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Abstract: Genotype-to-phenotype association studies typically use macroscopic physiological 

measurements or molecular readouts as quantitative traits. These approaches have been 

successful for the identification of disease risk loci, and variants that affect gene transcription 

and regulation. However, there are comparatively few suitable quantitative traits available 

between cell and tissue length scales, a limitation that hinders our ability to identify variants 

affecting phenotype at many clinically informative levels. We overcome these limitations by 

showing that unbiased quantitative image features, automatically extracted from 

histopathological imaging data, can be used successfully for image Quantitative Trait Loci 

(iQTL) mapping and disease variant discovery. Using thyroid pathology images, clinical 

metadata, and genomics data from the Genotype and Tissue Expression project (GTEx), we 

establish and validate a quantitative imaging biomarker for thyroid autoimmune disease. A total 

of 80,791 candidate variants in 769 coding genes highly associated with lymphocyte invasion in 

our analysis were selected for iQTL profiling, and tested for genotype-phenotype associations 

with our quantitative imaging biomarker. Significant associations were found with variants in 

Histone Deacetylase 9 (HDAC9), a gene proposed to be an epigenetic switch in T-cell mediated 

autoimmunity, but not previously associated with thyroid autoimmune disease. We validated our 

results using an independent dataset of 1,213 hypothyroidism cases and 3,789 controls from the 

Electronic Medical Records and Genomics network (eMERGE). 

One Sentence Summary: We use a histopathological image QTL analysis to identify genomic 

variants associated with thyroid autoimmune disease. 
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Introduction 

Modern genomics has had tremendous success in relating genetic variants to a variety of 

molecular phenotypes. Variants associated with gene expression, so-called expression 

Quantitative Trait Loci (eQTLs), are enriched for regions of active chromatin, influence gene 

regulation, and are involved in processes that contribute to disease (1,2). At the macroscopic 

level, genome-wide association studies (GWAS) that use physiological measurements of organ 

health have also provided insight into the genetic component of human disease. However, given 

the immense gap between SNP-level variation and tissue and body function, GWAS results 

concerning human traits can be challenging to interpret, in part due to the high correlations 

observed between studies of different traits (3). This is especially true for autoimmune diseases, 

which have many shared genetic risk factors (4). One way to increase GWAS variant 

interpretability and to discover new disease variants will be to place more focus on quantitative 

traits that lie at intermediate cellular and sub-tissue scales.  

Histopathology has for decades remained the standard for the diagnosis and grading of many 

complex diseases. Advances in digital slide imaging have allowed for unprecedented resolution 

at tissue, cellular, and sub-cellular scales. As such, histopathology could provide the genomics 

community with a vast resource of quantitative traits for evaluating disease phenotype across a 

range of mesoscopic scales. Previous histopathological GWA studies have used discrete 

pathology grading schemes as quantitative traits, where disease severity is assigned an integer 

score by pathologists. While grading schemes are highly effective for guiding clinical decisions 

on the level of individual patients, and can in principle identify disease variants in GWAS (5), 

they do not scale well to the hundreds or thousands of samples needed due to inter- and intra-

observation bias (6-8). When performing millions of statistical tests in GWAS, any source of 

bias will increase the likelihood of finding spurious associations and negatively affect the 

replicability of study findings.  

Unbiased, automatically extracted, continuous features have been shown to improve the 

predictive power of survival analyses with pathology data in comparison to discrete grades 

(9,10). GWA studies using quantitative image features extracted from radiological imaging data 

have successfully identified COPD-relevant variants using Computed Tomography (11), and 

variants related to Alzheimer’s Disease and Mild Cognitive Impairment using Magnetic 

Resonance Imaging (12). Thus, genome association studies that leverage automated imaging 

analysis methodologies can be highly effective. With quantitative image analysis now routinely 

applied to digital pathology datasets (9,10,13-15), it is clear that unbiased, continuous image 

features can readily be extracted for histopathological GWAS variant discovery. 

