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Abstract 
Brain development is a dynamic process that follows a well-defined trajectory during childhood and 
adolescence with tissue-specific alterations that reflect complex and ongoing biological processes. 
Accurate identification and modelling of these anatomical processes in vivo with MRI may provide 
clinically useful imaging markers of individual variability in development. In this study, we build a 
model of age- and sex-related anatomical variation using multiple imaging metrics and manifold 
learning. 

Using publicly-available data from two large, independent developmental cohorts (n=768, 862), we 
apply a multi-metric machine learning approach combining measures of tissue volume, cortical area 
and cortical thickness into a low-dimensional data representation.  

We find that neuroanatomical variation due to age and sex can be captured by two orthogonal patterns 
of brain development and we use this model to simultaneously predict age with a mean error of 1.5-1.6 
years and sex with an accuracy of 81%.  

We present a framework for modelling anatomical development during childhood using manifold 
embedding. This model accurately predicts age and sex based on image-derived markers of cerebral 
morphology and generalises well to independent populations. 
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Introduction 
Brain development is a dynamic process that follows a well-defined trajectory during childhood and 
adolescence. During this formative period the brain undergoes profound change: increases in brain 
size, most rapid after birth, continue into late adolescence (Dekaban and Sadowsky, 1978); myelination 
processes that begin in utero continue to progress through to the second decade of life (Yakovlev and 
Lecours, 1967), and synaptic pruning leads to significant reductions in synaptic density during early 
adolescence (Huttenlocher, 1979). 

Magnetic resonance imaging (MRI) provides the opportunity to study brain development and track 
developmental processes in vivo. Analyses of structural MRI have found that grey and white matter 
volumes follow different trajectories during adolescence. Cortical grey matter volume is greatest in 
childhood, then gradually decreases during adolescence (Mills et al., 2016; Tamnes et al., 2013), 
whereas white matter volume increases throughout childhood and adolescence (Aubert-Broche et al., 
2013; Lebel and Beaulieu, 2011). In contrast, measures of cortical thickness show progressive thinning 
from mid-childhood through to the early 20s (Raznahan et al., 2011) whereas cortical surface area 
appears to follow a cubic trajectory, peaking in late childhood before declining through adolescence 
(Wierenga et al., 2014). These observations were recently confirmed across four independent 
developmental samples, where Tamnes et al. observed consistent developmental trajectories 
characterised by a decreasing cortical thickness with increasing age and childhood increases in surface 
area followed by subtle decreases during adolescence (Tamnes et al., 2017). Beyond these global 
measures, significant regional differences in development have also been reported (Ducharme et al., 
2016; Gogtay et al., 2004; Vijayakumar et al., 2016). Fjell et al. found that areal expansion in several 
cortical regions was greater than that of the average increase across the whole cortex; these regions 
included the anterior cingulate cortex, frontal cortex and insula (Fjell et al., 2015). Similarly, regional 
measures of cortical volume show a differential effect of age, with changes in some regions (e.g.:  medial 
parietal cortex) most apparent at younger ages, compared to others where the rate of change was 
greatest later in development (e.g.: the anterior temporal lobe) (Tamnes et al., 2013). Sex also likely 
plays a role in cerebral development. Sexual dimorphism has been observed in developmental studies 
of cortical thickness (Sowell et al., 2007) and sex-by-age interactions in area and folding have been 
reported in frontal and temporal cortex in adolescence (Koolschijn and Crone, 2013; Mutlu et al., 
2013). Conversely, other studies suggest that cortical volumes follow a similar trajectory, but reach a 
‘peak’ later in males than in females, the timing of which may coincide with pubertal onset (Giedd et 
al., 1999; Lenroot et al., 2007), although the accurate definition of developmental peaks is difficult and 
may be at risk to potential model or sample biases (Fjell et al., 2010; Mills and Tamnes, 2014). In 
addition, male brains are larger than females throughout development (Paus et al., 2017), and regional, 
volumetric estimates of sex differences may also be diminished once corrected for global differences in 
scale (Mills et al., 2016). 

Taken together, these studies present a consensus view of typical cerebral development. However, 
longitudinal studies of healthy populations have shown that individual development can deviate 
significantly from these canonical trajectories (Mills and Tamnes, 2014), highlighting the need to create 
models of typical growth and development of the brain that can be applied on an individual level. 
Establishing developmental trajectories for typical cerebral development is vital to our understanding of 
maturational brain change and may provide a more accurate understanding of relationships between 
brain maturation and behavioural phenotypes during development.  

