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ABSTRACT 
Understanding gene regulation and function requires a genome-wide method capable of 
capturing both gene expression levels and isoform diversity at the single cell level. Short-read 
RNAseq, while the current standard for gene expression quantification, is limited in its ability to 
resolve complex isoforms because it fails to sequence full-length cDNA copies of RNA 
molecules. Here, we investigated whether RNAseq using the long-read single-molecule Oxford 
Nanopore MinION sequencing technology (ONT RNAseq) would be able to identify and quantify 
complex isoforms without sacrificing accurate gene expression quantification. After successfully 
benchmarking our experimental and computational approaches on a mixture of synthetic 
transcripts, we analyzed individual murine B1a cells using a new cellular indexing strategy. 
Using the Mandalorion analysis pipeline we developed, we identified thousands of unannotated 
transcription start and end sites, as well as hundreds of alternative splicing events in these B1a 
cells. We also identified hundreds of genes expressed across B1a cells that displayed multiple 
complex isoforms, including several B cell specific surface receptors and the antibody heavy 
chain (IGH) locus. Our results show that not only can we identify complex isoforms, but also 
quantify their expression, at the single cell level. 
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Introduction 
 
Over the last decade, RNAseq has vastly increased our knowledge of eukaryotic gene 
expression and the unique transcript isoform signatures that differentiate developmental stages, 
organs, and single cells 1–4. Proteins that arise from transcript isoforms of a single gene can vary 
in their biological properties including stability, intracellular localization, enzymatic activity, and 
post-translational modifications 5. Transcript isoforms are the product of alternative transcription 
start sites (TSSs), transcription end sites (TESs), and alternative splicing events that include 
alternative splice sites, intron retention, and exon skipping 6. It has been predicted that a large 
fraction of human genes are alternatively spliced 7,8. Although alternative splicing enables 
increased transcriptome diversity, aberrations in splicing have been implicated in several human 
diseases, including cancer. Indeed, 15% of point mutations have been predicted to cause splice 
defects, resulting in human genetic disorders 9 and somatic mutations within splicing factors are 
associated with 12 different cancer types 10. 

Consequently, it is important to determine the true transcriptional diversity of cells. This 
requires that gene expression is analyzed not only at the gene-level but also at the isoform-
level. However, current short-read RNAseq methods are inherently limited in their ability to 
identify complex transcript isoforms, as they cannot sequence full-length transcripts. Instead, 
transcripts are fragmented for sequencing, resulting in short individual reads that fail to span the 
entirety of the transcript. Computational tools can be used to assemble full-length transcripts 
from these reads, but different assembly algorithms can result in conflicting outcomes and 
varying overall assembly quality 11.  

To offset this limitation of short-read RNAseq, studies have successfully used both 
single-molecule long-read PacBio and synthetic long-read MOLECULO methodologies 12–15 to 
sequence full-length cDNA. However, PacBio technology has a bias toward shorter fragments 
necessitating the separation of cDNA by length before library preparation, which complicates 
sample preparation and quantification 16. Furthermore, MOLECULO depends on the assembly 
of short Illumina reads that suffer from the biases inherent in Illumina data and relies on the 
separation of individual transcript molecules into distinct wells. This complicates quantification 
as well as the analysis of highly abundant or similar isoforms. Recently, the Oxford Nanopore 
Technologies (ONT) MinION has been used to analyze full-length cDNA samples derived from 
both defined synthetic RNA molecules as well as RNA from tissue culture cells 17.  

With the exception of a single study using single cell RNA-seq to focus its analysis on a 
single gene locus using PacBio technology 18, these long-read technologies have been used 
exclusively to evaluate transcriptome diversity across bulk cell populations. However, recent 
studies have highlighted that cells found within seemingly homogeneous populations can differ 
in gene expression 19,20,21. Understanding heterogeneity within cell populations has shown 
promise across multiple disciplines including developmental biology, neurobiology, cancer and 
immunology. Single cell approaches can help illuminate biological questions regarding cell 
function, development and dysfunction. Knowing the exact state of the cell can help determine 
its fate or reflect changes with response to stimuli or drug treatment, as well as its ability to 
neutralize a pathogen, respectively. Cell-to-cell heterogeneity 3 makes immune cells a 
fascinating target for in-depth analysis of transcriptional diversity. Current approaches that 
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measure RNA transcripts within single cells rely on short-read RNA-seq, single molecule RNA-
fluorescence in-situ Hybridization (SM-RNA FISH), or single-cell RT-qPCR 22,23,24,25. These 
current methods can either be applied to a few genes or are under the same constraints of 
short-read RNA-seq, which we described earlier. Ultimately, these approaches are unable to 
identify and quantify complex isoforms on a transcriptome-wide level.  

To make it possible to identify and quantify complex isoforms on a transcriptome-wide 
single cell level, we have developed a nanopore sequencing approach for the analysis of full-
length cDNA in single cells. The Oxford Nanopore Technologies (ONT) MinION sequencer is a 
portable device that is based on single molecule sequencing technology that provides reads of 
unprecedented length by performing voltage driven molecule translocations through small 
nanosensors 26. Although the MinION platform has been most useful for interrogating viral and 
bacterial genomes, recently it has been applied for analyzing cDNA in both targeted as well as 
genome-wide approaches 17,27–30. Taking advantage of its unprecedented read length, we 
wanted to interrogate single-cell transcriptomes of mouse B1a cells by sequencing full-length 
cDNA molecules using the ONT MinION sequencer.  

