
NetREX: Network Rewiring using EXpression - Towards Context

Specific Regulatory Networks

Yijie Wang1,⋆, Dong-Yeon Cho1,⋆, Hangnoh Lee2, Brian Oliver2, and Teresa M Przytycka1

1 National Center of Biotechnology Information, National Library of Medicine, NIH, Bethesda MD 20894, USA
przytyck@ncbi.nlm.nih.gov

2 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney
Diseases, 50 South Drive, Bethesda, MD 20892, USA

Abstract. Understanding gene regulation is a fundamental step towards understanding of how cells
function and respond to environmental cues and perturbations. An important step in this direction is
the ability to infer the transcription factor (TF)-gene regulatory network (GRN). However gene regula-
tory networks are typically constructed disregarding the fact that regulatory programs are conditioned
on tissue type, developmental stage, sex, and other factors. Due to lack of the biological context speci-
ficity, these context-agnostic networks may not provide insight for revealing the precise actions of genes
for a specific biological system under concern. Collecting multitude of features required for a reliable
construction of GRNs such as physical features (TF binding, chromatin accessibility) and functional
features (correlation of expression or chromatin patterns) for every context of interest is costly. There-
fore we need methods that is able to utilize the knowledge about a context-agnostic network (or a
network constructed in a related context) for construction of a context specific regulatory network.

To address this challenge we developed a computational approach that utilizes expression data ob-
tained in a specific biological context such as a particular development stage, sex, tissue type and a
GRN constructed in a different but related context (alternatively an incomplete or a noisy network for
the same context) to construct a context specific GRN. Our method, NetREX, is inspired by network
component analysis (NCA) that estimates TF activities and their influences on target genes given pre-
determined topology of a TF-gene network. To predict a network under a different condition, NetREX
removes the restriction that the topology of the TF-gene network is fixed and allows for adding and
removing edges to that network. To solve the corresponding optimization problem, which is non-convex
and non-smooth, we provide general mathematical framework allowing use of the recently proposed
Proximal Alternative Linearized Maximization technique and prove that our formulation has the prop-
erties required for convergence.

We tested our NetREX on simulated data and subsequently applied it to gene expression data in adult
females from 99 hemizygotic lines of the Drosophila deletion (DrosDel) panel. The networks predicted
by NetREX showed higher biological consistency than alternative approaches. In addition, we used
the list of recently identified targets of the Doublesex (DSX) transcription factor to demonstrate the
predictive power of our method.
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1 Introduction

Cell function, fitness, and survival depend on a complex regulatory program involving interactions
between genes and their regulators. Regulatory relationships between transcription factors (TFs)
and genes they regulate constitute a gene regulatory network (GRN) that is often represented as
a directed bipartite graph. Several experimental and computationally derived types of evidences
can be used to infer the topology of such regulatory network including genome-wide chromatin
immunoprecipitation (ChIP), gene expression profiling, and motif analysis. Complementing the
topology of a GRN, a further level of understanding can be obtained by modeling the quantitative
relation between TF activities and expression of their target genes. Specifically, given expression
data obtained by engineered perturbations of a reference state, or by tracing expression changes over
a number of naturally occurring conditions, the goal is to model the expression changes as a function
of changes in activities of TFs when the underlying GRN topology is available. In particular, network
component analysis (NCA) has proven to be a powerful method for such modeling [1, 2, 3, 4]. The
essence of NCA approach is the assumption that the expression of genes can be modeled by linear
combination of TF activities [5]. TF activity is a hidden parameter of each TF that the method
infers from the data. While the assumption of linearity of the effects is obviously a simplifying one,
it provides a good first approximation and makes the problem tractable.

An important drawback of the NCA approach is that it requires the topology of the GRN to
be known. Several computational methods which integrate diverse functional genomics data sets,
were developed to infer GRNs and investigate gene regulation at the systems level [6, 7]. Yet,
current knowledge of the topology of regulatory networks is not complete, even for simple unicel-
lular organisms such as yeast [8] and for most organisms construction of a regulatory network has
not even been attempted. In addition these networks are typically context-agnostic, namely, they
were constructed without considering tissue type, development stage, and other relevant condi-
tions. However, for very closely related organisms their regulatory networks can be assumed to be
rather similar due to evolutionary conservation. Similarly, for any specific organism, the regulatory
interaction in different tissues are expected to overlap significantly. This motivates the need for
developing a method that can utilize a network constructed for a closely related organism, stage,
or tissue as a starting point for constructing a tissue, stage or organism specific network. Indeed,
there is an increasing recognition of the importance of tissue specific analyses and tissue specific
networks [9, 10].

To address this challenge we developed Network Rewiring using EXpression (NetREX), a new
mathematically rigorous method, that builds on the linear model utilized by the NCA method, but
without the assumption that the topology of the regulatory network is fixed. That is, unlike previous
methods, NetREX does not restrict the structure of the regulatory network to be hardwired but
instead utilizes expression data from a set of perturbations performed in a given context and a prior
network that is assumed to be related to the target network by limited changes in the topology to
construct a context specific network. We remark that allowing for rewiring in the topology of the
prior network adds a whole new level of complexity. Specifically, we use ℓ0 norm to directly handle
the number of removed and newly added edges as well as induce sparse solutions in our formulation.
Unlike the widely used strategy, which is replacing the non-convex ℓ0 norm by its convex relaxation
ℓ1 norm, we focus on the harder problem involving ℓ0 norm and provide a number of rigorous
derivations and results allowing us to adopt the recently proposed Proximal Alternative Linearized
Maximization (PALM) algorithm [11]. In addition, we also proved the convergence of the NetREX
algorithm.

To evaluate method’s performance we first tested NetREX on simulated data. Specifically, we
analyzed its performance as the function of the noise in the prior network and in the gene expres-
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sion data. We found that under the assumptions of the model, NetREX is able to dramatically
improve the accuracy of the regulatory networks as long as the prior network and the gene ex-
pression are not very noisy. After testing the method on simulated data, we used NetREX for
constructing regulatory networks for adult female flies. We used the network constructed in [6] as
the prior network. This network was build by integrating diverse data sets including TF binding,
evolutionarily conserved sequence motifs, gene expression across developmental time-course, and
chromatin modification data sets. The topology of the network provides an initial wiring diagram
that includes TF-target gene interactions predicted from data available at the time of network
construction disregarding the context. Starting with this network, we utilized a new expression
data set that we collected for adult female flies where perturbations in expression were achieved by
genetic deletions. Specifically, the gene expression data of adult females are from 99 hemizygotic
lines (deletion/+) of the Drosophila deletion collection (DrosDel) project [12, 13]. To evaluate the
resulting networks we used a previously applied method [6] to access biological relevance of the
networks by using Gene Ontology (GO) annotations [14] and physical protein-protein interactions
(PPIs). We compared NetREX with several methods including a correlation based algorithm [15]
and GENIE3 [16], the best performer in the DREAM4 In Silico Multifactorial challenge [15] We
observed dramatic improvements in terms of fold enrichment comparing to all competing algo-
rithms. Subsequently we asked how well the method predicts targets of the TF that have specific
roles in adult flies and those targets would be difficult to identify based on cell lines or embryonic
data that were predominately used in the construction of the prior network. For this analysis we
focused on the Doublesex transcription factor (DSX) whose predicted targets have been recently
elucidated [17]. We showed that the target genes predicted by NetREX are in good agreement with
the experimentally identified targets.