Recently, studies have shown that it is possible to use MRI to accurately predict an individual’s age 
(Brown et al., 2012; Dosenbach et al., 2010; Erus et al., 2015; Franke et al., 2010; Khundrakpam et al., 
2015). These methods involve the use of modern machine-learning techniques to extract informative 
morphological features to act as markers of cerebral maturation in a predictive model. Using such 
models, the difference between chronological age and age predicted from imaging has been framed as 
an index of accelerated or delayed development or aging, depending on the direction of the 
discrepancy (Cole et al., 2015; Franke et al., 2012; Löwe et al., 2016). For example, Franke et al. used a 
nonlinear, multivariate kernel regression model to predict age in a cohort of children and adolescents 
based on maps of grey matter volume (Franke et al., 2012). They were able to predict age accurately 
across the full age-range. Moreover, predicted brain age was found to be significantly lower in a small 
clinical population of preterm-born adolescents, suggesting a developmental delay in brain maturation 
(Franke et al., 2012). Recently, Erus et al. reported that a significant increase in predicted brain age 
compared to chronological age in childhood (predicted by a multi-modal MRI assessment) was 
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indicative of precocious cognitive development (and vice versa), suggesting that complex cognitive 
phenotypes could be captured as variation along a single dimension of brain development (Erus et al., 
2015).  

In this study, we aim to build upon these studies by constructing a model of typical brain development 
during childhood and adolescence using manifold learning, exploiting a rich data source of MRI 
acquired in a large-scale developmental cohort (Jernigan et al., 2016). Manifold learning refers to a 
suite of dimension reduction techniques based on the intuition that high-dimensional datasets (such as 
MRI) reside on an embedded low-dimensional, and possibly non-linear, manifold or subspace. As such 
it represents a natural setting for this problem. The aim is to learn a mapping between the high- and 
low-dimensional data representations while preserving certain statistical properties (e.g.: variance) of 
the original data. This form of dimension reduction allows for an easier and more intuitive 
interpretation of important model features while retaining the underlying nonlinear relationships 
present between individual datapoints in the original dataset.  

Here, we introduce the use of neighbourhood-preserving embedding (NPE) as a method to isolate 
structured patterns of covariance within populations, simultaneously modelling typical 
neuroanatomical variation due to age and sex during development as a low-dimensional process. Using 
a multi-metric approach, we combine measures of tissue volume, cortical area and cortical thickness to 
build a model that predicts age and sex with high accuracy and generalises well to other developmental 
populations. We also test the hypothesis that deviation from this model is associated with cognitive 
performance in two large population-based cohorts. 

 

Methods 
Imaging data 
To model typical neurodevelopment, 3 Tesla, T1-weighted MRI data were obtained from the PING 
Study (Jernigan et al., 2016). The PING cohort comprises a large, typically-developing paediatric 
population with participants from several US sites included across a wide age and socioeconomic range. 
Exclusion criteria included: a) neurological disorders; b) history of head trauma; c) preterm birth (less 
than 36 weeks); d) diagnosis of an autism spectrum disorder, bipolar disorder, schizophrenia, or mental 
retardation; e) pregnancy; and f) daily illicit drug use by the mother for more than one trimester 
(Jernigan et al., 2016). Similar proportions of males and females participated across the entire age 
range. 

The PING cohort included 1493 participants aged 3 to 21 years, of whom 1249 also had neuroimaging 
data. Of these, n=773 were available to download from NITRC (https://www.nitrc.org). T1 images 
were acquired using standardized high-resolution 3D RF-spoiled gradient echo sequence with 
prospective motion correction (PROMO) at 9 different sites, with pulse sequences optimized for 
equivalence in contrast properties across scanner manufacturers (GE, Siemens, and Phillips) and 
models (for details, see Jernigan et al., 2016). Written parental informed consent was obtained for all 
PING subjects below the age of 18 and directly from all participants aged 18 years or older. 

In addition to imaging data, participants undertook comprehensive behavioural and cognitive 
assessments (NIH Toolbox Cognition Battery, NTCB; Akshoomoff et al., 2014) and provided a saliva 
sample for genome-wide genotyping. The NTCB comprises seven tests (Flanker, Picture Sequence, List 
Sorting, Picture Vocabulary, Reading, Dimensional Change Card Sorting, Pattern Comparison) that 
measure abilities across six major cognitive domains, including cognitive flexibility, inhibitory control, 
and working memory (Akshoomoff et al., 2014). 