We implemented an integrated informatics pipeline (Mandalorion) for gene-level and 
transcript isoform-level expression quantification to overcome the sequencing accuracy 
limitations of the ONT MinION. To identify transcript isoforms, Mandalorion predicted 
transcription start and end sites, as well as splice sites and their alternative usage. After 
benchmarking the ONT RNAseq approach on a complex mixture of synthetic transcripts, we 
sequenced seven individual mouse B1a cells and showed that we could accurately quantify 
gene expression and identify and quantify novel isoforms at the single-cell level. Our analysis 
identified differential usage of complex isoforms in over a hundred genes including several 
surface molecules like CD19, CD20, and IGH, the very receptors defining B cell identity. 
 
Results 
 
Generating and Sequencing Single-Cell RNAseq Libraries 

We first investigated the ability of the ONT MinION platform to interrogate transcriptomes 
at the single-cell level. To test this, we used our ONT RNAseq approach to analyze seven 
individual mouse B1a cells 31,32 and compared it with the standard Illumina RNAseq approach. 
To this end, we FACS-sorted single B1a cells into individual wells containing lysis buffer and 
amplified cDNA from each individual cell using the Smartseq2 protocol with modifications (see 
Methods, Supplementary Table S1) 33. The cDNA generated by the Smartseq2 protocol was 
split and processed in-parallel using the Illumina and ONT library preparation protocols. 
Sequencing the fragmented cDNA of the seven cells on the HiSeq2500, we generated between 
73,086-351,876 150bp Illumina reads per cell. Sequencing the full-length cDNA of the first three 
cells on individual ONT MinION flow cells using the R7.3 chemistry generated between 17,749-
52,696 ONT 2D reads per cell (Supplementary Table S2). Taking advantage of the improved 
MinION throughput using the R9.4 chemistry, we multiplexed the full-length cDNA of the other 
four cells on a single MinION flow cell and generated between 57,874-128,726 ONT 2D reads 
per cell. To enable this multiplexing we introduced custom 60 nucleotide cellular indexes during 
PCR amplification (see Methods, Supplementary Table S1, Fig. 1a). 
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Comparison of Gene Expression Quantification 
To assess whether ONT RNAseq is capable of quantifying gene expression, we compared 
RNAseq data produced with ONT and Illumina, the current benchmark for gene expression 
quantification. Because standard gene quantification tools (eg. STAR34, Cufflinks35) are not 
compatible with nanopore reads, we aligned the ONT 2D reads using BLAT36 and quantified 
gene expression using our own Mandalorion algorithm. Mandalorion determines how many 
reads overlap with the exons of a gene to produce a Reads Per Gene per 10K reads (RPG10K) 
value. As ONT 2D reads are long enough to span the full-length of the transcripts, normalization 
for gene length was not performed (Fig. 1b). Comparing Illumina and ONT RNAseq gene 
expression quantification for the same cell showed high correlation (Pearson r ≥ 0.84-0.89 for 
R7.3 and 0.9-0.92 for R9.4), confirming that our ONT RNAseq approach recapitulates Illumina 
gene expression quantification (Fig. 2). Comparing Illumina and ONT RNAseq gene expression 
quantification across different cells showed low correlation with a Pearson r < 0.45, suggesting 
that ONT RNAseq can identify cell-to-cell variability 1,37 (Fig. 2).   

These results show that even with the relative low number of reads produced, ONT 
RNAseq gene-expression quantification largely detects the same genes as Illumina RNAseq 
(Fig. 3a). Furthermore, subsampling ONT and Illumina raw reads showed that, for five of the 

 
 
Figure 1: Experimental Design and Analysis Pipeline 
a) Schematic of experimental design. FACS-sorted single B1a cells were lysed. PolyA-RNA was 
then reverse transcribed and PCR amplified using template switching. Full-length cDNA was split 
into two reactions. Half of the reaction was tagmented by Tn5 and sequenced using a Illumina 
HiSeq2500 sequencer. The other half of the reaction was ligated to ONT adapters and 
sequenced on an ONT MinION sequencer.  
b) Schematic of the Mandalorion pipeline used to analyze the ONT 2D read data. 
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seven cells analyzed, the detection of expressed genes had reached saturation (Supplementary 
Fig. 2). Unsurprisingly, genes that were detected by either ONT or Illumina RNAseq alone were 
expressed at lower levels, indicating that these genes were expressed at levels close to the 
detection limits of both technologies (Fig. 3b). We also observed that the genes detected by 
ONT RNAseq alone were comprised of smaller transcripts (Fig. 3c). Additionally, genes that 
were < 600 bp in length and were detected by both ONT and Illumina RNAseq had relatively 
lower expression levels in Illumina RNAseq data (Fig. 3d). While this is consistent with smaller 
transcripts being strongly selected against in the Tn5 based Illumina library prep, we couldn’t 
exclude that ONT RNAseq might have a bias towards shorter transcripts. To exclude this 
possibility, we chose to analyze a mix of synthetic transcripts.  