Our method addresses an important challenge in analysis of gene regulation. It can be applied
in many diverse setting including construction of condition specific GRNs and networks for organ-
isms related to a model organism where a preliminary regulatory network exits. As a spin-off of
these studies we also developed mathematical underpinning allowing to adopt Proximal Alternative
Linearized Maximization (PALM) algorithm to the context of the ℓ0 elastic net.

2 Mathematical Underpinning of the NetREX method

Before describing the mathematical foundations behind the NetREX method, we provide a brief
overview of the traditional (static) NCA method and its various implementations. Next we introduce
the formula for the objective function in our NetREX method. Importantly, the objective function
is non-convex and non-smooth because of using ℓ0 norm in our formulation. Rather than relaxing
the problem by replacing the non-convex ℓ0 norm with the convex ℓ1 norm, we have directly solved
the more challenging problem with ℓ0 norm by adopting the recently proposed Proximal Alternative
Linearized Maximization (PALM) algorithm [11] to the original formulation of the problem.

2.1 Network Component Analysis (NCA) and it implementations

The main principle of the NCA is to explain the expression of each gene as a linear combination of
activities of TFs regulating that gene weighted by their control strength that exerts on the gene.
In case of NCA, the topology of the bipartite GRN is provided as a part of the input. Formally, let
E ∈ R

N×L be the matrix of expression data of N genes in L experiments. NCA is a special case of
a more general problem which is to express E as

E = SA+ Γ, (1)
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Fig. 1: The NCA model. (A) The graph representation of NCA. E(i, :) is the expression of gene i over L experiments and A(i, :)
is the activity of TF i over the same L experiments. S(i, j) is the control strength from TF j to gene i. (B) The algebraic
formulation of NCA. E, S and A in (B) correspond to E, S and A in (A).

where S ∈ R
N×M is a weighted adjacency matrix of the bipartite GRN G(TF ,TG ,S) such that the

edges of G in the edge set S connect transcription factors in the M element set TF to target genes
from the N element set TG . Specifically, for target gene i and transcription factor j, weight S(i, j)
defines the control strength that transcription factor j exerts on gene i. The rows of A ∈ R

M×L

represent the (hidden) TF activities of each TF over the set of experiments, and Γ ∈ R
N×M

represents the noise (Fig. 1).

Many mathematical techniques, such as principle component analysis (PCA), independent com-
ponent analysis (ICA), non-negative matrix factorization (NMF) [18] and sparse coding (SP) [19],
can be used to determine the decomposition of E specified in (1) (for NMF, E needs to be normal-
ized to a non-negative matrix). However, PCA and NMF [20] are unable to find a decomposition of
E when M > L (i.e. the number of TFs is larger than the number of experiments). Moreover, PCA
and ICA hinge on the assumptions of orthogonality and independence between the signals, which
may not hold for TF activities (rows of A). In addition, all of them can not utilize the prior knowl-
edge of the GRN G. In contrast, NCA [5, 21, 22, 23, 24, 25] can deal with the situation when M > L,
make no assumptions on TF activities and is able to take full advantage of the prior knowledge
of the GRN G. Specifically, NCA aims to uncover the matrix A describing the hidden regulatory
activities of TFs and matrix S describing control strengths of each TF on target genes assuming
that the structure S0 (unweighted adjacency matrix) of the underlining GRN G0 = (TF ,TG ,S0)
is known. That is only the entries of S that correspond to edges in S0 can be non-zero (formally
Support(S) = Support(S0), where Support(S) denotes the support of S, i.e. the positions of its
non-zero entries.). Thus NCA recovers the TF activities A and their control strength S by solving
the following optimization problem with only the expression data E and the structure S0 of G0 as
inputs.

min
S,A

1

2
‖E − SA‖2F

s.t. Support(S) = Support(S0),

‖S‖∞ ≤ a, ‖A‖∞ ≤ b,

(2)

where ‖S‖∞ = maxi,j |S(i, j)|. The first constraint in the above formulation restricts the structure
of the regulatory network G represented by matrix S to be exactly the same to the input regulatory
network G0. And the rest of the constraints aim to ensure the elements in A and S remain within
the domain of biologically sensible values.

The first method [5] to solve problem (2) can provide a unique solution only if the following
conditions are met: (i) the matrix S should have full-column rank; (ii) each column of S should
have at least M − 1 zeros; (iii) the matrix A should have full row-rank. Under these conditions,
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S and A are estimated using an iterative two-step least-squares algorithm [5]. Tran et al. [21]
expanded NCA by allowing the specification of the zero pattern of A as well as S. Galbraith
et al. [22] modified the NCA method by revising the third criterion for NCA which cannot be
tested before solving the problem. Chang et al. [23] treated NCA as an unconstrained optimization
problem and employed singular value decomposition (SVD) to find a closed form solution for S

without time-consuming iterations. Jacklin et al. [24] also proposed a non-iterative algorithm for
NCA resorting to convex optimization methods. All these methods are vulnerable to the presence of
small number of outliners in expression data. To deal with these outliers, Noor et al. [25] proposed
ROBust Network Component Analysis (ROBNCA) where an additional sparse matrix was used for
explicitly modeling the outliers.

2.2 The formulation of the optimization problem behind NetREX

Independently on numerous variants of the NCA, the assumption that the GRN must be known
in advance is a significant drawback of the NCA method. NetREX relaxes this restriction under
the assumption that a prior regulatory network that is not too far from the underlining true
regulatory network is given. Therefore, it is possible to recover the underlining regulatory network
by limited changes to the prior network. Note that this is a very reasonable assumption in many
practical applications where the prior network could come from a related organism or a related tissue
or even from the same organism but without sufficient data. Additionally, to guide the network
reconstruction, we assume that genes with highly correlated expression are likely to be regulated
by the same TFs. The correlations between genes can be encoded in the gene correlation network
GE constructed based on gene expression data E. Thus in the new optimization problem (3) we
remove the constraint that the structure of the network is fixed (Support(S) = Support(S0)) but
introduce a penalty term that limits the number of added and removed edges with respect to the
prior network, along with the terms encouraging consistent treatment of co-expressed genes, and
network sparsity. We devote the rest of this subsection to explaining the roles of the added terms.

min
S,A

1

2
‖E − SA‖2F + λ

(

‖S0‖0 − ‖S ⊙ S0‖0 +
∥

∥S ⊙ S̄0

∥

∥

0

)

+ κtr(STLS) + η ‖S‖0 + ξ ‖S‖2F + µ ‖A‖2F
s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.

(3)
where λ, κ, η, ξ, µ are the parameters controlling the strength of the corresponding terms.

The term controlled by λ restricts the number of edge changes. Here S̄0 is the adjacency matrix
of the complement graph of G0 and therefore S̄0 + S0 = 1N×M and ‖X‖0 is the ℓ0 norm that
computes the number of non-zero entries in X. ⊙ is the Hadamard product. We note that ‖S0‖0 −
‖S ⊙ S0‖0 denotes the exact number of regulations removed from G0 and

∥

∥S ⊙ S̄0

∥

∥

0
is the number

of regulations added to the prior network G0. λ controls the change in topology of the regulatory
network. Larger λ indicates that only small number of edges can be added and removed controlling
how far our predicted network G is from the prior network G0.