For model validation, a comparative neurodevelopmental population was obtained from the ABIDE 
and ABIDEII datasets (Di Martino et al., 2017, 2014). These datasets represent a consortium effort to 
aggregate MRI datasets from individuals with autism spectrum disorder and age-matched typically-
developing controls. Contributions per site ranged from 13 to 105 typically-developing participants per 
site chosen as matched controls for the ASD population at each site. For both studies, 3 Tesla, T1-
weighted MRI were acquired from 17 sites; images and acquisition details are available at 
http://fcon_1000.projects.nitrc.org/indi/abide. All participating sites received local Institutional 
Review Board approval for acquisition of the contributed data. In addition to imaging data, phenotypic 
information including age, sex, IQ and diagnostic information were recorded and made available (Di 
Martino et al., 2017, 2014) 
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Image processing 
Quality control assessment for the PING data is detailed in Jernigan et al. (2016). In brief, images were 
inspected for excessive distortion, operator compliance, or scanner malfunction. Specifically, T1-
weighted images were examined slice-by-slice for evidence of motion artefacts or ghosting and rated as 
acceptable, or recommended for re-scanning. After additional, on-site, visual quality control 
assessment, we removed a further 5 participants, resulting in a final sample of n=768 (mean age=12.3y; 
range: 3.2–21.0y; 404 male).  Site-specific demographic data are shown in Table S1. 

The ABIDE cohort included imaging data from 1112 participants. After initial visual quality 
assessment, 18 were removed due to motion artefacts and 10 due to poor image contrast. A further 28 
were removed due to prior pre-processing (n=1), or high similarity to other images within ABIDE, or 
ABIDE-II (i.e.: repeat scans). Remaining T1 images from typically-developing participants aged 21y 
and under from 17 sites were included in the final sample of n=424 (346 male; mean age=13.69y).  

In total, n=1044 datasets were available to download from ABIDE-II. Of these, 28 were excluded due 
to visible image artefacts, and a further 13 failed cortical reconstruction. Two images appeared to have 
corresponding repeat scans and were removed. As above, we removed those aged over 21, and those 
with an ASD diagnosis, resulting in a final sample of n=439 (297 male; mean age=11.50y) participants 
from 15 sites. Site-specific demographic data for ABIDE and ABIDE-II are shown in Table S2. 

For all subjects, vertex-wise maps of cortical thickness and cortical area (estimated on the white matter 
surface) were constructed from T1 MRI with FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu). 
Briefly, this process includes removal of non-brain tissue, transformation to Talairach space, intensity 
normalisation, tissue segmentation and tessellation of the grey matter/white matter boundary followed 
by automated topology correction. Cortical geometry was matched across individual surfaces using 
spherical registration (Dale et al., 1999; Fischl et al., 2002, 1999; Fischl and Dale, 2000). Any images 
that failed initial surface reconstruction, or returned surfaces with topological errors, were manually 
fixed using white matter mask editing and re-submitted to Freesurfer until all datasets passed 
inspection.  In total, 13 ABIDE and 16 ABIDE-II images required editing to complete surface 
reconstruction. 

In addition, whole-brain tissue volume maps were estimated using deformation-based morphometry 
(Ashburner et al., 1998; Rueckert et al., 2003). Each participant’s T1 image was intensity normalised, 
corrected for bias field inhomogeneities and aligned to MNI 152 space using diffeomorphic nonlinear 
registration (ANTs; Avants et al., 2008; Tustison et al., 2010). Transformed images were visually 
inspected to ensure alignment to the template images and voxel-wise maps of volume change induced 
by the nonlinear deformation were characterised by the determinant of the Jacobian operator, referred 
to here as the Jacobian map. Each map was log-transformed so that values greater than 0 represent 
local areal expansion in the subject relative to the target and values less than 0 represent areal 
contraction. 

Prior to analysis, both tissue volume maps and cortical thickness and area maps were smoothed with a 
Guassian kernel of 10 FWHM. 

Manifold learning 
Neighbourhood preserving embedding (NPE) is a linear approximation to locally linear embedding 
(LLE; Roweis and Saul, 2000) that seeks to find a linear transformation, 𝑃, to map a high-dimensional 
𝑛×𝐷  dataset 𝑋 = {𝑋!,𝑋!,⋯ ,𝑋!}  into a low-dimensional 𝑛×𝑑   subspace 𝑌 = {𝑌!,𝑌!,⋯ ,𝑌!}  where 
𝑑 ≪ 𝐷 and 𝑌 = 𝑃!𝑋 (He et al., 2005). Like LLE, and in contrast to other linear subspace methods 
(e.g.: PCA), NPE aims to preserve the local neighbourhood structure of the data. That is, communities, 
patterns, or between-group differences that exist among datasets in the high-dimensional setting should 
be preserved within the low-dimensional subspace.  