 

 
 

Figure 2: ONT RNAseq recapitulates Illumina RNAseq gene expression quantification. 
Scatter plot grid at the center of the figure shows gene expression levels for each gene as 
determined by Illumina RNAseq and ONT RNAseq for the indicated cells. Correlations of gene 
expression levels are given as reads per gene per 10,000 reads (RPG10K) across 7 single 
cells. Pearson r is given for each cell per sequencing method combination with each point 
representing transcript expression level (x-axes =Illumina and y-axes=ONT). Same cell 
comparisons have a blue border. ONT sequencing chemistry is shown on the right. Histograms 
found on the left and top of the figure represent number of genes found binned by their 
expression levels. 
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Figure 3: Quantifying gene and transcript expression with ONT RNAseq data 
a) Stack barplots showing the number of genes detected by each cell corresponding to 
different sequencing technologies (Ill - Illumina, ONT - Oxford Nanopore). b) Median 
expression levels of genes detected by both or individual technologies. Two expression 
levels (Ill and ONT) are given for genes detected in both technologies. c) Gene length 
of genes detected by both or individual technologies. d) Ratio of gene expression levels 
for genes detected by both technologies. Ratios are binned according to gene length 
and shown as boxplots with whiskers indicating 10th and 90th percentiles. e) SIRV 
transcript levels of Replicate 1 (Rep1: 100fg SIRV pool E2) as measured with ONT 
RNAseq. Transcripts are binned by their starting molecule numbers. f) SIRV transcript 
levels of Replicate 1 are plotted against transcript length with colors corresponding to 
groups in e). g)  Scatter plot showing correlation of SIRV transcript expression levels of 
Replicate 1 (Rep1: 100fg SIRV pool E2) and Replicate 2 (Rep2: 100fg SIRV pool E2) , 
both measured by ONT RNAseq. r-value shown is Pearson-r. 
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Analysis of synthetic transcript mixtures 
To test whether transcript length had an effect on expression levels as measured by 

ONT RNAseq, we sequenced synthetic Spike-in RNA Variant Control Mixes (SIRVs, Lexogen) 
of known length, structure and sequence. SIRV transcripts provided in the E2 mix contained 69 
transcripts ranging from 191-2528 nt. In the E2 mix 69 transcripts were present in four groups of 
varying concentrations containing 19, 21, 17 and 12 transcripts in each group, respectively. To 
test a wide range of possible transcript levels, we amplified (sub-) single cell amounts (i.e. 10fg 
and 100fg) of the Lexogen SIRV E2 mix in duplicate. This reflected a wide range of possible 
transcript levels with 8-10,240 molecules of individual SIRV transcripts present before the 
amplification step. 

We quantified the 69 transcripts by aligning the resulting 5367-17915 2D ONT reads 
directly to the spliced SIRV transcriptome using BLAT and then counting and normalizing the 
matched ONT 2D reads for each transcript. As expected when amplifying (sub-) single cell 
amounts of RNA, we observed transcript drop-out in the lower concentration groups and found 
that transcript quantification showed variations within each concentration group (Fig. 3e, 
Supplementary Fig. 3a). Most importantly, however, quantification was not affected by transcript 
length, with the exception of transcripts shorter than 500 bp. These transcripts were either 
underrepresented or missed entirely (Fig. 3f). Generally, ONT RNAseq quantification agreed 
with the nominal concentration of the spike-in transcripts and, interestingly, the intra-group 
variations in transcript quantification were reproducible between replicates (Fig. 3g). This intra-
group variation might be due to variation in initial transcript levels, systematic amplification bias, 
or data analysis bias. Overall, the observed underrepresentation of short transcripts in ONT 
RNAseq and the differences between Illumina and ONT RNAseq quantification are consistent 
with cDNA molecules below 500 bp in length being selected against during cDNA synthesis and 
again during the Illumina library preparation using the Tn5 method. Ultimately, analyzing these 
synthetic transcripts at different concentrations allowed us to exclude the possibility that ONT 
RNAseq favors shorter transcripts. 

 Next, we wanted to test whether, in addition to largely unbiased quantification of SIRV 
transcripts 500-2,500 bp in length, ONT RNAseq reads cover transcripts in their entirety which 
would make them uniquely suitable to identify and quantify complex isoforms.  

 
 
Using Mandalorion for genome annotation and isoform identification with SIRV ONT 
RNAseq data 

The 69 synthetic SIRV transcripts are derived from 7 artificial gene loci that have been 
modeled after human genes with high isoform diversity, making them suitable for testing ONT 
RNAseq’s capability to capture isoform diversity in a genome annotation independent manner. 
To this end, we used Mandalorion to analyze ONT RNAseq 2D read data to annotate the SIRV 
gene loci, which in turn could be utilized to further identify and quantify SIRV isoforms. First, we 
used read alignments to annotate Transcription Start Sites (TSS) and Transcription End Sites 
(TES), as well as splice sites (SS) of SIRV transcripts in the SIRV gene loci. The annotation of 
TSS and TES was accomplished by end to end coverage of the entire RNA transcript by 
complete ONT 2D reads (i.e. reads for which both ISPCR adapters could be identified and 
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trimmed, Supplementary Table 2) (Fig. 4a-c). Complete ONT 2D reads contained information 
regarding both TSS, TES in their read alignments. 

After combining and aligning ONT 2D reads of all replicates to the artificial SIRV 
genomic loci (Fig. 4c, Figure S4), we categorized 20 bp bins containing TSS, TESs and splice 
sites using the Madalorian pipeline (see Methods). To avoid the detection of spurious TSS and 
TES by prematurely terminated read alignments, we required TSS/TES to be at least 60 bp 
apart. In this manner, we detected 20 TSS and 24 TES that all directly overlapped with an 
actual TSS and TES and were within 60 bp of 38 (of 57) actual TSSs and 41 (of 59) actual 
TESs present in the SIRV transcript annotation. Furthermore, we detected 76 (of 89) 5’ splice 
sites and 73 (of 93) 3’ splice sites present in the SIRV genome annotation. By analyzing the 
actual splicing pattern of ONT 2D reads we detected 11 (of 12) alternative 3’ splice site 
combinations and 12 (of 14) alternative 5’ splice site combinations as well as 12 (of 12) intron 
retention events present in the SIRV transcripts. 