The term controlled by κ (the graph embedding term [26]) encourages S(i, k) and S(j, k) to
have similar control strength if genes i and j are correlated. In Supplementary Materials A.1 we
provide derivations demonstrating that:

1

2

∑

i,j

∑

k

W (i, j) (S(i, k)− S(j, k))2 = tr(STLS), (4)

where tr() is the trace of a matrix and W and L are the adjacency matrix and the Laplacian matrix
of the correlation network GE , respectively.
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The term of equation (3) that is controlled by parameter η encourages sparsity of the final
network (note the ℓ0 norm that computes the number of non-zero elements). However we note
that there might exist correlations between TF activities (rows of A), which would imply relations
between TFs and enforcing the sparsity constrain might weaken them. This means that, for a
gene, only one TF can be selected from a group of TFs whose activities are highly correlated even
though all TFs in the group regulate the gene. Therefore, we have an additional term (controlled
by parameter ξ) using Frobenius norm to ensure that all regulating TFs have non-zero values in S.
For the reader familiar with the elastic net model, we point that η ‖S‖0 + ξ ‖S‖2F is analogous to
ℓ1 elastic net [27], and we can refer to it as ℓ0 elastic net.

Finally, the last term controlled by the variable µ enforces smoothness of activities in A by
avoiding many elements in A reach to the limit {−b, b}.

After some linear algebra (Supplementary Materials A.2), we obtain our final formulation as
follow. We require η− λ ≥ 0, otherwise the above formulation would preserve all regulations in G0.

min
S,A

1

2
‖E − SA‖2F + (η − λ) ‖S ⊙ S0‖0 + (η + λ)

∥

∥S ⊙ S̄0

∥

∥

0
+ κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.

(5)

2.3 Solving the optimization problem underlying the NetREX algorithm

Our algorithm to solve optimization problem (5) relies on the recently proposed proximal alter-
native linearized maximization (PALM) [11] algorithm. The PALM method can solve a general
optimization problem formulated as

min : H(S,A) = F (S,A) + Φ(S) + Ψ(A) over S ∈ Υ,A ∈ Ω, (6)

where F (S,A) has to be smooth but Φ(S) and Ψ(A) do not need to have the convexity and
smoothness properties. Υ and Ω are constraint sets for S and A, respectively. The PALM algorithm
alternatively applies technique known as proximal forward-backward scheme to both S and A.
Specifically, at iteration k, the proximal forward-backward mappings of Φ(S) and Ψ(A) on S ∈ Υ

and A ∈ Ω for given Sk and Ak are the solutions for the following sub-problems, respectively.

Sk+1 ∈ argmin
S∈Υ

{

〈

S − Sk, ∇SF (Sk, Ak)
〉

+
ck

2

∥

∥

∥
S − Sk

∥

∥

∥

2

F
+ Φ (S)

}

; (7a)

Ak+1 ∈ arg min
A∈Ω

{

〈

A−Ak, ∇AF (Sk+1, Ak)
〉

+
dk

2

∥

∥

∥A−Ak
∥

∥

∥

2

F
+ Ψ (A)

}

, (7b)

where
〈

X,Y
〉

= tr(XTY ), ck and dk are positive real numbers and ∇SF (Sk, Ak) is the derivative
of F (S,Ak) with respect to S at point Sk for fixed Ak and ∇AF (Sk+1, Ak) is the derivative of
F (Sk+1, A) with respect to A at point Ak for fixed Sk+1. It has been proven that the sequence
{

(Sk, Ak)
}

k∈N
generated by PALM converges to a critical point when it is bounded [11].

Casting our optimization problem (5) into the PALM algorithm framework (6) introduced above,

we have F (S,A) :=
1

2
‖E − SA‖2F + κtr(STLS), Ψ(A) := µ ‖A‖2F and Φ(S) := (η + λ)

∥

∥S̄0 ⊙ S
∥

∥

0
+

(η − λ) ‖S0 ⊙ S‖0 + ξ ‖S‖2F . The constraint sets Υ and Ω are respectively Υ = {S | ‖S‖∞ ≤ a}
and Ω = {A | ‖A‖∞ ≤ b}. We note that F (S,A), Ψ(A) and Φ(S) satisfy the requirements of the
PALM algorithm. Namely, F (S,A) is smooth, Ψ(A) is convex and smooth but, as allowed in the
PALM approach, Φ(S) is non-convex and non-smooth. Hence, we can apply the PALM algorithm
to our problem as long as we can efficiently solve the proximal forward-backward mappings for our

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2017. ; https://doi.org/10.1101/126664doi: bioRxiv preprint 

https://doi.org/10.1101/126664


specific Φ(S) and Ψ(A). Proving that we can actually do it is mathematically the most challenging
component of the development of the method. Due to technicality of the derivations we leave most
of them to the supplement and in what follows we only point to the most critical components of
the argument.

It is easy to confirm that the NetREX problem (5) can be solved by alternatively applying the
following proximal forward-backward mappings (8a) and (8b), which are derived from (7a) and (7b)
by casting our specific F (S,A), Φ(S), Ψ(A), Υ and Ω and some linear algebra (derivations can be
found in Supplementary Materials A.3).:

Sk+1 ∈ arg min
‖S‖∞≤a

{

Φ (S) +
ck

2

∥

∥

∥
S − Uk

∥

∥

∥

2

F

}

; (8a)

Ak+1 ∈ arg min
‖A‖∞≤b

{

Ψ (A) +
dk

2

∥

∥

∥
A− V k

∥

∥

∥

2

F

}

, (8b)

where

Uk = Sk − 1

ck
∇SF (Sk, Ak) and V k = Ak − 1

dk
∇AF (Sk+1, Ak). (9)

The derivatives ∇SF (Sk, Ak) and ∇AF (Sk+1, Ak) can be computed by

∇SF (Sk, Ak) = (SkAk − E)(Ak)T + 2κLSk and ∇AF (Sk+1, Ak) = (Sk+1)T (Sk+1Ak − E), (10)

which are Lipschitz continuous with L(Ak) =
∥

∥Ak(Ak)T
∥

∥

F
+2κ ‖L‖F and L(Sk+1) =

∥

∥(Ak)TAk
∥

∥

F

as Lipschitz constants, respectively. As suggested by [11], we set ck = max
{

v, L(Ak)
}

, v > 0 and
dk =

{

v, L(Sk+1)
}

, v > 0 to make sure the formulas in (9) are well defined.

The closed form solution of the proximal forward-backward mapping (8a) can be obtained based
on Proposition 1, the Proximal Mapping of ℓ0 Elastic Net Under ‖‖∞ Constraint Proposition, and
its corollary (Corollary 1). The proposition and the corollary and their proofs can be found in the
Supplementary Materials B.1 and B.2. We emphasize that Proposition 1 provides the closed form
solution for the proximal mapping of ℓ0 elastic net under ‖‖∞ constraint and thus it has broader
applications to diverse feature selection approaches [28, 29].

With the help of Proposition 1 and Corollary 1, (8a) can be efficiently computed by (11a).
And (8b) can be computed by (11b).