The process is illustrated in Fig 1A. For a given data point 𝑋!, an adjacency matrix is first constructed, 
placing an edge between 𝑋! and 𝑋! only if 𝑋! belongs to the set of 𝑘 nearest neighbours of 𝑋!. Following 
this, a set of weights, 𝑊, is calculated that approximately reconstruct 𝑋! from its neighbours and a 
linear projection, 𝑃, sought to optimally preserve this neighbourhood structure in the low-dimensional 
space, 𝑌 (He et al., 2005). One of the major benefits the NPE confers over LLE is that the solution 
generalises to new datapoints, allowing unseen data to be projected onto the manifold without re-
calculating the embedding.  
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Local neighbourhoods are typically defined based on the Euclidean distance between samples in the 
high-dimensional image space, however it is possible to introduce other constraints in order to conduct 
NPE in a supervised setting (Fig. 1B; He et al., 2005; Zeng and Luo, 2007). For example, restricting 
local neighbourhoods to only include subjects from the same class to enhance group separation, or 
weighting similarities based on some other subject-specific attributes of interest (e.g.: age). 

 

Figure 1: Neighbourhood preserving embedding and image analysis pipeline. A. For a given datapoint, 𝑋! , nearest 
neighbours are selected and weights assigned that can be used to approximately reconstruct 𝑋! . A linear transformation, 𝑃, is 
then sought to project the data into a low-dimensional space while preserving the neighbourhood structure. B. Possible 
supervision strategies for neighbourhood construction. In an unsupervised setting, neighbours are selected based on image 
similarity alone; alternatively, neighbours can be selected from within- or between-classes in order to maximise/minimise group 
differences in the manifold structure. Similarly, neighbours can be selected based on the weighted combination of image 
similarity and that of another subject-specific attribute (e.g.: age). C. Analysis pipeline for NPE analysis. For each image metric, 
NPE is used for subspace projection, before the embedded data are combined and passed on for statistical modelling. 

 

The analysis pipeline used in this study is shown in Fig. 1C. For each image metric (tissue volume, 
cortical thickness, cortical area), data were first mean-centred and projected to an orthogonal subspace 
via singular value decomposition (SVD), while retaining 95% of variance. NPE was then performed 
using 𝑘 = 10 neighbours, projecting data to 𝑑 = 3 dimensions. In order to maximally preserve age- 
and sex-related variation in the embedded data, we incorporated participant attributes into the 
construction of the adjacency matrices. Nearest neighbours were selected based on the product of two 
adjacency matrices, 𝐴 and 𝑎, where the (𝑖, 𝑗)!! element of each matrix represents the (normalised) 
similarity between images, 𝐴, and age, 𝑎, of subjects 𝑖 and 𝑗, respectively and 𝐴!,! = 0, if 𝑆! ≠ 𝑆!, where 
𝑆 indicates the sex of the participant. In order to reduce potential bias in image similarities due to site 
effects, we also introduced an additional constraint: 𝐴!,! = 0 , if 𝑠! = 𝑠! , where 𝑠  indicates the 
site/scanner of image acquisition, although this had little effect on the final embedding. 

This resulted in three sets of coordinates, 𝑌!, 𝑌!, and 𝑌!, representing the low-dimensional embedding 
of tissue volume, 𝑣, cortical thickness, 𝑡, and area, 𝑎, data. This produced a final low-dimensional 
representation of the combined, multi-metric image data for statistical analysis. 

Example code for performing supervised NPE is made available at 
http://developmentalimagingmcri.github.io. 
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Statistical analysis 
Internal validity of the model was assessed using 10-fold cross-validation. We used 90% of the PING 
participants as a training set, calculating the manifold embedding coordinates for each imaging 
modality and combining them into a single representation. To predict age, we used a Gaussian Process 
Regression (GPR) model with the combined manifold coordinates as features and age as a dependent 
variable (Cole et al., 2015). To predict sex, the combined coordinate set was sent to a linear 
discriminant classifier. Image data from the remaining 10%, the test set, were then projected onto the 
joint manifold and the fitted models used to predict age and sex. Mean absolute error in age estimation 
(MAE) and correlation between true age and predicted age are reported, alongside classification 
accuracies for sex. This process was repeated for each fold, reconstructing the manifold each time, such 
that all PING participants were part of the test set exactly once. 

External validity was assessed by projecting the combined ABIDE and ABIDE-II datasets onto a 
manifold constructed from the full PING dataset and predicting age and sex using models trained on 
the PING data. 

To determine if errors in image-derived age estimation correlated with cognitive performance, we 
performed a further set of analyses using available cognitive data. Of the PING dataset, n=617 had 
complete records for NTCB score, family socioeconomic status (household income and parental 
education), and genetic ancestry (GAF; Jernigan et al., 2016; Libiger and Schork, 2012). NTCB scores 
were corrected for age, sex, socioeconomic status and GAF (Akshoomoff et al., 2014) and linear 
regression used to determine associations between age estimation error (based on cross-validated age 
predictions) and corrected cognitive scores.  