Using Mandalorion, we then sorted ONT 2D reads into isoform groups based on their 
TSS/TES and alternative splice site usage. We generated consensus sequences of these 
groups using POA38 (Partial Ordered Alignment) and compared these consensus sequences to 
SIRV transcript sequences using BLAT. All of the 33 consensus sequences we generated 
matched a SIRV transcript with between 97.8% and 100% identity (BLAT identity score) and in 
all cases matched its directionality. Of the resulting 33 consensus sequences, 26 matched one 
of the 29 SIRV transcripts present in the two highest abundance groups (Fig. 4c, d , 
Supplementary Fig. 4). The other 7 consensus sequences matched one of the 40 SIRV 
transcripts in the two low abundance groups. While Mandalorion did not succeed in consistently 
identifying lower abundance isoforms, the consensus isoform sequences detected were very 
accurate. We also observed high correlation between the genome annotation-independent 
transcript isoform quantification by Mandalorion and quantification derived from directly aligning 
reads to the transcriptome (Fig. 4e) This means that in addition to identifying sequence, 
structure, and directionality of complex isoforms, Mandalorion can also accurately quantify them 
in a genome annotation independent manner. As a result, we were encouraged to apply this 
pipeline to our single cell data. 
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Figure 4: Identifying and quantifying complex isoforms in SIRV mixtures using ONT 
RNAseq data. 
a) Scatter plot shows correlation between ONT 2D reads and the SIRV transcripts they 
align to. Pearson r is shown. Coloring is as indicated in Figure 3e-g b) Distance between 
read alignment ends and transcript ends are shown as heatmap with the color indicating 
the normalized alignment numbers. 90% of read alignments terminated outside the red 
lines c-d) Genome Browser view of SIRV3(c) and SIRV6(d) gene loci. Top box contains 
transcript annotations, second and third box contain TSS (Teal) /TES (Purple) and splice 
sites (5’SS: yellow, 3’SS: blue) locations predicted from the read data, respectively. Black 
lines and grey areas in box 3 indicate alternative splicing and intron retention events 
predicted from the read data. Box 4 contains read alignments of isoform consensus 
reads. Box 5 contains ONT 2D read alignments. Direction of transcripts, isoform 
consensus, and ONT 2D reads are indicated by their color (Teal: 5’ to 3’, Purple: 3’ to 5’). 
e.) Scatter plot shows correlation between SIRV transcript quantification by aligning to 
annotated transcripts or by annotation-independent isoform grouping using Mandalorion. 
Pearson r is shown. 
 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/126847doi: bioRxiv preprint 

https://doi.org/10.1101/126847
http://creativecommons.org/licenses/by-nc/4.0/


 
  

Identification of Transcription Start and End Sites used in individual B1a cells 
By analyzing the ONT 2D reads generated from the seven B1a cells using Mandalorion, 

we detected 4234 TSSs and 3883 TESs with only 2476 TSSs and 2448 TESs overlapping with 
the TSSs or TESs present in the Gencode annotation (vM10) 39,40 of the mouse genome (Fig. 
5a). To determine whether the unannotated TSS and TES we detected were artifacts of our 
experimental and computational pipelines, we determined their Fantom5 41 CAGE peak and 
polyA signal enrichment. Fantom5 CAGE peaks are derived from capturing and sequencing the 
5’ end of transcripts and should therefore be enriched in TSSs. Indeed, we found that in contrast 
to TESs (49/3883 or 1.3%), a high percentage of both annotated (2356/2476 or 95%) and 
unannotated (1052/1799 or 58%) TSSs overlapped with high scoring Fantom5 CAGE peaks 
(Fig. 5b). Conversely, both annotated and unannotated TESs were highly enriched for polyA 
signals, while TSSs were not (Fig. 5c). When we assigned the detected TSSs and TESs to 
annotated genes, we found that most genes contained exactly one TSS and one TES, as 
expected. However, 696 genes contained more than one TSS or TES indicating the presence of 
more than one isoform (Fig. 5d). Overall, this suggested that Mandalorion successfully identified 
thousands of unannotated TSSs and TESs and hundreds of genes with differential TSS/TES 
usage by analyzing individual cells.  
 
