41)

which reveals that what causes the correlational coefficient of selection to be negative, is the combination of

the effect of dispersal on pairwise relatedness (∂r (xm,x∗)/∂d) with the indirect fitness effects of social inter-

actions (∂w(x1,x−1,x∗)/∂z1). The correlational coefficient of selection therefore favours mutations or morphs

that ensure that its carriers either provide (1) more indirect benefits to their own kin; or (2) less indirect benefits

to non-kin.

M.3 Computer simulations

We performed individual based simulations for a population composed of Nd = 1250 groups, each populated

by N = 8 haploid individuals, using Mathematica 11.0.1.0 (56). Starting with a population monomorphic for

no dispersal d = 0 and full benevolence z = 1, we track the evolution of the multidimensional phenotypic dis-

tribution as small mutations continuously arise. Each individual i = 1, . . . ,10000 is characterised by a dispersal

value di and a benevolence value zi . At the beginning of a generation, we calculate the fecundity fi of each

individual according to its benevolence and that of its neighbours (eq. 14, with f0 = 1, R = 50, S = 0, T = 100,

P =−15). Then, we form the next generation of adults by sampling N individuals in each group with replace-

ment, where each individual from the parental generation is weighted according to whether they belong to the

group on which the breeding spot is filled or not. If an individual belongs to the same group in which a breed-

ing spot is filled, then its weight is fi (1−di ). If it belongs to another group, then its weight is fi di (1−cd)/(Nd−1)

(with cd = 0.1). Once an individual is chosen to fill the breeding spot, each locus independently mutates with

probability 0.01. If they do not mutate, then the offspring has the same phenotypic values as its parent. If they

mutate, then we add to parental values a small perturbation that is sampled from a normal distribution with

mean 0 and variance 0.0052. The resulting phenotypic values are truncated to remain between 0 and 1. We

repeated the procedure for 15×104 generations.
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M.4 Analysis when generations overlap

We here study the adaptive dynamics of dispersal and benevolence when generations overlap. We assume

that after reproduction, a random individual in each group dies and that offspring then compete for the single

open breeding spot left vacant in each group at each generation.

M.4.1 Fitness and genetic structure

Following previous works (12), philopatric fitness and total individual fitness respectively now are

wP(x1,x−1,x) = N −1

N
+ 1

N

(1−d1) f (x1,x−1)∑N
i=1(1−di ) f (xi ,x−i )/N +d(1− cd) f (x,x)

, (42)

and,

w(x1,x−1,x) = wP(x1,x−1,x)+ 1

N

d1(1− cd) f (x1,x−1)

(1−dcd) f (x,x)
. (43)

Meanwhile, pairwise and three-way relatedness (12) are given by

r2(x,x) = 1−m(x)

1− (N −1)m(x)
, (44)

and

r3(x,x) = 2(1−m(x))r2(x,x))

2+m(x)(N −2)
, (45)

which completes the necessary expressions to derive the adaptive dynamics of dispersal and benevolence.

M.4.2 Directional selection on dispersal

Equilibrium probability of dispersal. Substituting eq. (43) and (44) into eq. (5) (with u = d) yields the selec-

tion gradient on dispersal,

Sd (x) = (1− cd)(1−d(1+ cdN ))

N (1− cdd)(1−d(1−N (1− cd)))
, (46)

which shows that the equilibrium probability of dispersal (d∗ such that Sd (d∗) = 0) is,

d∗ = 1

1+ cdN
, (47)

(in agreement with previous work (12) eq. (26)) which is greater than the equilibrium when generations do not

overlap (eq. 22) because kin competition is greater when generations overlap (12).

Convergence stability of equilibrium probability of dispersal. If only dispersal is evolving, the equilibrium

eq. (47) is a local attractor when

∂Sd (x)

∂d

∣∣∣∣
x=x∗

=− (1− cd)(1+N cd)3

N 2(1+ cd(N −1))
< 0, (48)

which is always true.
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M.4.3 Directional selection on benevolence

Equilibrium benevolence. Substituting eq. (43) and (44) into eq. (5) (with u = z), and evaluated at dispersal

equilibrium d∗ = 1/(1 + cdN ) gives the selection gradient on the probability z of adopting benevolent be-

haviour B:

Sz (x) = (1− cd)
(
Dz(1+ cd +N cd)+Bcd −C (1+N cd)