Nevertheless, little attention has been paid to the use of cellular imaging to obtain quantitative 

traits for understanding the connection between genotype and cellular phenotypes. Part of the 

reason for this may be that there are few available datasets for which both genomic profiling and 

standardized histopathology data are available for any appreciable number of samples. The 

Genotype-Tissue Expression (GTEx) resource (16,17) has collected germline genotype data from 

over 450 autopsy research subjects. The project has also obtained biopsy samples for 

standardized histological imaging analysis and RNA-Seq gene expression analysis from 

approximately 50 different body sites with as much data as possible obtained from each 

individual. 
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One of the tissues for which there is substantial histological imaging data is the thyroid. The 

thyroid plays a central role in the endocrine system, producing thyroid hormones that influence 

metabolic rate and protein synthesis. Hashimoto’s Thyroiditis (HT) is an autoimmune disease in 

which the thyroid gland is slowly destroyed, often leading to hypothyroidism. It affects about 5% 

of people at some point in their lives, typically begins between the ages of 30 and 50, and is 

much more prevalent in women than in men (18). Among the GTEx population there are 341 

individuals for whom paired thyroid imaging and gene expression data was available; of these 31 

had morphological evidence of HT according to GTEx pathology notes. We saw this dataset as 

an ideal place to test the hypothesis that cellular imaging features could be associated with 

genetic variants in an image quantitative trait locus (iQTL) analysis. 

 

Quantitative image analysis 

Image data was downloaded from the GTEx histological image archive (Materials and Methods). 

Images were first convolved with a Gaussian filter to smooth out pixel-level variation on a length 

scale smaller than observed regions of lymphocytic invasion in HT samples. Individual tissue 

pieces were segmented using adaptive thresholding (Figure 1A), and 117 Haralick image 

features were extracted for each tissue piece using the Bioconductor image processing package 

EBImage (19) (Materials and Methods). Haralick features are widely used for the quantification 

of image texture, and take into account correlations between neighboring pixels in an image (20). 

Given that lymphocyte invasion has a profound effect on histological image texture, Haralick 

features were ideal candidates for capturing HT cellular phenotype. After removing overly small 

tissue pieces, averaged image feature values were calculated across pieces to give a single value 

for each sample and feature. In preparation for downstream model fitting, features were log2 

transformed, and centered and rescaled using a z-score to ensure feature comparability (Fig. 1B). 

A fully worked through image analysis example with the applied segmentation parameters is 

supplied as part of a supplemental R data package. 

To reduce the number of candidate features and to identify the primary directions of variability 

in our image feature matrix, we performed Principal Component Analysis (PCA), and found that 

the first two imaging Principal Components (PCs) were sufficient to explain 73% of the 

variance. By inspection of the images we found that low values of PC1 were associated with 

interior holes in the thyroid pieces (Figure S1A), an effect we adjudged to be primarily technical 

in origin. High values of image PC2 were visually strongly associated with the presence of 

invading lymphocytes (Figure S1B).  

To validate this observation we identified all samples for which HT was indicated in the 

comments of the original GTEx pathologists (Figure 1C blue points). A ROC curve showed that 

image PC2 was in fact a highly performant biomarker for HT, with an AUC of 0.84 (Figure 1D). 

Using logistic regression, we found that HT status was significantly associated with image PC2 

(OR=1.3, P=1.4x10
-9

) after correcting for sex and age (Materials and Methods). We also 

observed a higher association with HT status for women after correcting for age (OR=4.2, 

P=4x10
-4

), a known clinical characteristic of the disease (18). That image PC2 is a performant 

HT biomarker likely does not have direct clinical relevance since a pathologist can easily 

diagnose the disease by inspection of pathology images; we considered its utility to be for 

downstream integration with genomic data. 
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Integrated RNA-Seq and image analysis: imaging biomarker validation 

Next we analyzed GTEx gene expression data associated with the 341 thyroid images. After the 

removal of lowly expressed genes, counts were log2 transformed and underwent quantile 

normalization to ensure comparability of samples (Materials and Methods). To test for 

associations between gene expression and image PCs we used linear models to fit each principal 

component against normalized gene readouts while correcting for age, sex, sample collection 

site, tissue autolysis score, and RNA extraction type. To remove bias caused by unknown 

confounders (Figure S2A) we fitted 20 PEER (Probabilistic Estimation of Expression Residuals) 

factors (21) to the gene expression data while including the known confounders in the PEER fit; 

a similar approach was used by the GTEx consortium (16). The first PEER factor was not 

included as a covariate in the linear model fits due to the strength of its correlation with our 

image PC2 biomarker (Pearson r=0.53, P<2.2e-16), which indicated that it likely contained 

valuable biological information. The results from fits correcting for both the known confounders 

and the 19 PEER factors revealed that image PC2 was systematically and highly associated with 

gene expression (Figure 2A), suggesting that lymphocyte infiltration is at least a major, if not the 

primary source of expression variability in GTEx thyroid tissue. In contrast, image PC1 had 

comparatively few significant associations with thyroid gene expression (Figure 2A). 