 
Identification of Alternative Splicing Events used in individual B1a cells 

In addition to TSSs and TESs, Mandalorion identified a total of 24,887 5’ splice sites and 
24,756 3’ splice sites. The vast majority of these splice sites were supported by the GENCODE 
annotation or splice junctions found in Illumina reads. Of the 24,887 5’SS and 24,756 3’SS we 
identified, 24,298 (97.6%) and 24,220 (97.8%) matched GENCODE annotation, respectively. Of 
the 589 5’SS and 536 3’SS that did not match GENCODE annotation, 250 (42.4%) and 216 
(40.2%) were supported by splice junctions in Illumina reads, respectively. Even if all splice sites 
that were not supported by GENCODE annotation or Illumina reads were false, which is 
unlikely, the false discovery rate of our approach would only be 1.3% (659/49,643). 
Furthermore, while Mandalorion defined our splice sites as 20 bp bins, we were relatively 
successful in defining the exact splice site as shown by the base context of the determined 
splice sites (Fig. 5e). By determining alternative splice sites, we found 296 intron retention 
events, 134 alternative 5’ splice sites and 173 alternative 3’ splice site combinations. The 
majority of these events were also observed in Illumina read data, which supported 216 (of 296) 
intron retention events, 99 (of 134) alternative 5’ splice sites, 123 (of 173) alternative 3’ splice 
sites and 72 (of 92) exon skipping events (Fig.5f). Alternative events not supported by Illumina 
read data had significantly lower ONT 2D read counts than those that were supported (Table 
S3), indicating they might be closer to the detection limits of both technologies.  
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Figure 5: Mandalorion analysis of ONT RNAseq data identifies transcription start and end 
sites, splice sites, and isoforms in mouse B1a cells. 
a) TSSs and TESs predicted based on read data were separated into sites with or without 
GENCODE vM10 annotation matches. b-c) TSSs/TESs with or without GENCODE matches 
were tested for FANTOM5 CAGE area enrichment (b) and polyA signals (c). d) Overlap of 
TSSs and TESs with genes. Genes were sorted according to the number of TSSs and TESs 
they overlapped with. e) Predicted base composition at 5’ and 3’ SS based on read data is 
shown as sequences logos. f) Schematic for detection and corresponding number of 
detected alternative splice site combinations. g-i) Genome Browser view of CD19, CD20, and 
IGH gene loci as shown in Figure 4. ONT 2D reads and consensus sequence alignments are 
shown for the indicated cells. Splice sites for the highly repetitive IGH locus were not 
considered for isoform grouping due to the difficulty of aligning reads unambigiously. 
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Identification of Complex Isoforms 

Having established that ONT RNAseq can be used to identify isoform features like TSSs 
and TESs as well as alternative splicing events, we aimed to identify complex isoforms. We 
defined genes as expressing complex isoforms if they contained alternative TSS/TES as well as  
alternative splice sites. We identified 169 genes that expressed complex isoforms. By identifying 
and quantifying all isoforms we detected at these 169 genes, we found highly significant 
differential isoform usage between cells in 55 of the genes (Chi2-contigency test, alpha=0.001, 
holm-sidak multiple-testing correction). These genes with significant differential isoform usage 
included B cell specific surface receptors CD19 and CD20, the antibody heavy chain locus 
(IGH) (Fig. 5g,h,i), CD37 (Fig. 6), as well as CD2 and CD79b, and CD45 (Supplementary Fig. 
5). We created consensus sequences of the isoforms at these gene loci in each B1a cell and 
found that across the individual B1a cells, isoforms derived from CD19 showed a combination of 
alternative TSSs and intron retention events. Isoforms derived from CD20, on the other hand, 
showed a combination of alternative TESs, as well as an exon skipping event including a 
previously unannotated exon. The IGH locus was even more complex, with canonical isoforms 
containing VDJ recombinations and the IGHM constant region exons. In addition, we observed 
isoforms containing the IGHM constant region exon but originating from 1.) abortive DJ 
recombinations 2.) I-exon 3.) miRNA loci in the IGHM Switch-region, and 4.) a J-segment. 
Finally, one isoform in cell 1 originated from the IGHM I-exon but contained the IGHD constant 
region exons. While IGH isoform diversity has been previously observed and has been known 
for a long time to be involved in class-switching 42, the ability of ONT RNAseq to sequence full-
length cDNA at the single cell level truly highlights and confirms the exceptional transcriptional 
diversity of the IGH locus. 

The ability to sequence entire cDNA molecules from end to end presents an advantage 
over assembling transcript isoform using Illumina data. While assembling Illumina data using 
Trinity 43 is likely to succeed if a gene locus only expresses a single isoform, it appears to 
struggle with analyzing multiple isoforms of a gene locus that contain multiple distant alternative 
features. For example, ONT RNAseq identified several distinct isoforms of the CD37 gene 
across the individual cells analyzed. In most cases, when we assembled the Illumina data from 
individual cells, Trinity was either unable to form complete contigs or produced contigs that were 
shown by ONT RNAseq to be misassembled (Fig. 6). The CD37 gene and its isoforms therefore 
highlight the strength of the ONT RNAseq approach to identify the diversity of complex isoforms 
beyond what is possible with either bulk or short reads technologies. 
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Figure 6: Uncovering isoform diversity in B cell surface receptors 
Genome Browser view of the CD37 is shown as in Figure 4. In addition 
to isoform consensus derived from ONT 2D reads, contigs assembled 
from Illumina data using Trinity are shown in grey for the indicated cells. 
 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/126847doi: bioRxiv preprint 

https://doi.org/10.1101/126847
http://creativecommons.org/licenses/by-nc/4.0/


Discussion 
The data we present here shows that RNAseq studies using the Oxford Nanopore 

Technologies MinION sequencer have the potential to redefine the level of information gathered 
by a single RNAseq experiment.  