Sk+1 ∈ prox‖·‖∞≤a

(

Uk,
2(η + λ)

ck
,
2(η − λ)

ck
,
2ξ

ck

)

; (11a)

Ak+1 = P‖·‖∞≤b

(

1

1 + 2µ
dk

V k

)

, (11b)

where the definitions of prox‖·‖∞≤a(·) and P‖·‖∞≤b(·) can be found in Corollary 1 and Proposition 1,
respectively. The derivations of (11a) and (11b) can be found in the Supplementary Materials A.4.

We now have all the ingredients for our NetREX algorithm. Hence, we describe the NetREX
algorithm in Algorithm 1 in Supplementary Materials C. We note that the constraints for both S

and A (‖S‖∞ ≤ a and ‖A‖∞ ≤ b) make sure that the sequence
{

(Sk, Ak)
}

k∈N
is bounded. Thus

we state that the sequence produced by the NetREX algorithm converges to a critical point of the
optimization problem (5), which is described in Proposition 2 in Supplementary Materials B.3.
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Fig. 2: (A) Comparison between F-measures of the networks predicted by NetREX and prior networks. The x-coordinate
denotes percentages of true edges in prior networks and the black dashed line denotes the F-measures of the prior networks.
The circles are the average F-measures of the networks predicted by NetREX under different σ and θ over 50 random inputs.
(B) Comparison between F-measures of the networks predicted by NetREX and NetREX NP. The color in each dashed block
indicates the − log p-value for corresponding (σ, θ), where the p-values are obtained from one-sided paired t-test between F-
measures of the compared algorithms. The warmer the color is, the significantly larger F-measures of the networks predicted
by NetREX are than NetREX NP. The red dashed line circles the (σ, θ) pairs where NetREX NP achieves larger F-measure at
significant level 0.01. (C) Comparison between F-measures of the networks predicted by NetREX and NetREX ℓ1. The color
coding is the same as in the panel (B).

3 Validation and Experimental Results

3.1 Results on Simulated Data

To validate our approach, we applied NetREX to the simulated data generated based on linear
model (1). We first randomly generated the ground truth adjacency matrix S of the regulatory
network G(TF ,TG ,S) and TF activities A. Then, the simulated expression data was generated as
following

E(i, j) =
∑

p

S(i, p)A(p, j) + Γ (i, j), (12)

where
∑

p S(i, p)A(p, j) is the noiseless data arising from known A and S matrices and the noise

Γ (i, j) ∼ N(0, σ2) obeys a normal distribution with 0 mean and σ2 variance. We assigned the prior
network G0 the same number of edges as the ground truth network G has but only θ percentage of
edges in G0 are true edges. We can tune the difficulty of the network rewiring task by using different
σ and θ.

We compared NetREX with its two natural variants on the simulation data. The first variant is
NetREX NP (NetREX with No edge Perturbation term) that has the same formulation as NetREX
but with λ = 0. The difference between NetREX and NetREX NP is that NetREX penalizes the
number of edges added and removed from the prior network but NetREX NP does not. Here we
want to mention that NetREX NP and sparse coding have similar formulations (Supplementary
Materials E.1). The other related algorithm in our comparison is NetREX ℓ1, which estimates the
ℓ0 norm in NetREX using ℓ1 norm. We note, that substituting ℓ0 norm by ℓ1 norm makes the
sub-problems convex and thus easier to solve. The implementation of these two algorithms are
introduced in Supplementary Materials E.1.

We evaluated the performance of the compared algorithms in terms of F-measure (defined
in Supplementary Materials D.1). To avoid the effect of parameter selection, for each algorithm,
under certain noise level (σ, θ), we first found its optimal parameters in terms of F-measure on
one simulated data set through grid search. Then we ran the algorithm on another 50 randomly
generated simulated data sets under the same (σ, θ) using its optimal parameters. We can further
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test whether one method is statistically better than another method under a specific noise level by
computing the p-value from one-side paired t-test between their 50 paired F-measures.

The comparisons between NetREX and others are shown in Fig. 2. Fig. 2A shows the comparison
between networks predicted by NetREX and the prior networks, in which we found a tendency that
when the expression data is less noisy (σ is small) and the prior network is closer to the ground truth
(θ is large), the network predicted by NetREX achieves higher F-measures than the prior networks.
Additionally, we note that NetREX exhibits, by a larger margin, higher F-measure comparing
to the prior networks after θ ≥ 0.3. However, for θ < 0.3 the networks predicted by NetREX
only marginally better than the prior network, which also implies that if we use random networks
that do not have much overlap with the ground truth as the prior networks, we can not obtain
promising results. The comparison between NetREX and NetREX NP is displayed in Fig. 2B. We
note that NetREX significantly outperforms NetREX NP after θ > 0.1. In Fig. 2C, we observe that
NetREX ℓ1 performs better in certain cases where the noise in the expression data is large (σ is
large) because ℓ1 norm is robust to noise. However, for most of the noise levels, NetREX achieved
significantly higher F-measures comparing to NetREX ℓ1 demonstrating that ℓ0 norm is superior
to ℓ1 norm on selecting sparse contributing components.

3.2 Results on Real Experimental Data from DrosDel Study

Next we applied NetREX to gene expression data in the adult female flies from 99 hemizygotic lines
(deletion/+) of the Drosophila deletion collection (DrosDel) project covering 68% of chromosome
2L. Specifically, in each of the DrosDel lines, a different chromosomal fragment has been deleted
leaving the organism with only one copy of genes for the deleted region [13]. We used the network
constructed in [6] as the prior network, which is constructed through integrating diverse functional
genomics data sets (such as transcription factor (TF) binding, evolutionary conserved sequence
motifs and etc.) in a supervised learning framework. The data used in [6] typically comes from
cell lines and expression profiles of developmental stages. NetREX predicted regulatory networks
for the adult female flies. And we verified these networks using GO functional annotations [14],
physical protein-protein interactions (PPIs) and Drosophila Doublesex transcription factor (DSX)
target genes [17].

We compared our predicted networks with the prior networks and the TF-Gene correlation
networks that were built based on the Pearson coefficient between expression of TFs and genes
using previously reported expression measurements in DrosDel data [30]. Furthermore, we compared
with GENIE3 [16], the best performer in the DREAM4 In Silico Multifactorial challenge [15], which
predicts GRNs using only expression data. We also tried to compare with NMF based algorithms,
which can not be applied because the dimensional requirement of NMF [20] is not satisfied (i.e.
the number of TFs in the target GRN is larger than the number of hemizygotic lines in DrosDel
data). To demonstrate performance of NetREX under different parameters, and to choose the
parameters in a manner that does not depend on tested data (GO annotations and PPIs), we
developed a simple heuristic that ranks the models performance using a quality score based on the
objective function (5) (Supplementary Materials E.3). We then used top twenty models with respect
to this ranking. In addition, since performance of the correlation based algorithm and GENIE3
might depend on different cut-offs, in the evaluation we showed the performance of the TF-Gene
correlation networks and networks predicted by GENIE3 with different cutoffs (Supplementary
Materials E.3). Finally, we note that, unlike other networks in this comparison, the co-expression
network is not a regulatory network, however, we embedded the information about this network
in our objective function, thus we need to show that the good performance of our method is not
merely reflection of embedding this information in the objective function.
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Fig. 3: Functional enrichment and the details of the compared networks. For the correlation based algorithm, GENIE3 and
NetREX, we showed the performance of these three algorithms under different parameters (details in Supplementary Materi-
als E.3). (A) is functional enrichment of co-regulated genes for annotation with similar functions. (B) is the fold enrichment
of physical interactions between co-regulated genes. (C) is the details of all compared networks. The networks predicted by
NetREX show stronger enrichment for both gene functions and physical PPIs.