To identify which biological pathways may drive the significant image PC2 associations with 

gene expression we performed Gene-Set Enrichment Analysis, choosing as a test set 2,913 genes 

with –log10(PG) >10 in the gene expression analysis and all other 21,080 genes as a background 

set (Materials and Methods). Significant enrichment was observed for a number of Gene 

Ontology terms related to immune function, and the activation and signaling activity of invading 

T and B lymphocytes (Table 1). To confirm the association between image PC2 and the presence 

of invading immune cells on the level of individual samples, we ran our gene expression data 

through CIBERSORT, an algorithm designed to deconvolve complex cell mixtures (22). We 

used the LM22 leukocyte gene signature matrix supplied by the CIBERSORT team to perform 

the deconvolution as it could in principle detect and distinguish between a number of T and B 

cell types. As expected, CIBERSORT failed to detect immune cells in the majority of healthy 

thyroid samples. However, in samples where immune cells were detected (CIBERSORT 

PC<0.5), the method’s statistical power correlated significantly with image PC2 (Figure 2B; 

Spearman ρ=0.67, P=3x10
-7

).  

We also detected infiltrating immune cells in several samples for which image PC2 was high but 

HT was not indicated by GTEx pathologists (Figure 2B grey points), suggesting that our imaging 

biomarker may be able to detect a broader spectrum of thyroid autoimmune diseases. By 

inspection, we confirmed that many of these images did show infiltrative phenotypes but did not 

exhibit the classical HT visual phenotype (for example GTEX-OXRO, GTEX-144FL), 

suggesting that they were not false negatives for HT. Figure 2C shows the cell type signature for 

samples with PC<0.1 and cell types with an average CIBERSORT frequency of more than 5% 

across samples. This analysis confirmed the presence of T-cell CD4 memory resting, T-cell CD8, 

naïve and memory B cells, as well as other immune cell types, on the level of individual samples. 

To demonstrate the advantage of using PCA for the identification of a candidate imaging 

biomarker, as opposed to directly using the individual Haralick image features, we correlated 

each of the 117 image features with CIBERSORT’s statistical power to detect immune cells, in 

the same manner as above. Image PC2 had a higher Spearman correlation coefficient than all 
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image features, with the closest having a coefficient of ρ=0.60 (Figure S2B). Thus, image PC2 

combined information from multiple image features to attain a higher overall performance. 

 

iQTL identification of Hashimoto’s Thyroiditis disease variants 

Based on our analysis of image features and gene expression, we decided to use image PC2 as a 

quantitative trait capturing the cellular features of HT in an image QTL analysis. We limited our 

analysis to the 292 samples that had both thyroid imaging and genotype information. The 

genotype data had already undergone rigorous quality control and filtering by the GTEx 

consortium, including but not limited to Hardy-Weinberg equilibrium and imputation quality 

criteria. For our analysis we also removed SNPs with a missingness frequency of more than 

10%, and due to sample size considerations, minor allele frequencies (MAFs) of less than 10%.  

Since we did not have sufficient sample size to achieve high power in an iQTL analysis that 

would include all coding and non-coding regions of the genome, we decided to reduce the search 

space by asking a more targeted question of the data. We hypothesized that the genotype of 

expressed coding genes in the invading lymphocytes could in part determine thyroid autoimmune 

disease risk and severity. Therefore, we further restricted our analysis to the 80,791 candidate 

SNPs residing in 769 coding genes that were significantly (-log10(PG) >10) and positively 

(regression coefficient β>2.5) associated with image PC2 in the gene expression analysis (Figure 

3A blue points).  