By benchmarking our experimental and computational pipelines on ONT MinION data 
derived from a mix of synthetic transcripts, we showed that our approach identifies the location 
of transcription start and end sites as well as splice sites in a genome. Furthermore, we have 
shown that these experimentally determined annotations can then be used by our Mandalorion 
pipeline to identify and quantify complex isoforms longer than ~500 bp in an otherwise largely 
transcript length independent manner. It is likely that if we use less stringent size selection 
methodologies during library preparation, we could capture transcripts < 500 bp as well. 
Although we were only able to consistently identify the SIRV transcripts found among the high 
abundance groups, we expect that the less abundant transcripts could be identified using our 
pipeline by increasing the sequencing depth. Variation in the quantification of transcripts in the 
SIRV mix indicated that quantification might be improved by using Unique Molecular Identifiers 
(UMI)44 during cDNA amplification. However, UMI length would have to be at least >30bp to be 
resolved unambiguously with the current error-rate of the ONT MinION. Introducing random 
nucleotides of this length during priming is likely to create short, unwanted PCR artifacts which 
would greatly increase the noise of the amplification reaction. Ultimately, until ONT sequencing 
accuracy improves, the Smart-seq approach employed in this study is currently the best choice 
for UMI free library generation, as it has been shown by a comparison study to generate the 
smallest amount of PCR duplicates and the highest transcriptome coverage when comparing 
low input methodologies 45. 

By focusing on single cells transcriptomes, we demonstrated the capability of 
sequencing read output and accuracy of ONT MinION sequencer.  We showed that ONT 
RNAseq can not only quantify known genes with a high correlation to Illumina RNAseq but, 
using the Mandalorion pipeline we developed, also annotate transcript features, thereby 
allowing us to identify and quantify complex, never before observed, isoforms. Using ONT 
RNAseq on only seven B1a cells, we identified thousands of unannotated transcription start and 
end sites which we then validated using FANTOM5 CAGE data and polyA signals, respectively. 
Furthermore, we identified 696 genes displaying alternative transcription start and end site 
usage, and 354 genes with alternative splicing events. Although not all alternative splicing 
events we detected were supported by single cell Illumina data, the events that weren’t 
supported were of significantly lower coverage, indicating they might be closer to the detection 
limits in either technology (Supplementary Table 3). Combined with the relatively low Illumina 
sequencing depth per cell in our study, this suggests that larger Illumina depth might aid in the 
validation of individual events in future studies.  

In addition to the identification of individual alternative events, the read length of the 
ONT MinION sequencer paired with our Mandalorion analysis pipeline enabled us to identify 
169 genes expressing complex isoforms containing both alternative TSS/TES and splice sites. 
Interestingly, among the genes expressing these complex isoforms were surface receptors, 
including the very surface receptors distinguishing B cells from other immune cells. For 
example, we found that CD19, CD20 (Ms4a1), IGH, CD45 (B220 or Ptprc), CD2, CD79b, and 
CD37 were expressed as multiple complex isoforms across the seven B1a cells. This indicates 
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that the diversity of the surface receptors found on B-cells is not fully understood, which could 
have important implications on all facets of B cell biology. Our data suggest that we are 
currently only scratching the surface of the true transcriptional diversity of B1a cells. In the 
future, we aim to use the multiplexing strategy that we have developed to analyze hundreds of 
individual cells. This will make it possible to truly reconstitute the full transcriptome complexity of 
B1a and other cell types and will likely lead to discovery of additional subpopulations with 
distinct functional properties 1. While we currently estimate the cost per cell at ~ $100-200, this 
is likely to decrease considering the rapidly increasing throughput of the ONT MinION and the 
soon-to-be-released ONT PromethION sequencer.  

Nanopore sequencing is still rapidly maturing and we believe that advancements in 
sequencing chemistries, nanopore design and analysis algorithms will vastly improve the 
technology and address the shortcomings of low read numbers and high error rates in the near 
future. Lower error-rates will, for example, allow us to improve the Mandalorion pipeline further 
by enabling the base accurate identification of TSS/TES and splice sites, instead of identifying 
20 bp bins for these features. Even with its current limitations, the data and analysis tools we 
present here demonstrate the potential of ONT RNAseq to revolutionize analysis of 
transcriptomes. Finally, while the ONT MinION has not quite caught up with the very capable 
PacBio Sequel long read sequencer, it is only a fraction of its price (~$1,000 vs. $300,000).  At 
this price, any molecular biology lab will be able to perform their own RNAseq experiments on-
site, thereby increasing adoption of the single cell RNAseq approach and accelerating research. 
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Methods 
 
FACS sorting of individual B cells 
Mice were maintained in the UCSC vivarium according to IACUC-approved protocols. Single 
murine Ter119-CD3-CD4-CD8-Gr1-B220+ IgM+CD11b-CD5+ B1a cells were isolated from wild-
type C57Bl/6 mice by lavage and incubated with fluorescently-labeled antibodies prior to sorting 
31. The following antibodies were purchased from Biolegend to stain B-cells: Ter119, CD3 (145-
2C11), CD4 (GK1.5), CD8a (53-6.7), B220 (RA3-6B2), Gr1 (RB6-8C5), IgM (RMM-1), CD5 (53-
7.3), and CD11b (M1/70). Cells were analyzed and sorted using a FACS Aria II (BD), as 
described previously 46,47,48. Single cells were sorted into 96 well plates and directly placed into 
4 ul of Lysis Buffer - 0.1% Triton X-100, 0.2 ul of SuperaseIn (Thermo), 1ul of oligodT primer 
(IDT), 1ul of dNTP (10mM each)(NEB) - and frozen at -80°C. 
 