For validation, in the ABIDE and ABIDE-II datasets, full scale IQ (FSIQ) was available for n=802 
typically-developing participants (out of 863 combined across both studies). Using the same 10-fold 
cross-validation procedure outlined above, we derived age predictions for each participant and 
performed linear regression between age estimation error and FSIQ. 

All statistical analysis was performed in Matlab R2105b (Natick, MA). 

 

Results 
Figure 2 shows manifold structure visualised for tissue volume (Fig 2A), cortical area (Fig 2B) and 
cortical thickness (Fig 2C) calculated in the PING cohort. For each metric, an orthogonal rotation was 
applied to each manifold to maximise correlation with age and sex along the first and second axes 
respectively. The images show the (standardised) weight of the embedding vectors (model coefficients) 
used to project new data to the rotated manifold, thus important features are represented by a larger 
weight, and increases in volume, thickness or area in regions with high positive weight will result in a 
positive increase along the respective embedding axis and vice versa. 

For all three modalities, age increases along the first embedding coordinate, indicated by the gradation 
of colour along the first axis of the scatter plots Increasing age (a positive embedding coordinate) is 
associated with a neuroanatomical pattern represented by relatively increased tissue volume in the 
cerebellum, brain stem and thalamus (black arrows; Fig 2A), and ascending white matter tracts 
subjacent to the primary motor cortex (positive image weights), with relative decreases in medial frontal 
and parietal cortices (negative image weights, Fig 2A). In the cortex, age is associated with increasing 
surface area in the insula and anterior cingulate cortex (black arrows, Fig 2B).  

Separation between sexes is shown along the second dimension (squares and circles, Fig 2). This is 
associated with a distributed, discriminant pattern of tissue volume alterations with increases in medial 
posterior cingulate (black arrow; Fig 2A) and primary visual cortex, and brainstem, and relative 
decreases in the basal ganglia, frontal pole, and cerebellum (negative weights, black arrow) associated 
with male sex. Separation along the second dimension was also associated with regions of increased 
surface area in medial temporal and orbitofrontal cortices (black arrow, Fig 2B), and decreased cortical 
thickness in the anterior insula (arrow, Fig 2C).  
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Figure 2: Manifold structure for tissue volume, cortical area and cortical thickness. Manifold structure is 
visualised for tissue volume (A), cortical area (B) and cortical thickness (C). For each image metric, the first two embedding 
coordinates are plotted against each other. Each point represents a subject; the colourbar indicates age and markers denote sex 
(square: male; circle: female). Images show the embedding vectors for the first and second coordinates, i.e.: the model coefficients 
in each voxel required to transform data into the embedded subspace. Maps are Z-scored for comparison (colourbar). 

 

Figure 3A shows the joint manifold structure visualised after concatenating all three image metrics and 
performing a final dimension reduction on the concatenated coordinate data, Y! = (Y!, Y!, Y!) using 
PCA (Aljabar et al., 2011). This demonstrates how two orthogonal patterns of anatomical variation 
associated with age and sex during development can be captured along two dimensions in this 
population.  

Using 10-fold cross-validation, we predicted age in the PING cohort with an MAE of 1.54 years 
(correlation between chronological and predicted age=0.926; Fig 3B). Using a linear discriminant 
classifier, we predicted sex with an accuracy of 80.9% (Fig 3C). We repeated this analysis, accounting 
for differences in global scale by correcting voxel-(vertex-)wise measures of tissue volume, cortical 
surface area and thickness metrics for intracranial volume, total surface area and mean cortical 
thickness, respectively. Manifold structure for each metric is shown in Fig S1 after global correction, 
inspection of the embedding vectors revealed similar patterns to those shown in Fig 2. After correcting 
for global scale, we achieved a cross-validated MAE of 1.79 years, and an accuracy of 71.4% in the 
PING cohort. 
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Figure 3: Age and sex prediction with manifold embedding. A. The first two coordinates of the joint manifold are 
shown, each point represents a subject; the colourbar indicates age and markers denote sex (square: male; circle: female). B. 
Using 10-fold cross-validation, age and sex were predicted using on the first two embedding coordinates. Gaussian Process 
regression was used to predict age, shown plotted against chronological age (colourbar shown as in A).  C. Predicted class 
probabilities are shown for males (blue histogram) and females (yellow).  

 

To determine if model accuracy varied with age, we partitioned our data into 10 approximately equal-
sized bins and calculated MAE and classification accuracy in each (Table 1). Age prediction error 
ranged from a minimum of 1.23y at around 9 years of age, to a maximum of 2.55y in the oldest 
participants (mean age=20.3y). In contrast, classification accuracy ranged from 69% to 87%, with 
discrimination lowest in the youngest participants (mean age = 4.5y) and highest at around 16 years. 
After correction for global scale, the minimum MAE was 1.50 (mean age 11.7y; maximum MAE=2.9, 
mean age 22.3y), and the lowest and highest classification accuracies were 65.3% in the youngest 
group, and 80.3% at 16 years. 