Image QTL linear model fits were implemented using the R package MatrixEQTL (23) by 

treating image PC2 as a pseudo trans gene. Fits were corrected for age, sex, race, ancestry, 

processing center, and tissue autolysis score (Materials and Methods). A QQ plot comparing the 

distribution of observed p-values (denoted PQ) to the expected uniform distribution showed that 

the data was well behaved under the null hypothesis (Figure 3B), with a departure from the 

dashed line for a group of SNPs with low p-values. Independent Hypothesis Weighting (IHW) 

(24) using MAF as the independent covariate was used to correct for multiple testing. In a data-

driven way, this method assigned higher weights to variants with a high MAF (Figure S3) to 

maximize the number of null hypothesis rejections while controlling for Type I error. A total of 

32 SNPs across 5 haplotype blocks were identified as being significant (PIHW<0.05; Table S1).  

Strikingly, all 32 SNPs reside in Histone Deacetylase 9 (HDAC9), an enzyme linked to 

epigenetic control of gene transcription, and previously proposed to be an epigenetic switch for 

T-cell mediated autoimmunity (25). Notably, histone deacetylase inhibitors have been effective 

in the treatment of hypothyroidism in mice (26), and autoimmune diseases in general (27). A plot 

of SNP significance along HDAC9 revealed a sharp peak at 18,313 kb on chromosome 7 (Figure 

3C). To our knowledge this is the first reported association between HDAC9 variants and thyroid 

autoimmune disease. A search of GWAS Central (www.gwascentral.org (28)) revealed that 

modest associations between Ulcerative Colitis (UC) and two of our significant image QTL 

variants (-log10(P)=2.3 for rs215122, -log10(P)=2.7 for rs2529749) have previously been reported 

(29). While further work will be required to investigate the biological effects of HDAC9 

genotype in both UC and HT, a common genetic basis would be consistent with evidence that 

these conditions present concurrently at higher rates than would be expected in the general 

population (30). 
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Validation of iQTL results using an independent dataset 

To validate the observed association between HDAC9 genotype and thyroid autoimmune disease 

in an independent dataset, we obtained genotype and phenotype data, and clinical metadata from 

the Electronic Medical Records and Genomics (eMERGE) network (31) (Materials and 

Methods). We selected 1,261 chronic autoimmune hypothyroidism (presumptive Hashimoto’s 

hypothyroidism) cases and 4,457 non-hypothyroidism controls (Materials and Methods). As over 

96% of the hypothyroidism cases were from the Caucasian cohort, and 250/292 of the GTEx 

samples used for the image QTL analysis were of European American descent, to simplify the 

analysis we removed all non-Caucasian cohorts, leaving 1,213 cases and 3,789 controls. For 

consistency with the image QTL analysis, SNPs with a minor allele frequency of less than 10% 

and a missingness frequency of more than 10% were removed. One SNP in HDAC9 was 

removed due to deviation from Hardy-Weinberg equilibrium (Materials and Methods).  

We used logistic regression to test for associations between hypothyroidism status and HDAC9 

genotype while correcting for patient age (decade of birth), sex, and collection site (Materials 

and Methods). While the maximum strength of association was modest (-log10(P)=2.3), the 

location of the highest eMERGE peak coincided closely with the highest GTEx image QTL peak 

(Figure 3C,D vertical line), and we noted a high degree of similarity between the association 

profiles. To quantitatively assess the concordance of the HDAC9 association signature between 

the GTEx and eMERGE data, we first selected the 1,071 HDAC9 SNPs common to both 

datasets, and grouped neighboring SNPs into bins of size 15 SNPs based on their genomic 

coordinates. The lowest p-value in each bin was then selected for both datasets. A correlation test 

revealed that the association signature between the eMERGE and GTEx data was highly 

concordant across HDAC9 (Figure S4A; Spearman ρ=0.68, P<2.2x10
-16

).  

To verify that it was hypothyroidism status driving the concordance, we performed 1,000 

permutations of the hypothyroidism case/control labels in the eMERGE dataset and repeated the 

binning and correlation analysis. A total of 992 of the 1,000 eMERGE permutations resulted in a 

lower Spearman correlation coefficient than the non-permuted data (Figure S4B), demonstrating 

that it was unlikely to obtain the observed concordance between the eMERGE and GTEx 

HDAC9 profiles by chance (P=0.009, Materials and Methods).  