Functional Enrichment of the Predicted Regulatory Network We assessed the biologi-
cal relevance of the predicted regulatory networks through checking whether genes co-regulated by
similar TFs exhibit similar functional properties. We used the measures (a brief review is in Supple-
mentary Materials D.2 and D.3) proposed in [6] to evaluate the enrichment of co-regulated genes in
terms of GO functional annotations [14] and experimentally derived physical Protein Protein inter-
actions (PPIs) extracted from DroID database [31], respectively. In addition to the prior networks,
the TF-Gene correlation networks and the networks predicted by GENIE3, we also computed the
same measures for the co-expression network inputted as the graph embedding term in NetREX.

First, we examined whether co-regulated genes have similar GO annotations. The comparison
results are illustrated in Fig. 3A. NetREX clearly outperforms all other approaches demonstrating
benefit of using both the prior network and the condition specific gene expression data.

Next, we evaluated whether physically interacting genes are tend to be co-regulated in the
respective networks. Fig. 3B shows the PPI enrichment comparison. Using this enrichment as a
measure of network quality as it has been proposed in [6] we observed that NetREX also outperforms
all other methods.

Agreement with DSX Targets To further validate the predictions obtained from different
methods, we concentrated on target genes of Drosophila Doublesex transcription factor (DSX)
which involves in the sex determination system as different isoforms in flies [32]. Recently, Clough et
al. [17] reported a rich set of DSX targets based on a series of genome-wide experiments and analysis.
Thus, we checked how well the predicted DSX targets of NetREX are in agreement with genes
identified in [17]. We selected networks giving the best fold enrichment in both GO annotation and
physical PPIs. As shown in Fig. 4A, NetREX outperforms other methods and there is statistically
significant overlap between targets predicted by NetREX and targets inferred from experimental
data (p-value are computed by the hyper geometric test).

Prediction and validation of DSX regulators We then used NetREX to predict the regula-
tors of doublesex gene (dsx ). Fig. 4B illustrates the results of our prediction for dsx in female flies.
Our predictions include multiple probable transcription factors that for example, Trl (Trithorax-
like) gene encodes Drosophila GAGA factor that has reported roles in sex chromosome dosage
compensation [33]. In addition, the rnet locus is required to repress male courtship behaviors in
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A 
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Symbol klu CG6175 Adf1 jing Mrtf cwo CG9932 ci jim 

Strength 0.203 -0.202 0.202 -0.187 0.174 0.156 0.155 0.153 0.138 

Symbol bab2 crol CG4404 CG7987 vri bbx su(Hw) CG15073 pnt 

Strength 0.137 -0.132 -0.124 0.117 -0.112 0.109 0.107 -0.100 0.097 

Symbol Hnf4 CG32772 emc Snoo Hr78 CG11247 retn Atf3 Trl 

Strength -0.094 0.093 0.093 0.090 -0.090 -0.084 0.071 0.069 0.069 

Fig. 4: (A) Comparison of agreement with DSX Targets using Venn diagrams with p-values. P-values are computed by the
hyper geometric test. NetREX achieved the lowest p-value. In the prior network, there are 2 target genes of DSX but none of
them overlapped with the target set reported in [17]. (B) dsx regulators predicted by NetREX for female flies. We ranked the
regulators based on the absolute values of their control strength. Genes in red have evidence in literature.

females [34] while bab1 and bab2 genes have overlapping functions controlling sex-specific morphol-
ogy [35]. We also observed many other predicted genes in the list have sex-specific expression, as like
bbx (boby sox ) and CG6175, which demonstrate testis-specifically repressed, but ovary-expressed
patterns [36].

4 Conclusion

Regulatory networks embed key information needed for modeling and interpreting experimental
data. Currently, regulatory networks are constructed by combining information from various tissues,
stages, and conditions [6, 37, 38] to obtain a context-agnostic network. However the importance
of constructing tissue / stage specific networks is now being increasingly recognized [9, 10]. And
constructing such network from scratch for every relevant tissue and/or condition is not realistic. In
addition, data obtained from different tissues and conditions might, provide additional information
that context specific analysis might not be sufficiently empowered to detect. For these reasons it
is fundamental to be able to utilize regulatory networks constructed in context independent way
as a starting point for context specific network construction. The NetREX method proposed in
this paper fulfills this critical need. Importantly, our construction is mathematically rigorous. We
proved convergence of the method and validate its performance on both simulation data and real
world data. The experimental results demonstrate that NetREX is capable to recover the biological
meaningful condition specific TF-gene regulatory networks.
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[35] Jean-Louis Couderc et al. “The bric à brac locus consists of two paralogous genes encoding BTB/POZ domain
proteins and acts as a homeotic and morphogenetic regulator of imaginal development in Drosophila.” In:
Development (Cambridge, England) 129 (2002), pp. 2419–2433.

[36] Scott W. Robinson, Pawel Herzyk, Julian a T Dow, and David P. Leader. “FlyAtlas: Database of gene expression
in the tissues of Drosophila melanogaster”. In: Nucleic Acids Research 41.D1 (2013), pp. 744–750.

[37] Serdar Turkarslan et al. “A comprehensive map of genome-wide gene regulation in Mycobacterium tuberculo-
sis”. In: Scientific data 2 (2015), p. 150010.

[38] Nikolai Hecker et al. “Optimizing RNA structures by sequence extensions using RNAcop”. In: Nucleic Acids
Research (2015), gkv813.

[39] L. Grippo and M. Sciandrone. “On the convergence of the block nonlinear Gauss-Seidel method under convex
constraints”. In: Operations Research Letters 26.3 (2000), pp. 127–136.

[40] Neal Parikh and Stephen Boyd. “Proximal Algorithms”. In: Foundations and Trends in Optimization 1.3 (2013),
pp. 123–231.

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2017. ; https://doi.org/10.1101/126664doi: bioRxiv preprint 

https://doi.org/10.1101/126664


Supplementary Materials I:
Mathematical Derivations and Proofs

A Mathematical Derivations

A.1 The Graph Embedding

The derivation of the graph embedding term (4) is shown below.

1

2
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i,j

∑
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2
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=
1

2

(

2tr(STDS)− 2tr(STWS)
)

= tr(STLS),

(13)

where tr() is the trace of a matrix. W is the adjacency matrix for the gene co-expression network
GE and D is a diagonal matrix with the degree of every gene on its diagonal. L is the Laplacian
matrix of GE .

A.2 Derivation from (3) to (5)

The key of the derivation is the following transformation.