        
 

Table 1: Age and sex prediction accuracy at different ages 
  

 
Bin n mean age MAE male (%) accuracy 

 
 

1 75 4.48 1.69 38 (50.1) 69.33 
 

 
2 79 7.31 1.32 44 (55.7) 79.75 

 
 

3 71 8.96 1.33 38 (53.5) 78.87 
 

 
4 79 9.63 1.23 35 (44.3) 82.28 

 
 

5 77 11.72 1.40 43 (55.8) 81.82 
 

 
6 80 12.89 1.46 52 (65.0) 82.50 

 
 

7 77 14.52 1.29 47 (61.0) 81.82 
 

 
8 76 16.15 1.46 36 (47.4) 86.84 

 
 

9 74 17.63 1.62 34 (46.0) 81.08 
 

 
10 80 20.29 2.55 38 (47.5) 83.75 

 
         

To demonstrate external validity of this approach, we repeated this analysis using a model constructed 
from the full PING dataset to predict age and sex in the ABIDE and ABIDE-II cohorts (Fig 4). We 
predicted age in ABIDE with an MAE of 1.65 years (correlation: 0.825), and sex with an accuracy of 
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80.0% (1.87y and 71.2% after global correction). We achieved similar results in ABIDE-II (MAE=1.59, 
correlation: 0.817; accuracy=80.2; 1.80y and 70.6% after global correction). 

 
Figure 4: Age and sex prediction in typically-
developing ABIDE and ABIDE-II participants. A. 
Scatterplots show ABIDE (blue) and ABIDE-II (red) data 
projected onto the manifold constructed from the full 
PING dataset. Line indicates identity (i.e.: predicted = 
chronological age). B. Correctly and incorrectly classified 
male and female participants in both groups are shown.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Prediction accuracies in the PING cohort were robust to altering the number of neighbours, 𝑘, used in 
manifold construction ( 𝑘 =5: classification accuracy=80.9%, MAE=1.51; 𝑘 =20: accuracy=79.7; 
MAE=1.53), and the number of manifold dimensions, 𝑑 (𝑑=5: accuracy=80.1%, MAE=1.59; 𝑑=10: 
accuracy=81.1%, MAE=1.59). Our model was robust to site variation in the PING cohort: performing 
NPE without the additional site constraint did not affect the prediction accuracies (MAE=1.49y, 
accuracy=80.0%) and there was no significant association between acquisition site and absolute age 
estimation error (ANOVA: F6,761 = 1.95, p=0.07; Fig S2). A main effect of site was evident in both 
ABIDE and ABIDE-II age prediction error (F16,407 = 1.86, p=0.02; F14,424 = 16.56, p<0.001; Fig S2), 
although this was likely exacerbated by an uneven age distributions between sites in this cohort (main 
effect of site on age: ABIDE F16,407=14.36, p<0.001; ABIDE-II F14, 424=68.4, p<0.001). Finally, we 
found that using NPE for subspace projection outperformed PCA (MAE = 1.61y, accuracy=71.2%; 
with global correction, MAE=1.91y, accuracy=54.4%). 

To assess the individual contribution of each set of image metrics, we also performed the analysis using 
only tissue volume, cortical thickness or cortical area data. We found that the joint model combining all 
three metrics outperformed single metric models for both age and sex prediction (tissue volume only: 
MAE=1.69, accuracy=71.9%; area: MAE=2.77, accuracy=72.7%; thickness: MAE=2.07, 
accuracy=71.5%). Fig S2 shows MAE and accuracies for each tissue metric with and without 
correction for global scale. 
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Associations with cognition 
In order to determine if deviations from the average developmental trajectory of the brain coincided 
with cognitive performance we compared predicted age errors (the difference between age estimated 
from MRI using the above model and true, chronological age) with cognitive scores in PING and 
ABIDE. 

In the PING cohort, no significant associations were found between NTCB scores (corrected for age, 
sex, socioeconomic status and genetic ancestry) and predicted age error after correcting for multiple 
comparisons (Table 2).  