Smartseq2 cDNA synthesis 
Single cell lysate was reverse transcribed using Smartscribe Reverse Transcriptase (Clontech) 
in a 10 ul reaction including a Smartseq2 33  TSO (Supplementary Table S1) according to 
manufacturer’s instructions at 42°C. The resulting cDNA was treated with 1 ul of 1:10 dilutions 
of RNAse A (Thermofisher) and Lambda Exonuclease (NEB) for 30 minutes at 37°C. A PCR 
amplification step using KAPA Hifi Readymix 2x (KAPA) step was performed incubating at 95°C 
for 3 mins, followed by 27 cycles of (98°C for 20 s, 67°C for 15 s, 72°C for 4 mins), with a final 
extension at 72°C for 5 mins.  
 
Illumina Sequencing 
The resulting full-length cDNA PCR product was treated with Tn5 enzyme 49 which was loaded 
with Tn5ME-A/R and Tn5ME-B/R adapters (Supplementary Table S1). The Tn5 product was 
then nick-translated and amplified for 13 cycles (72°C for 6 mins, followed by 98°C for 30s and 
13 cycles of (98°C for 10 s, 63°C for 30 s, 72°C for 2 mins), with a final extension at 72°C for 
5min) with KAPA Hifi Polymerase (KAPA) and Nextera Index Primers (Supplementary Table 
S1). Libraries were then size selected using a E-gel 2% EX (Thermo-Fisher) to a size range of 
400-1000 bp and sequenced on an Illumina HiSeq2500 2x150 run.  
 
Nanopore Sequencing 
To achieve the 1ug of DNA needed for the Oxford Nanopore library prep, the full-length cDNA 
product was split into five aliquots and amplified for 13 cycles with KAPA Hifi Readymix 2X 
(KAPA) using the ISPCR or multiplex cellular index primers. The following reaction was 
incubated at 95°C for 3 mins, followed by 13 cycles of (98°C for 20 s, 67°C for 15 s, 72°C for 4 
mins) with a final extension at 72°C for 5 mins. The single cDNA or multiplex product was 
further end-repaired and dA-tailed using NEBNext Ultra End Repair/dA tailing mix (NEB), and 
adapter ligated using the sequencing adapters provided by ONT (HP Adapter/Adapter Mix). 
Ligation reaction was performed using Blunt/TA ligase master mix (NEB). Reactions were then 
enriched using Dynabeads MyOne C1 Streptavidin (Life Technologies) to capture molecules 
that contain the HP Adapter. Enriched libraries were then mixed with Fuel mix and Running 
buffer provided by ONT. Single cell libraries were either sequenced solely on one (Cell1 and 
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Cell2) or two (Cell3) separate MinION R7.3 flow cells and ran on the 48 hr 2D protocol. For our 
multiplexing strategy, single R9.4 flow cells were used (Pool1: Cells4-7, Pool2: Lexogen 
libraries) and ran on the 48 hr 2D protocol.    
 
Data Analysis 
Illumina data 
Illumina paired end 150 bp reads in fastq format were quality and adapter trimmed using 
trimmomatic (v0.33) 50. The trimmed reads were aligned using STAR (v2.4) 34 to the mouse 
genome (Sequence: GRCm38, Annotation: gencode vM10 40). Illumina reads were assembled 
for each cell separately using the Trinity (v2.2.0)43 set of tools.  
 
ONT data preprocessing 
ONT reads were processed using the Metrichor cloud platform 2D workflow. For R7.3 runs, both 
reads that passed or failed Metrichor quality cutoffs were retained. For R9.4 runs, reads that 
failed Metrichor quality cutoffs were discarded as they also failed our alignment criteria. Fast5 
files generated by Metrichor were converted into fastq and fasta formats using poretools (v0.5.1) 
51.  
 
ONT data analysis 

Demultiplexing and adapter trimming (Mandalorion) 
For demultiplexing, index-sequences were aligned to the reads using BLAT with parameters: -
noHead -stepSize=1 -minScore=20 -minIdentity=20. Reads for which index-sequences could be 
identified were trimmed and assigned to the respective libraries. Next, for multiplexed and non-
multiplexed reads alike, ISPCR adapter sequences were identified and trimmed using 
Levenshtein distances. Reads for which ISPCR adapters could be identified and trimmed were 
marked but all reads, trimmed or not, were aligned to the mouse genome (GRCm38) using 
BLAT(v35x1)36 with parameters: -stepSize=5 -repMatch=2253 -minScore=100 -minIdentity=50 -
maxIntron=2000000. Alignments were filtered for a single alignment per read. This filtering 
process involved three steps: (i) the highest scoring alignment for each read is identified, 
alignment scores within 2% of each other were treated as ties, (ii) in case of ties the alignment 
with largest number of gaps is selected (this selects against alignment to unspliced pseudo-
genes) and (iii) if the best alignment of a read has a ratio of aligned bases to read bases ≤0.6 
the read and its alignment are discarded.  
 

Gene Expression (Mandalorion) 
Gene Expression for ONT and Illumina RNAseq was analyzed using custom scripts. For each 
gene, the number of reads overlapping with its exons was counted, normalized to total number 
of aligned reads in a library and reported as Reads Per Gene per 10,000 reads (RPG10K). 
Genes were counted as expressed if they had a RPG10K value>0. RPG can be calculated as: 
 