λ
(

‖S0‖0 − ‖S ⊙ S0‖0 +
∥
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∥

∥

0

)

+ η ‖S‖0
=λ
(

‖S0‖0 − ‖S ⊙ S0‖0 +
∥

∥S ⊙ S̄0

∥

∥

0

)

+ η ‖S ⊙ 1‖0
=λ
(

‖S0‖0 − ‖S ⊙ S0‖0 +
∥

∥S ⊙ S̄0

∥

∥

0

)

+ η
∥

∥S ⊙ (S0 + S̄0)
∥

∥

0

=λ
(

‖S0‖0 − ‖S ⊙ S0‖0 +
∥

∥S ⊙ S̄0

∥

∥

0

)

+ η
∥

∥S ⊙ S0 + S ⊙ S̄0

∥

∥

0

=λ
(

‖S0‖0 − ‖S ⊙ S0‖0 +
∥

∥S ⊙ S̄0

∥

∥

0

)

+ η
(

‖S ⊙ S0‖0 +
∥

∥S ⊙ S̄0

∥

∥

0

)

=λ ‖S0‖0 + (η − λ) ‖S ⊙ S0‖0 + (η + λ)
∥

∥S ⊙ S̄0

∥

∥

0
.

(14)

In the above derivation, we use the fact that 1 = S0+S̄0 and the property that
∥

∥S ⊙ S0 + S ⊙ S̄0

∥

∥

0
=

‖S ⊙ S0‖0 +
∥

∥S ⊙ S̄0

∥

∥

0
because S0 and S̄0 are complementary to each other. Replacing the corre-

sponding term in (3) with the last line of (14), we have

min
S,A

1

2
‖E − SA‖2F + λ ‖S0‖0 + (η − λ) ‖S ⊙ S0‖0 + (η + λ)

∥

∥S ⊙ S̄0

∥

∥

0
+ κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.

(15)
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Because ‖S0‖0 is a constant number, we disregard it and our formulation becomes to (16) that is
exactly the same to (5).

min
S,A

1

2
‖E − SA‖2F + (η − λ) ‖S ⊙ S0‖0 + (η + λ)

∥

∥S ⊙ S̄0

∥

∥

0
+ κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.

(16)

A.3 Derivations from (7a) and (7b) to (8a) and (8b)

The derivation is based on completing the square technique. We simply show the derivation
from (7a) to (8a) and the derivation from (7b) to (8b) is the same.
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∥
S − Sk

∥

∥

∥

2

F
+ Φ (S)

}

∈ argmin
S∈Υ

{

〈

S − Sk, ∇SF (Sk, Ak)
〉

+
ck

2

〈

S − Sk, S − Sk
〉

+ Φ (S)

}

∈ argmin
S∈Υ

{

tr(ST∇SF (Sk, Ak)) +
ck

2
tr(STS − 2STSk + (Sk)TSk) + Φ (S)

}

∈ argmin
S∈Υ

{

Φ (S) +
ck

2

∥

∥

∥

∥

S − (Sk − 1

ck
∇SF (Sk, Ak))

∥

∥

∥

∥

2

F

}

∈ arg min
‖S‖∞≤a

{

Φ (S) +
ck

2

∥

∥

∥

∥

S − (Sk − 1

ck
∇SF (Sk, Ak))

∥

∥

∥

∥

2

F

}

.

(17)

The second last line is obtained based on completing the square technique and disregarding a term
that is consist of the constants Sk and ∇SF (Sk, Ak). The last line is obtained by putting in the
specific constraint for S.

A.4 Derivations of the Proximal Mappings used in the NetREX Algorithm

The derivation for (11a) using Corollary 1 is shown below.

Sk+1 ∈ arg min
‖S‖∞≤a

{

Φ (S) +
ck

2

∥

∥

∥S − Uk
∥

∥

∥

2

F

}

= arg min
‖S‖∞≤a

{

2(η + λ)

ck

∥

∥S̄0 ⊙ S
∥

∥

0
+

2(η − λ)

ck
‖S0 ⊙ S‖0 +

2ξ

ck
‖S‖2F +

∥

∥

∥S − Uk
∥

∥

∥

2

F

}

= prox‖·‖∞≤a

(

Uk,
2(η + λ)

ck
,
2(η − λ)

ck
,
2ξ

ck

)

.

(18)

The derivation for (11b) is shown below.

Ak+1 = arg min
‖A‖∞≤b

{

Ψ (A) +
dk

2

∥

∥

∥A− V k
∥

∥

∥

2

F

}

= arg min
‖A‖∞≤b

{

2µ

dk
‖A‖2F +

∥

∥

∥A− V k
∥

∥

∥

2

F

}

= P‖·‖∞≤b

(

1

1 + 2µ
dk

V k

)

.

(19)
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B Propositions, Corollary, and Their Proofs

B.1 The Proposition for the Proximal Mapping of ℓ0 Elastic Net and Its Proof

Proposition 1 (Proximal Mapping of ℓ0 Elastic Net Under ‖‖∞ Constrain Proposition).
For given Y ∈ R

m×n, the proximal mapping of ℓ0 elastic net under ‖‖∞ norm Constrain is

arg min
‖X‖∞≤C

{

‖Y −X‖2F + b ‖X‖2F + c2 ‖X‖0
}

= T c√
b+1

(

P‖·‖∞≤C

(

Y

b+ 1

))

, (20)

where the projection operator P‖·‖∞≤C(·) is defined in (21)

P‖·‖∞≤C(Y ) := argmin
{

‖Y −X‖2F : ‖X‖∞ ≤ C
}

= sign(Y )⊙max {|Y |, C} , (21)

where the ||, sign() and max{} operations are taken component-wise. And the hard-thresholding

operator Tc(·) is defined as

Tc(Y ) := argmin
X

{

‖Y −X‖2F + c2 ‖X‖0
}

, (22)

where Y ∈ R
m×n is any given matrix and Tc : Rm×n → R

m×n is a component-wise mapping that

can be explicitly wrote out

(Tc(Y )) (i, j) =







Y (i, j), if |Y (i, j)| > c;
{0, c} , if |Y (i, j)| = c;

0, o.w..

(23)

Proof.

arg min
‖X‖∞≤C

{

‖Y −X‖2F + b ‖X‖2F + c2 ‖X‖0
}

=arg min
‖X‖∞≤C

{

(b+ 1)

∥

∥

∥

∥

Y

b+ 1
−X

∥

∥

∥

∥

2

F

+ c2 ‖X‖0

}

=arg min
‖X‖∞≤C

{

∥

∥

∥

∥

Y

b+ 1
−X

∥

∥

∥

∥

2

F

+ (
c√
b+ 1

)2 ‖X‖0

}

=T c√
b+1

(

P‖·‖∞≤C

(

Y

b+ 1

))

.

(24)

The last equality is derived based on Lemma 1.

Lemma 1. Let U ∈ R
m×n, then

argmin
{

‖U −X‖2F + c2 ‖X‖0 : ‖X‖∞ ≤ C
}

= Tc

(

P‖·‖∞≤C(U)
)

. (25)

Proof. For given U ∈ R
m×n, let us introduce the following notations

‖X‖2+ =
∑

(i,j)∈I+

X(i, j)2 and ‖X‖2− =
∑

(i,j)∈I−

X(i, j)2, (26)

where
I+ = {(i, j) ∈ {1, ...,m} × {1, ..., n} : |U(i, j)| ≤ C} (27)
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and

I− = {(i, j) ∈ {1, ...,m} × {1, ..., n} : |U(i, j)| > C} (28)

The following observations hold

(i) ‖X‖2F = ‖X‖2+ + ‖X‖2−
(ii) ‖X − U‖2+ + ‖X − C‖2− =

∥

∥

∥
X − P‖·‖∞≤C(U)

∥

∥

∥

2

F

(iii) ‖X − C‖2− = 0 ⇔ X(i, j) = C ∀(i, j) ∈ I−

(29)

where the second observation follows from observation (i) and the fact that
(

P‖·‖∞≤C(U)
)

(i, j) =

U(i, j) for (i, j) ∈ I+ and
(

P‖·‖∞≤C(U)
)

(i, j) = C for (i, j) ∈ I−.