 
      Table 2: Associations between predicted age error and cognitive score in PING 

   Linear regression   
  NTCB score R2 F1,615 p 
  Flanker 0.000 0.018 0.892 
  Attention 0.000 0.068 0.794 
  Picture Sequence Memory 0.007 4.292 0.039 
  List Sorting 0.001 0.469 0.494 
  Picture Vocabulary 0.003 2.118 0.146 
  Reading 0.000 0.072 0.789 
  Dimensional Change Card Sorting 0.001 0.315 0.575 
  Pattern Comparison 0.007 4.247 0.040 
  

      
      

We repeated this analysis using predicted age estimates form 10-fold cross-validation in typically-
developing participants from the ABIDE and ABIDE-II cohorts (n=802 with cognitive scores). Using 
full scale IQ as a measure of cognitive performance, we found no strong evidence for an association 
with predicted age error (F1,800=0.649, p=0.421). This remained the case when after correcting FSIQ 
for effects of site and sex (F1,800=0.103, p=0.748). 

 

 

Discussion 
The brain follows a well-defined developmental trajectory during childhood, with tissue-specific 
alterations that reflect complex and ongoing biological processes including myelination and synaptic 
pruning. Accurate identification and modelling of these anatomical processes in vivo with MRI may 
provide clinically useful imaging markers of individual variability in development. In this study, we use 
manifold learning to generate a parsimonious description of typical brain development during 
childhood and adolescence. By combining measures of tissue volume, cortical thickness and cortical 
area, we show how patterns of anatomical variation can be used to accurately predict age and sex 
between the ages of 3 and 21 years. We show that this model is not strongly affected by site-to-site 
variation in image acquisition and yields accurate predictions across different study populations. In 
contrast to previous reports, however, we do not find strong evidence that deviation from a predicted 
trajectory corresponds to adverse functional or behavioural outcome in healthy individuals.  

We demonstrate that biological age can be predicted from MRI in developmental populations with a 
mean error of around 1.6 years. This is in line with previous reports in this population. Using a set of 
231 pre-selected, image-based features from T1, T2 and diffusion-weighted MRI, Brown et al. 
developed a nonlinear model of cerebral maturation to predict age in the PING cohort, achieving an 
MAE of 1.03 years (Brown et al., 2012). Using just T1-weighted image features, Brown et al. reported 
an MAE of 1.71y, comparable to the MAE reported in this study. Similarly, they also found that model 
accuracy decreased slightly with increasing age, suggesting that image-based prediction is most accurate 
during the periods when the rate of anatomical change is greatest (Brown et al., 2012; Dekaban and 
Sadowsky, 1978). Indeed, in both PING and the ABIDE cohorts, we observe a trend towards a model-
based underestimation of age in the older participants. This error can be seen in other MRI-based age 
estimation methods (Han et al., 2014; Khundrakpam et al., 2015) and may indicate the increasing 
difficulty of discrimination between individuals in early adulthood compared to childhood and 
adolescence.  
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Using a similar approach, Franke et al. reported an MAE of 1.1 years in a developmental cohort aged 5 
to 18 (Franke et al., 2012). Using nonlinear mapping functions (i.e.: kernels) in machine learning allows 
for the use of linear methods to discover highly nonlinear boundaries or patterns in the original data by 
creating an implicit feature space (Hofmann et al., 2008). While flexible, a limitation of these methods 
is the inability to identify important features in the space of the original dataset. An alternative 
approach may be to use regularised linear regression across all cortical regions, although this method 
depends upon an initial cortical parcellation (Khundrakpam et al., 2015). By calculating a linear 
mapping between the original, high-dimensional data and the low-dimensional embedded manifold, 
NPE produces a set of basis vectors that – through linear combination – can approximately reconstruct 
the original dataset, capture nonlinear relationships and provide interpretable voxel-(vertex-)wise maps 
of feature importance (He et al., 2005).  

We show examples of these vectors in Figure 2 for each image metric. The images represent distributed 
patterns of neuroanatomical variation that highlight regional importance within the model. As reported 
previously, increasing age is reflected a lower-to-higher-order trajectory characterised by reduced tissue 
volume in frontal and parietal regions, coupled with increased white matter tissue and brain stem 
volume (Aubert-Broche et al., 2013; Sowell et al., 2004; Xie et al., 2012). Increasing age was also 
associated with increased cortical surface area most prominent in the insula and cingulate cortex. This 
agrees with previous reports of high rates of cortical surface area expansion during childhood in regions 
associated with higher-order intellectual function (Amlien et al., 2016; Fjell et al., 2015).  

Sexual dimorphism during development is a contentious issue. Developmental trajectories for cortical 
grey and white matter appear similar between sexes (Aubert-Broche et al., 2013; Mills et al., 2016) with 
perceived sex differences often assigned to variation in physical size (Dekaban and Sadowsky, 1978; 
Giedd et al., 2012). In a longitudinal study of 387 subjects aged 3 to 27, Lenroot et al. reported 
increased frontal grey matter volume in females and increased occipital white matter in males, after 
accounting for brain size (Lenroot et al., 2007). Conversely, Sowell et al. reported thicker parietal and 
posterior temporal cortex in females, independent of age (Sowell et al., 2007). These discrepant findings 
may reflect the different timing of puberty or the differential effects of testosterone on brain 
development males and females (Bramen et al., 2012).  