𝑅𝑃𝐺10𝐾 = (𝑡𝑜𝑡𝑎𝑙#	𝑜𝑓	𝑟𝑒𝑎𝑑𝑠	𝑎𝑙𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	𝑎	𝑔𝑒𝑛𝑒′𝑠	𝑒𝑥𝑜𝑛𝑠	 ÷ 𝑡𝑜𝑡𝑎𝑙	#	𝑜𝑓	𝑎𝑙𝑖𝑔𝑛𝑒𝑑	𝑟𝑒𝑎𝑑𝑠	𝑖𝑛	𝑠𝑎𝑚𝑝𝑙𝑒)×10,000 
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Transcription start and end site detection (Mandalorion) 
For the detection transcription start and end sites we limited our analysis to reads for which we 
detected and trimmed ISPCR adapter prior to read alignment. We then identified positions in the 
genome at which at least 2 alignments of these complete reads ended. We then further 
restricted our analysis by only considering positions with a median and 75th percentile of the 
number of clipped (unaligned) read bases between 6-15 and ≤ 20, respectively. This number of 
clipped (unaligned) bases corresponds to the length of bases contained in ISPCR TSO and 
oligodT primers that were not trimmed. We then placed a 20 bp bin around these positions to 
include the highest number of read alignment ends possible. 
To filter false positive bins caused by incomplete read alignments in highly expressed genes 
bins were only considered as containing true TSS/TES if they met the following conditions:  
i) The total number of read alignment ends in the bins had to be > 2% of the total number of 
reads in the next 50 read covered bases. ii) The candidate site had to be at least 60 read 
covered bases away from the next closest TSS/TES.  
By only counting bases covered by read alignments we didn’t take non-covered introns into 
account which would skew our analysis. Next, in order to distinguish TSS and TES bins, we 
calculated median Levenshtein distances of the unaligned bases at all read alignment ends in a 
bin to nucleotides present in TSO (ATGG) or the OligodT (TTTT) primer. If the median 
Levenshtein of a bin to ATGG was ≤2 it was declared a TSS. If the median Levenshtein of a bin 
to TTTT was ≤2 it was declared a TES.  
 

Transcription start and end site validation 
To assess Fantom541 CAGE scores we downloaded combined CAGE data 
(mm9.cage_peak_phase1and2combined_coord.bed.gz), converted the data to mm10 
coordinates using https://genome.ucsc.edu/cgi-bin/hgLiftOver 52 and investigated direct overlap 
between TSS/TES and CAGE peaks. We considered TSS/TES and CAGE peaks to be 
overlapping if they were within 10 bp of each other. To assess polyA enrichment in TSS/TES, 
we extracted genomic sequences up- and downstream of these sites and looked for identical 
string matches to “AATAAA” and “ATTAAA”.  
 

Splice Site detection(Mandalorion) 
To identify 20 bp bins as splice sites only ONT 2D reads with a ratio of aligned bases/read 
bases of > 0.9 were analyzed. We then identified positions in the genome at which at least two 
read alignments of these reads opened or closed an alignment gap larger than 50 bp. 
The 20 bp bins surrounding these positions were considered as containing a splice site if the 
following conditions are met:  
To filter false positive bins caused by spurious read alignment gaps in highly expressed genes 
bins were only considered as containing true splice sites if they met the following conditions:  
i) the number of of reads opening or closing an alignment gap in the bin was at least 2% of the 
total number of reads in the preceding (5’) or subsequent (3’) 40 read covered bases. ii) not 
closer than 30 bp to another splice site. The directionality of the splice site bin containing either 
5’ or 3’ status was based on the direction of the majority of reads containing the splice site. 
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Alternative Splicing (Mandalorion) 
To detect alternative splice sites, we counted how often 5’ and 3’ splice sites were spliced 
together in ONT 2D reads with aligned bases/read bases ratio of > 0.85. A 5’->3’ combination 
had to be present in at least 2 reads to be considered. We scored alternative splice site usage if 
the same 5’ splice site was spliced into two different 3’ splice sites or vice versa. To detect 
intron retentions, we identified areas between 5’ and 3’ splice sites that were covered to at least 
70% by at least one ONT 2D read. 
 

Isoform identification and quantification (Mandalorion) 
We detected isoform by grouping reads according the TSS/TES and alternative splice sites they 
contained. ONT read alignment ends found within 60 bp of a TSS and a TES were sorted based 
on which alternative splice sites it contained. Isoforms that contained at least 1% of all reads at 
a gene locus were retained. All the reads in these retained isoform groups were used to create 
consensus reads using POA38. In short, fasta files containing all read sequence are passed to 
POA which generates a consensus of the reads by creating a multiple sequence alignment of 
the reads in the form of a partially ordered graph. The program then returns the most heavily-
weighted path as the consensus of the reads. The consensus reads are then aligned to genome 
using BLAT parameters: -stepSize=5 -repMatch=2253 -minScore=10 -minIdentity=10. There 
was however, one exception regarding the highly complex variable regions derived from the 
IGH transcripts which were first aligned with IgBlast 53 and then with BLAT. IgBlast alignment 
coordinates were converted to genome coordinates and BLAT and IgBlast portions of the read 
alignments were merged. 
 

Statistical test and multiple testing correction 
We used the ‘chi2_contingency’ function in the scipy.stats 54 package to implement the Chi2 
contingency test to detect differential expression of complex isoforms between cells. Multiple 
testing holm-sidak correction was performed with the ‘statsmodels.sandbox.stats.multicomp’ 55 
package. 
 
Data Visualization 
All data analysis and visualization was performed in python 56 using the numpy/scipy/matplotlib 
54,57,58 packages.  
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Data Availability 
 
Illumina and ONT sequencing reads were uploaded to the SRA under accession number 
SRP082530. All scripts, including the Mandalorion pipeline, are available upon request and will 
be available at https://vollmerslab.soe.ucsc.edu/ 
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