This validation also showed that image QTL approaches that use continuous phenotypic 

measurements can attain higher power for the detection of disease-relevant genomic regions as 

compared to traditional cases versus controls analyses. One explanation for this might be that 

quantitative histological image analysis captures subclinical, as well as clinical disease 

phenotype as a smooth function, while binary categorizations of disease status do not take into 

account informative subclinical disease cases, or the morphological severity of the disease 

phenotype. 

 

Outlook 

Our intuition, along with over a decade of progress in GWAS, tells us that genotype and 

phenotype are associated in ways that can be quantitatively assessed. The growth of integrated 

data resources such as GTEx, and the advancement of digital slide imaging technologies, 

provides the opportunity to explore that association at the cellular level. This study demonstrates 

the potential of histopathological image-based QTL profiling for de novo discovery of disease 
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variants, especially when unbiased, continuous, automatically extracted image features are used 

as quantitative traits. While we applied histopathological iQTLs to a thyroid dataset, the method 

is completely generalizable to other tissues and disease contexts. Therefore, we foresee that with 

larger sample sizes and study designs tailored for specific diseases, genome-wide scans that use 

similar approaches can be extended to whole-exome and non-coding regions. Ultimately, digital 

pathology image analysis approaches could revolutionize genome-wide association studies by 

providing a wealth of unbiased quantitative traits that have high levels of biological 

interpretability. Our results also suggest that HDAC9 may be a viable drug target for patients 

with thyroid autoimmune disease. 
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Figure 1. Thyroid image processing and establishment of a quantitative imaging biomarker for 

Hashimoto’s Thyroiditis (HT). (A) Digital pathology slide for thyroid sample GTEX-11NV4. 

Raw: pre image processing. Blurred: post Gaussian convolution. Segmented: tissue piece masks 

after adaptive thresholding. (B) Heatmap of 117 log2 transformed and standardized Haralick 

image features against 341 thyroid samples. (C) PC1 versus PC2 from a PCA of the image 

feature matrix. Blue points indicate patients with HT, as identified from pathology notes. Circles 

indicate females, and triangles males. (D) ROC curve showing biomarker performance of PC2 

for predicting HT. 
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Figure 2. Integration of imaging data with gene expression analyses verifies that image PC2 is 

highly associated with autoimmune response. (A) A QQ plot of p-values (PG) from the 

regression analysis of image PC1 and PC2 against thyroid gene expression for 23,993 genes. (B) 

Correlation of image PC2 with –log10(PC) from the CIBERSORT analysis for samples with 

PC<0.5. Blue points are samples for which Hashimito’s Thyroiditis was indicated in GTEx 

pathology notes. (C) Frequencies of immune cell types reported from CIBERSORT for samples 

with PC<0.1. Cell types with an average frequency of 5% or more are shown. 
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Figure 3. An image QTL analysis finds associations between HDAC9 variants and our image 

PC2 biomarker for thyroid autoimmune disease. (A) Selection of 769 candidate genes (blue 

points) based on their positive (regression coefficient β>2.5) and significant (-log10(PG)>10) 

association with image PC2 in the gene expression analysis. (B) A QQ plot showing expected vs 

observed p-values (PQ) from image QTL fits of 80,791 candidate SNPs residing in the selected 

genes highlighted blue in panel A. (C) A plot of –log10(PQ) for all tested SNPs in HDAC9. A 

sharp peak was identified at 18,313 kb on Chromosome 7. Vertical line indicates the location of 

the most significant SNP after multiple testing correction using the IHW method described in the 

main text. Plot range is mapped to the start and end positions of HDAC9. (D) Significance of 

associations between HDAC9 variants and hypothyroidism status in the eMERGE dataset used 

for independent validation. Vertical line indicates the location of the top image QTL SNP. 
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Table 1. Significant gene ontology terms for genes highly associated with image PC2 (-

log10(PG)>10) in the gene expression regression analysis. All terms with an odds ratio of greater 

than 5 and an adjusted p-value of less than 0.01 are shown. BP: Biological Process, CC: Cellular 

Component. 