Based on the above facts, we have that X̄ ∈ prox
‖·‖∞≤C

‖·‖0
(U, c) if and only if

X̄ ∈ argmin
{

‖U −X‖2F + c2 ‖X‖0 : ‖X‖∞ ≤ C
}

(30a)

= argmin
{

‖U −X‖2+ + ‖U −X‖2− + c2 ‖X‖0 : ‖X‖∞ ≤ C
}

(30b)

= argmin
{

‖U −X‖2+ + c2 ‖X‖0 : X(i, j) = C ∀(i, j) ∈ I−, ‖X‖∞ ≤ C
}

, (30c)

where the last equality follows that fact that the solution of (30c) is also the solutions of (30b),
while the converse follows by a simple contradiction argument. Furthermore, one can find that
the constraint ‖X‖∞ ≤ C can be removed without affecting the optimal solution of the problem.
Therefore, applying observation (ii) and (iii), we obtain

X̄ ∈ argmin
{

‖U −X‖2+ + c2 ‖X‖0 : ‖X − C‖2− = 0
}

= argmin
{

‖U −X‖2+ + ‖X − C‖2− + c2 ‖X‖0
}

= argmin

{

∥

∥

∥X − P‖·‖∞≤C(U)
∥

∥

∥

2

F
+ c2 ‖X‖0

}

= Tc

(

P‖·‖∞≤C (U)
)

,

(31)

where the last equality is the definition of Tc in Eq. (24).

B.2 The Corollary of the Proximal Mapping of ℓ0 Elastic Net Proposition and Its
Proof

Corollary 1. For given U ∈ R
m×n, the proximal mapping of Φ(S) = α

∥

∥S̄0 ⊙ S
∥

∥

0
+ β ‖S0 ⊙ S‖0 +

γ ‖S‖2F on ‖S‖∞ ≤ C is

prox‖·‖∞≤C(U, α, β, γ) ∈ arg min
‖S‖∞≤C

{

α
∥

∥S̄0 ⊙ S
∥

∥

0
+ β ‖S0 ⊙ S‖0 + γ ‖S‖2F + ‖U − S‖2F

}

= T√

β
γ+1

(

P‖·‖∞≤C

(

U

γ + 1

))

+ T√

α
γ+1

(

P‖·‖∞≤C

(

Ū

γ + 1

))

,

(32)

where U = S0 ⊙ U and Ū = S̄0 ⊙ U .
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Proof. We know that the U can be decomposed into U = 1⊙U = (S+ S̄0)⊙U = S⊙U + S̄0⊙U =
U+ Ū. Similarly, S = S ⊙ S + S̄0 ⊙ S = S+ S̄. Applying those decomposition into Eq. (32), we can
decompose the proximal mapping into two parts.

arg min
‖S‖∞≤C

{

α
∥

∥S̄0 ⊙ S
∥

∥

0
+ β ‖S0 ⊙ S‖0 + γ ‖S‖2F + ‖U − S‖2F

}

= arg min
‖S‖∞≤C

{

β ‖S‖0 + γ ‖S‖2F + ‖U− S‖2F
}

+ arg min
‖S̄‖∞≤C

{

α
∥

∥S̄
∥

∥

0
+ γ

∥

∥S̄
∥

∥

2

F
+
∥

∥Ū− S̄
∥

∥

2

F

}

.

(33)
Based on Proximal Mapping of ℓ0 Elastic Net Proposition 1, we know

arg min
‖S‖∞≤a

{

β ‖S‖0 + γ ‖S‖2F + ‖U− S‖2F
}

= T√

β
γ+1

(

P‖·‖∞≤C

(

U

γ + 1

))

. (34)

Similarly,

arg min
‖S̄‖∞≤a

{

α
∥

∥S̄
∥

∥

0
+ γ

∥

∥S̄
∥

∥

2

F
+
∥

∥Ū− S̄
∥

∥

2

F

}

= T√

α
γ+1

(

P‖·‖∞≤C

(

Ū

γ + 1

))

. (35)

Combining Eq. (34) and Eq. (35) proves the proposition.

arg min
‖S‖∞≤C

{

α
∥

∥S̄0 ⊙ S
∥

∥

0
+ β ‖S0 ⊙ S‖0 + γ ‖S‖2F + ‖U − S‖2F

}

= T√

β
γ+1

(

P‖·‖∞≤C

(

U

γ + 1

))

+ T√

α
γ+1

(

P‖·‖∞≤C

(

Ū

γ + 1

))

.

(36)

B.3 The convergence of NetREX algorithm

Proposition 2 (Convergnece Proposition). Let
{

(Sk, Ak)
}

k∈N
be a sequence generated by Ne-

tREX algorithm. Then,

(i) The sequence
{

(Sk, Ak)
}

k∈N
has finite length, that is

∞
∑

k=1

∥

∥

∥
Sk+1 − Sk

∥

∥

∥

F
+
∥

∥

∥
Ak+1 −Ak

∥

∥

∥

F
< ∞. (37)

(ii) The sequence
{

(Sk, Ak)
}

k∈N
converges to a critical point (S∗, A∗) of the NetREX problem.

Proof. We apply Theorem 3.1 in [11] to guarantee that the sequence generated by NetREX is
globally convergent to critical points of (5).
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Supplementary Materials II:
Implementation Details

C The NetREX Algorithm

C.1 The Details of the NetREX Algorithm

Algorithm 1: The NetREX algorithm.
Input : S0, E, L, η, λ, κ, ξ, v > 0 and K;
Output: S and A.

1 begin

2 (S0, A0) =Initialization(S0). // Algorithm 2.
3 for k = 0, 1, 2, ...,K do

4 ck = max
{

v, L(Ak)
}

.

5 Uk = Sk −
1

ck

(

SkAk(Ak)T + 2κLSk − E(Ak)T
)

. // put (10) into (9).

6 Sk+1 ∈ prox‖·‖
∞

≤a

(

Uk, 2η
ck
,
2(η−λ)

ck
, 2ξ
ck

)

. //as shown in (11a).

7 dk =
{

v, L(Sk+1)
}

.

8 V k = Ak −
1

dk

(

(Sk+1)T (Sk+1)Ak − (Sk+1)TE
)

. // put (10) into (9).

9 Ak+1 = P‖·‖
∞

≤b

(

1

1 + 2µ
dk

V k

)

. //as shown in (11b).