)
N (1+ cd(N −1)) f (x,x)

. (49)

Solving the above for zero gives the equilibrium

z∗ = C

D
+ B +C

−D

cd

1+ cd(N +1)
. (50)

Unlike when generations do not overlap (eq. 27), group size N and dispersal cost cd now affect the equilibrium

benevolence. This is because these variables determine dispersal (eq. 22), and when generations overlap, dis-

persal has greater effects on genetic relatedness than on kin competition (57). As a consequence, the indirect

fitness benefits of z, as measured by B +C > 0, play a larger role on its evolution, and the equilibrium benevo-

lence z∗ is greater when generations overlap than when they do not (eq. 50 versus eq. 27).

Convergence stability of equilibrium benevolence. If only benevolence is evolving, equilibrium eq. (50) is a

local attractor if
∂Sz (x)

∂z

∣∣∣∣
x=x∗

= D
(1−cd)(1+ cd +N cd)

N (1+ cd(N −1)) f (x∗,x∗)
< 0. (51)

Therefore, the equilibrium for benevolence is internal (0 < z∗ < 1) and an attractor when only benevolence is

evolving if

C

(
N + 1

cd

)
< B <C

(
N + 1

cd

)
−D

(1+ cd +N cd)

cd
, and D < 0. (52)

Thus, unlike when generations do not overlap, a cooperative behaviour (B > 0, −C < 0) here can have a con-

vergence stable internal equilibrium (with synergistic discount D < 0).

M.4.4 Directional selection when dispersal and benevolence co-evolve

When dispersal and benevolence co-evolve, whether the equilibrium

x∗ = (z∗,d∗) =
(

C

D
+ B +C

−D

cd

1+ cd(N +1)
,

1

1+ cdN

)
, (53)

is an attractor depends on the eigenvalues of the Jacobean (eq. 7). Because we find that one of the non-

diagonal entry of this matrix is zero
∂Sd (x)

∂z

∣∣∣∣
x=x∗

= 0, (54)

the eigenvalues are the diagonal entries that we have already calculated (eq. 48 and 51), and thus the condi-

tions for the joint equilibrium eq. (53) to be internal and a local attractor are eq. (52), which we will henceforth

assume to hold.
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M.4.5 Stabilising selection on dispersal and benevolence

Once the population has converged to the equilibrium eq. (53), the quadratic coefficient of selection on dis-

persal is found by substituting eqs. (42)-(45) into the Hessian entry eqs. (9)-(12) (with u = v = d), which we can

express as

hdd (x∗) =−F (x∗)Gdd (x∗), (55)

where

F (x∗) = (1− cd)(1+N cd)2

N (1+ cd)(1+ (N −1)cd)(1+ (N +1)cd)
> 0,

Gdd (x∗) = 2(N +2cd(N −1))(1+N cd)(1+ (N +1)cd)

N 2(1+ (N −1)cd)
> 0.

(56)

Thus, hdd (x∗) < 0 is always negative and selection on dispersal alone is stabilising for all model parameters.

Similarly, the quadratic coefficient of selection on benevolence at the equilibrium eq. (53) is found by substi-

tuting eqs. (42)-(45) into the Hessian entry eqs. (9)-(12) (with u = v = z), and we find it can be written as

hzz (x∗) = F (x∗)Gzz (x∗)
D

f (x∗,x∗)
, (57)

where

Gzz = 2cd(1+ (N +1)cd)2

(1+N cd)2 ≥ 0. (58)

So hzz (x∗) ≤ 0 (since D < 0 at an internal attractor equilibrium – eq. 52), and selection on z alone is also

stabilising for all model parameters.

M.4.6 Disruptive selection on dispersal and benevolence when they co-evolve

When dispersal and benevolence co-evolve, whether selection is disruptive depends on the correlational coef-

ficient of selection, which is found by substituting eqs. (42)-(45) into the Hessian entry eqs. (9)-(12) (with u = z

and v = d), and which can be expressed as

hzd (x∗) = F (x∗)Gzd (x∗)
B +C

f (x∗,x∗)
, (59)

where

Gzd (x∗) = N 2cd(1+ cd)−2cd(2N −1)−2. (60)

Substituting eqs. (55), (57) and (59) into eq. (13) reveals after some re-arrangements that whenever

− G2
zd (x∗)