 

GO id Type Description Odds P Padj N 

GO:0050776 BP regulation of immune response 6.10 1.3E-14 5.8E-11 43 

GO:0031295 BP T cell costimulation 5.83 6.0E-11 2.1E-07 32 

GO:0042110 BP T cell activation 5.57 2.6E-08 3.6E-05 24 

GO:0042113 BP B cell activation 8.67 7.0E-08 8.6E-05 17 

GO:0045060 BP negative thymic T cell selection 25.51 6.7E-07 5.4E-04 10 

GO:0050690 BP regulation of defense response to virus 
by virus 

6.96 2.1E-06 1.5E-03 15 

GO:0042101 CC T cell receptor complex 17.00 2.5E-06 1.6E-03 10 

GO:0050853 BP B cell receptor signaling pathway 5.89 7.2E-06 3.8E-03 15 
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Figure S1. Examples of phenotypes associated with image PC1 and PC2. (A) Images with the 10 

lowest values of PC1. Interior holes were observed, many of which were likely associated with 

tissue damage incurred during sample preparation. (B) Images with the 10 highest values of PC2. 

Lymphocyte invasion phenotypes were apparent. 
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Figure S2. (A) QQ plot showing deviation from the dashed line (of slope 1) when fitting image 

PCs against gene expression while only correcting for the known confounders listed in the main 

text. Additionally including PEER factors as covariates removed the observed bias (Figure 2A). 

(B) Histogram of the absolute value of Spearman correlation coefficients between all 117 

Haralick image features and CIBERSORT’s statistical power to detect immune cells. Dashed 

line indicates the Spearman correlation coefficient for image PC2 (ρ=0.67). 

 

 

Figure S3. Independent Hypothesis Weighting weights as a function of minor allele frequency 

bin. Each bin corresponds to a change of 0.01 in minor allele frequency between 0.1 and 0.5. 

Similar profiles for each fold demonstrate the robustness of the IHW fitting procedure. 
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Figure S4. (A) Concordance of the HDAC9 association signature between the GTEx (x-axis) 

and eMERGE (y-axis) data. Each point represents the minimum p-value in each HDAC9 bin of 

size 15 SNPs for each dataset. (B) Histogram of the GTEx and eMERGE correlation coefficients 

for 1,000 permutations of the eMERGE hypothyroidism case/control labels. Dashed line 

indicates the Spearman correlation coefficient for the non-permuted data displayed in panel A. 
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Table S1. Image QTLs with significant associations (PIHW<0.05) with our quantitative imaging 

biomarker for thyroid autoimmune disease.  

 