10 end

11 S = SK and A = AK

12 end

C.2 The Initialization Algorithm for NetREX

To ensure that the starting point is consistent with the prior network, (S0, A0) have to be inferred
from our prior network G0. To do this, we compute (S0, A0) by solving the following problem, which
is obtained from the original NetREX formulation by dropping the constraints and disregarding
the non-smooth regularization term (η − λ) ‖S ⊙ S0‖0 + (η + λ)

∥

∥S ⊙ S̄0

∥

∥ of S.

min
S,A

: J(S,A) =
1

2
‖E − SA‖2F + κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F (38)

The problem (38) can be solved by the standard Gauss-Seidel scheme [39] that alternatively solves
the multi-variable optimization problem with respect to one variable while fixing the rest of the
variables. Specifically, we can fix S = S0

k and solve (38) with respect to A in closed form shown
in Line 4 of Algorithm 2. Then, we fix A = A0

k and solve (38) with respect to S, whose solution
is the solution of the Sylvester equation SA0

k(A
0
k)

T + 2(κL + ξI)S = E(A0
k)

T (derived by setting
∇H(S,A0

k) = 0). The Sylvester equation is solved by standard Bartels-Stewart algorithm. We
alternatively ran lines 4 and 5 K times. In the end, we project the solutions A0

K and S0
K into

feasible space of Eq. (5) by the projection operator (21) shown in lines 7 and 8. Algorithm 2
elaborates the details of obtaining (S0, A0).
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Algorithm 2: The initialization for NetREX
Function: Initialization(S0);
Input : S0;
Output : S0 and A0.

1 begin

2 S0
0 = S0.

3 for k = 0, 1, 2, ...,K do

4 A0
k =

(

(S0
k)

TS0
k + µI

)−1
(S0

k)
TE.

5 S0
k+1 :=

{

Ŝ|ŜA0
k(A

0
k)

T + 2(κL+ ξI)Ŝ = E(A0
k)

T
}

.

6 end

7 A0 = P‖·‖
∞

≤b(A
0
K).

8 S0 = P‖·‖
∞

≤a

(

S0
K

)

.

9 end

D Evaluation Metrics

D.1 F-measure

F-measure is defined as

F-measure = 2× Precision× Recall

Precision + Recall
, (39)

where

Precision =
|Ep ∩ E|
|Ep| , Recall =

|Ep ∩ E|
|E| . (40)

E and Ep are edge sets of the underling regulatory network G and the predicted regulatory network,
respectively. F-measure ranges from 0 to 1, where 1 presents that the underlining G is fully recovered
and 0 means the opposite.

D.2 Fold Enrichment for GO annotations

We consider two genes are co-regulated if the Jaccard similarity coefficient between the TF set
regulating the first gene and the TF set regulating the second gene is larger than 0.5. The Jaccard
similarity coefficient between two sets is the ratio of the size of the intersection of the given two
sets to the size of the union of these two sets. Then for each co-regulated gene pair, we again
use the Jaccard similarity coefficient to measure the similarity between the GO annotation set
corresponding to the first gene and the GO annotation set corresponding to the second gene. In the
end, we compute the average of this coefficient overall co-regulated gene pairs. The same procedure
was done for 100 randomized networks, and the enrichment is the ratio of the average coefficient
of the original network to the average of the randomized networks. The randomized networks are
generated by permuting the node labels of the original network. Hence, all randomized networks
have the same topology to the original network but with different node labels. The statistical
significance is accessed at a level of 0.05 using a one-side unpaired T-test for comparing the Jaccard
coefficients from the original network with coefficients from 100 randomized networks.

D.3 Fold Enrichment for PPIs

Enrichment of co-regulated genes for PPIs was computed analogously to enrichment for GO an-
notations. Specifically, we computed the ratio of the number of PPIs for co-regulated gene pairs
to the average number of such PPIs in 100 randomized networks, using the same definition for
co-regulation and network randomization.
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E Parameters

E.1 The NetREX NP and NetREX ℓ1 Algorithms

The NetREX NP algorithm is same to Algorithm 1 with λ = 0. The formulation of NetREX NP is

min
S,A

1

2
‖E − SA‖2F + η ‖S‖0 + κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.

(41)

The formulation is similar to sparse coding [19] if we remove the graph embedding term.
The NetREX ℓ1 formulation is as following.

min
S,A

1

2
‖E − SA‖2F + (η − λ) ‖S ⊙ S0‖1 + (η + λ)

∥

∥S ⊙ S̄0

∥

∥

1
+ κtr(STLS) + ξ ‖S‖2F + µ ‖A‖2F

s.t. ‖S‖∞ ≤ a, ‖A‖∞ ≤ b.

(42)
To do a fair comparison, we also use the PALM algorithm to solve it which is analogous to Algo-
rithm 1. The only difference is that in line 6 of Algorithm 1, we use proximal mapping of ℓ1 elastic
net that is given in [40] instead of proximal mapping for ℓ0 elastic net.

E.2 Parameter Settings for Simulated Data

The parameters used to generate simulated data is L = 60, N = 500,M = 100. The density of
the ground truth GRN is 0.1. The noise level in simulated expression data E is controlled by
σ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The percentage of true edges in G0 is controlled
by θ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

There are seven parameters for NetREX algorithm, which are λ, η, κ, ξ, µ, a and b. We applied
grid search to find the optimal parameters. The settings are as following. We set η−λ ∈ [0.2, 5] with
interval 0.2, η+ λ ∈ [1, 50] with interval 1, κ ∈ [0.1, 0.5] with interval 0.1, ξ = {0.1, 1}, µ = {0.1, 1}
and a = b = maxi,j(abs E(i, j)). We used the same parameter setting for NetREX NP except λ = 0
and η ∈ [1, 50] with interval 1. For NetREX ℓ1 algorithm, we use exactly the same parameters to
the NetREX algorithm.

To test the potential of the competing algorithms, for certain noise level, we first applied grid
search for all algorithms to find their optimal parameters on only one simulated data set based on
F-measure. Then we use the optimal parameters to other 50 simulated data set under the same
noise level. We compared the performance of different algorithms based on the F-measures.

E.3 Parameter Settings for DrosDel Data

We set η − λ ∈ [0.01, 0.2] with interval 0.01, η + λ ∈ [0.5, 10] with interval 0.5, κ = {0.05, 0.1},
ξ = {0.1, 1, 5}, µ = {0.1, 1} and a = b = maxi,j(abs E(i, j)). Because we do not know the ground
truth regulatory networks, we proposed a heuristic score to rank our predicted networks. The score
can be computed as

R = ‖E − SA‖4F × ‖S‖0 . (43)

We reasoned that the promising networks should be able to describe the underling regulatory system
(making ‖E − SA‖F small) as well as have only the contributing regulations (the number of edges
in the network ‖S‖0 is small). We used power of 4 on fitting error (‖E − SA‖F ) because, to build
a condition specific RGN, fitting the condition specific expression data E is more important. The
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smaller R implies that we can fit the expression data using the network with smaller number of
edges. We ranked all predicted networks under different parameters in terms of R in ascending
order. We showed the performance of the top 20 networks for the female flies.

For constructing the TF-gene correlation networks, we used Pearson coefficient cutoffs ({0.6, 0.7, 0.8, 0.9})
and show the performance of the networks under different cutoffs.

For GENIE3, there is only a parameter K used by it. [16] suggests two settings for K, which
are K = M − 1 and K =

√
M . We compared the results of these two Ks. K = M − 1 is better

than K =
√
M . Therefore, we use K = M − 1 in comparison. We also need a cutoff to get the final

GRN. We ranked the weighted predicted by GENIE3 and used the top 100,000, 200,000, 300,000,
400,000 and 500,000 as output, respectively.

The co-expressed gene pairs used in the comparison shown in Fig. 3 is the same to the one we
inputted in our formulation as the graph embedding term.
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