Gdd (x∗)Gzz (x∗)
< D

(B +C )2 f (x∗,x∗) < 0, (61)

the correlational coefficient of selection will cause selection to be disruptive. Unlike the left hand side of

eq. (38), the left hand side of eq. (61) is always negative. This means that unlike when generations do not

overlap, for any ecological parameters N and cd, there exists a game that leads to disruptive selection when

generations overlap. In addition, since cooperative games can have an internal convergence stable equilib-

rium when generations overlap (eq. 53), it is possible for such games to lead to polymorphism, which was not

the case when generations do not overlap.
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M.4.7 Selection when dispersal is cost-free

When dispersal is cost-free (cd = 0), analysis is much simplified. The population first converges to the equilib-

rium point

x∗ = (z∗,d∗) =
(

C

D
,1

)
(62)

(provided 0 < C /D < 1 and D < 0), at which there is no kin structure since dispersal is full (d∗ = 1). In other

words, the population is well-mixed and individuals interact at random. At this equilibrium, the Hessian ma-

trix simply reads as,

H(x∗) =


0 − 2

N 3

B +C

f (x∗,x∗)

− 2

N 3

B +C

f (x∗,x∗)
− 2

N 2

 , (63)

and its dominant eigenvalue is,

λ(x∗) =− 1

N 2 +
√

4(B +C )2/N 2 + f (x∗,x∗)2

N 2 f (x∗,x∗)
. (64)

Then, since

λ(x∗) > 1 ⇐⇒
√

4(B +C )2/N 2 + f (x∗,x∗)2 > f (x∗,x∗) ⇐⇒ B +C 6= 0, (65)

disruptive selection always occurs and leads to a polymorphism that creates kin structure: benevolent individ-

uals that have z greater than z∗ =C /D also disperse less, allowing for relatedness among benevolent individ-

uals to build up. In contrast, when dispersal is fixed at one (d = 1), the population will remain monomorphic

for the convergence stable equilibrium z∗ for linear games (58).

M.5 Computer simulations for recombination and recombination evolution

M.5.1 Fixed recombination

We incorporated recombination in our model by adding a stage of diploidy in the life-cycle of our population.

After social interactions within groups, haploid individuals produce haploid gametes that disperse according

to their genotype at the dispersal locus. Then, gametes randomly fuse within groups to make diploid individ-

uals whose genome recombine according to a probability R, and that in turn produce a single haploid adult.

In terms of simulations, this modified life-cycle entails that after calculating the fecundity fi of each indi-

vidual (as in M.3), each of the N breeding spots are filled by first sampling two haploid individuals from the

parental generation according to the weighted sampling described in M.3 and fuse to make a diploid individ-

ual. Then, say a diploid individual has parent indexed i and j with genotypes (zi ,di ) and (z j ,d j ) respectively.

With a probability R, recombination occurs in this diploid, which produces two recombinant haploid geno-

types, (zi ,d j ) and (z j ,di ). With complementary probability 1−R, recombination does not occur and the two

haploid genotypes are the parental ones, (zi ,di ) and (z j ,d j ). The breeding spot is filled by sampling one of the

haploid genotypes at random (with equal probability). The rest of the simulation is as in M.3.
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M.5.2 Recombination evolution

In order to model recombination evolution, we added a third quantitative locus that controls the recombina-

tion probability at the diploid stage. The genome of a haploid individual therefore carries three quantitative

loci: (z,d ,τ), where as before z encodes the probability of adopting B action, d the probability of dispersal at

birth, and τ controls the probability of recombination among z and d loci. For simplicity, we assume that the

τ locus is completely linked to the d locus. Two alleles segregate at the recombination locus τ: a wild-type R

which codes for a recombination probability of 1/2 and a dominant mutant r for zero recombination.

Diploid individuals are formed as in M.5.1. Then, say a diploid individual has parent indexed i and j with

genotypes (zi ,di ,τi ) and (z j ,d j ,τ j ) respectively. Recombination in this individual occurs with a probability

1/2 if τi = τ j = R, or zero otherwise. If recombination occurs, the haplotypes produced are (zi ,d j ,τ j ) and

(z j ,di ,τi ) since the τ locus is completely linked to the d locus. Mutation occurs at each locus independently

with probability 0.01. Quantitative effects of mutation at the z and d loci are as in M.3, while mutations at the

τ locus changes r to R and R to r . The rest of the simulation is as in M.3.
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