rsid GRCh37/hg19 
Coordinates 

Gene PIHW P β MAF Haplotype 

rs12154277(G>T) Chr7:18313167 HDAC9 0.020 6.3E-06 1.912 0.434 hap1 

rs12672535(G>A) Chr7:18308913 HDAC9 0.020 6.6E-06 1.904 0.438 hap2 

rs6972958(G>T) Chr7:18313358 HDAC9 0.020 7.3E-06 1.896 0.436 hap1 

rs6973137(G>A) Chr7:18313517 HDAC9 0.020 7.3E-06 1.896 0.436 hap1 

rs4416737(C>T) Chr7:18305489 HDAC9 0.020 8.1E-06 1.913 0.431 hap2 

rs73066383(C>A) Chr7:18303874 HDAC9 0.020 9.3E-06 1.895 0.429 hap2 

rs12154412(G>A) Chr7:18304326 HDAC9 0.020 9.3E-06 1.895 0.429 hap2 

rs4361680(T>A) Chr7:18306817 HDAC9 0.020 9.3E-06 1.895 0.429 hap2 

rs7459237(C>A) Chr7:18307448 HDAC9 0.020 1.1E-05 1.889 0.427 hap2 

rs302193(G>A) Chr7:18298184 HDAC9 0.020 1.1E-05 1.822 0.445 hap2 

rs1107693(G>A) Chr7:18307906 HDAC9 0.020 1.2E-05 1.886 0.427 hap2 

rs17138868(A>T) Chr7:18294050 HDAC9 0.025 1.5E-05 1.834 0.433 hap2 

rs302178(G>A) Chr7:18310791 HDAC9 0.025 1.7E-05 1.798 0.440 hap2 

rs73066378(G>A) Chr7:18302581 HDAC9 0.025 1.8E-05 1.895 0.423 hap2 

rs7794278(G>A) Chr7:18316661 HDAC9 0.025 1.9E-05 1.822 0.429 hap1 

rs28410383(A>G) Chr7:18312712 HDAC9 0.027 1.9E-05 1.849 0.415 hap1 

rs17138874(T>C) Chr7:18297439 HDAC9 0.027 2.5E-05 1.792 0.461 hap2 

rs6953847(C>T) Chr7:18300086 HDAC9 0.029 2.7E-05 1.799 0.435 hap2 

rs302194(T>C) Chr7:18298160 HDAC9 0.029 2.9E-05 1.740 0.443 hap2 

rs6956728(C>T) Chr7:18316305 HDAC9 0.029 3.4E-05 1.755 0.433 hap1 

rs17138904(T>C) Chr7:18317529 HDAC9 0.029 3.5E-05 1.790 0.435 hap3 

rs17138905(G>T) Chr7:18317766 HDAC9 0.029 3.5E-05 1.790 0.435 hap3 

rs1469575(G>A) Chr7:18318382 HDAC9 0.029 3.5E-05 1.789 0.435 hap3 

rs6461375(G>C) Chr7:18318874 HDAC9 0.029 3.6E-05 1.760 0.448 hap3 

rs917325(A>G) Chr7:18288593 HDAC9 0.031 4.8E-05 1.742 0.447 hap4 

rs302137(C>T) Chr7:18293221 HDAC9 0.033 4.9E-05 1.686 0.491 hap2 

rs215122(C>T) Chr7:18295790 HDAC9 0.033 5.4E-05 1.688 0.466 hap2 

rs12666671(T>C) Chr7:18309456 HDAC9 0.041 6.2E-05 1.713 0.455 hap2 

rs12666653(T>A) Chr7:18309374 HDAC9 0.047 6.9E-05 1.704 0.458 hap2 

rs2529749(A>C) Chr7:18253060 HDAC9 0.047 7.8E-05 1.708 0.448 hap5 

rs7779273(T>C) Chr7:18301410 HDAC9 0.048 7.4E-05 1.692 0.460 hap2 

rs917331(T>A) Chr7:18253378 HDAC9 0.048 7.6E-05 1.709 0.448 hap5 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126730doi: bioRxiv preprint 

https://doi.org/10.1101/126730
http://creativecommons.org/licenses/by-nd/4.0/


Materials and Methods: 

Image Processing: 341 publicly available GTEx histopathological thyroid images were 

downloaded from the Biospecimen Research Database (http://brd.nci.nih.gov/image-

search/searchhome). For the purpose of segmenting individual tissue pieces only, the average 

intensity across color channels was calculated, and adaptive thresholding was performed to 

distinguish tissue from background. Interior holes in the tissue piece masks were filled using the 

fillHull function from the Bioconductor package EBImage (19). In preparation for feature 

extraction, Gaussian blurring was used on each color channel to smooth out pixel-level variation 

on a length scale smaller than the observed lymphocyte invasion phenotypes. 117 textural 

Haralick features were then extracted using EBImage by calculating 13 base Haralick features 

for each of the three RGB color channels, and across 3 Haralick scales by sampling every 1, 10, 

or 100 pixels. Image metadata was extracted to verify identical pixel dimensions and scanning 

instrumentation across the dataset. 

Image Data Analysis: 702 thyroid pieces were identified from the image segmentation. 49 

pieces with overly small areas were removed. Averaged Haralick feature values were then 

calculated across tissue pieces for each sample. In preparation for downstream model fitting, 

each distribution was log2 transformed and rescaled using a z-score. Five NA feature values were 

set to zero to avoid technical issues with the PCA fit. 

Gene Expression Analysis: GTEx v6 RNA-Seq data was downloaded from dbGaP 

(phs000424.v6.p1, 2015-10-05 release) under approved protocol #9112. Lowly expressed genes 

were defined as those which had a read count of less than 1 CPM in more than half of the 

samples, and were removed. Counts were log2 transformed after adding 1 to the counts to avoid 

the problem of taking the logarithm of zero. Quantile normalization was performed using the R 

package limma. Prior to running the gene expression data through CIBERSORT, RNA extraction 

batch was corrected for using limma. PEER factors were calculated using the R package peer 

(github: PMBio/peer). The regression analysis with the image PCs was performed using linear 

model fits in R with the formula 𝑃𝐶 = 𝛼 + 𝛽𝑔𝑒𝑛𝑒 + Σ𝑘𝛾𝑘𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑘 + 𝜖 where covariates 

included the known confounders and PEER factors, as discussed in the main text. For each gene, 

p-values were extracted from t-statistics associated with the gene expression coefficient β. 

Genotype Analysis: GTEx genotype data was downloaded from dbGaP (phs000424.v6.p1, 

2015-10-05 release) under approved protocol #9112. A total of 292 genotyped samples 

overlapped with the thyroid imaging samples. Minor allele frequency and missingness frequency 

filtering was performed using PLINK. QTL fits were performed using MatrixEQTL, which used 

the following model: 𝑃𝐶2 = 𝛼 + 𝛽𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + Σ𝑘𝛾𝑘𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑘 + 𝜖. Genotype could take on 

the values 0/1/2/NA, and covariates were as described in the main text. QTL significance was 

extracted from the t-statistics associated with the genotype coefficient β. The correction for 

ancestry was performed by including as covariates the first 3 PCs of a PCA on the genotype 

matrix computed from the full set of 450 GTEx patients. Haplotypes were identified using 

PLINK, with a maximum block size of 5,000 kb. The haplotype identification utilized the full set 

of 450 GTEx samples. Reported genomic coordinates are for human genome build 

GRCh37/hg19. 

eMERGE data was obtained from the study “eMERGE Network Imputed GWAS for 41 

Phenotypes” (dbGaP study accession phs000888.v1.p1) under approved protocol #13896 for the 

consent cohorts Health/Medical/Biomedical (N=18,621) and Health/Medical/Biomedical-
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Genetic Studies Only-No Insurance Companies (N=15,911). Chromosome 7 genotype data from 

both cohorts was merged and 5,718 samples were selected based on their status as Chronic 

Autoimmune Hypothyroidism (accession phd004989.1) cases or controls. Inclusion criteria for 

hypothyroidism cases (C99269) included, but were not limited to, abnormal TSH/FT4 levels and 

the use of thyroid replacement medication. Exclusion criteria for hypothyroidism cases included 

secondary causes of hypothyroidism, hypothyroidism induced by surgery or radiation treatment, 

evidence of other thyroid diseases, or the use of thyroid-altering medication. Inclusion criteria 

for hypothyroidism controls (C99270) included no billing codes for hypothyroidism, no use of 

thyroid replacement medication, and normal TSH/FT4 levels. Exclusion criteria for controls 

included any evidence of hypo- or hyper-thyroidism, as well as other thyroid diseases, or the use 

of thyroid-altering medication. The Caucasian cohort was selected for further analysis, as 

described in the main text. Tests for Hardy-Weinberg Equilibrium (HWE) were performed using 

PLINK on the Caucasian cohort. One SNP in HDAC9 (rs2058074) had a HWE p-value less than 

10
-6

 and was removed. Logistic regression models were fitted with the glm function in R using 

the following model: 𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛼 + 𝛽𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + Σ𝑘𝛾𝑘𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑘. Y indicated the binary 

case/control disease status, genotype could take on the values 0/1/2/NA, and covariates were as 

described in the main text. Significance was extracted from the z-statistics associated with the 

genotype coefficient β. Reported genomic coordinates are for human genome build 

GRCh37/hg19. 

Statistical Analysis: To test for associations between HT status and image PC2, we used the 

following logistic regression model: 𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛼 + 𝛽1𝑃𝐶2 + 𝛽2𝑠𝑒𝑥 + 𝛽3𝑎𝑔𝑒 where Y  

indicated the HT status according to GTEx pathology notes. The significance of association was 

extracted from the z-statistics associated with the beta coefficients. Due to co-linearity between 

sex and image PC2, associations between HT status and sex were assessed using a reduced 

model without the image PC2 term. Gene-set enrichment tests were performed using a Fisher’s 

Exact Test for each Gene Ontology term. Multiple-testing correction across terms was performed 

using the method of Benjamini and Hochberg. Independent Weighting Hypothesis p-value 

correction on the image QTL results was performed using the Bioconductor software IHW (24). 

The permutation p-value reported for the eMERGE validation was estimated using the formula 

(𝑀 + 1)/(𝑁 + 1) where M is the number of permutations with a correlation coefficient 

exceeding that of the non-permuted data, and N is the total number of permutations. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126730doi: bioRxiv preprint 

https://doi.org/10.1101/126730
http://creativecommons.org/licenses/by-nd/4.0/