Here, we find that male sex is predicted by a pattern of neuroanatomical variation including increased 
brain tissue volume in the posterior cingulate and occipital lobe, volumetric decreases in the basal 
ganglia and insula, alongside a pattern of reduced cortical surface area in medial frontal regions and 
decreased cortical thickness in the insula. We highlight that the manifold embedding coordinates 
defined by NPE are orthogonal by construction; as such, the patterns shown in Figure 2 reflect 
anatomical variation independently associated with age and sex during development. After correcting 
for global differences in intracranial volume, total surface area and mean cortical thickness, we were 
still able to achieve relatively accurate predictions of age and sex across development, although both 
were maximised with the inclusion of global scaling information. Importantly, our study confirms 
recent reports that multivariate analyses that consider whole-brain patterns of variation in brain 
morphometry can reliably and accurately discriminate sex, even if large within-class, or between 
region, variability exists (Chekroud et al., 2016; Rosenblatt, 2016). We also show that this dimorphic 
pattern is evident even at very young ages, achieving a classification accuracy of around 69% (65% 
after global correction) in the youngest participants (aged 3-5y). It is important to consider that this 
finding does not imply that all females have e.g.: a smaller posterior cingulate than all males, or even 
that the cingulate is on average smaller in females across populations (see Fig S3 for an example of this). 
We suggest that this pattern of variation is one of a number (including the pattern of age-related 
variation described above) that exist concurrently within a population. An individual’s anatomical 
phenotype can then be viewed as arising from the weighted expression of these patterns, with the 
weight dependent on e.g.: age, sex, environmental or genetic factors. As such, tissue volume or cortical 
thickness, measured at a single point reflects the combination of multiple, distributed patterns of 
variation and, as such, may vary greatly over a population and not necessarily in line with a given 
covariate of interest (e.g.: sex).  

Surprisingly, and in contrast to previous reports, we do not find strong evidence that a divergent image-
based age prediction is a good marker of cognitive function. Using a multi-modal approach, that also 
included measures derived from diffusion MRI, the discrepancy between chronological age and an 
image-based estimate of ‘brain age’ has been proposed as a possible biomarker of cognitive 
development (Erus et al., 2015). This follows on from studies in older populations, where a more 
advanced ‘brain age’ was used as a marker of aging and found to correlate with brain injury (Cole et 
al., 2015) and dementia (Gaser et al., 2013). In this study, we tested this hypothesis in two large, 
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independent, developmental cohorts. Using cross-validated age predictions, we did not find any 
statistically significant associations between measures of cognitive function (NCTB scores in PING; 
FSIQ in ABIDE) and age prediction error in typically-developing individuals. In the PING cohort, 
Akshoomoff et al., found that age, sex, socioeconomic status and genetic ancestry explained between 
57% and 73% of variance in each of the NCTB scores (Akshoomoff et al., 2014). After correcting for 
these factors, we found that brain age estimation error explained at most 0.7% of the remaining 
variance (in memory and pattern comparison tests). In the ABIDE cohort, we found no associations 
between FSIQ and age estimation error. This suggests that model error in age prediction does not 
reflect the impact of an underlying latent variable associated with cognition. This discrepancy is likely 
due to differences in model construction between methods. Here, we use NPE to extract a single 
dimension of anatomical variation that aims to maximally preserve specific age-related structure in the 
data. As such, the reported pattern may lie orthogonal to neuroanatomical correlates of (non age-
related) cognitive performance and as mentioned above, such patterns, while coexistent within the 
population, may not vary as a function of each other. Other methods that predict age based on the 
appearance of the brain as a whole, might better reflect the conflation of cognitive and age-related 
‘components’ during development, such that model error captures variation in anatomy aligned with 
cognition (Erus et al., 2015). 

Our findings suggest that the anatomical maturation of the brain during childhood and adolescence 
can be accurately modeled within a low-dimensional subspace. That is, variation along two axes is 
sufficient to capture individual variations due to age and sex within a population with relatively high 
accuracy. In contrast, functional or cognitive development is not well represented by variation along 
these axes. This suggests that additional, orthogonal dimensions of development are required to more 
accurately model individual trajectories. Alternatively, this approach may benefit from incorporating 
information from additional imaging modalities (e.g.: functional MRI) in order to more fully capture 
phenotypic variation associated with cognitive development (Erus et al., 2015; Liem et al., 2017). 
Subspace projection methods, such as NPE, bring focus to reliable and robust patterns that can predict 
phenotypic characteristics based on the brain’s shape and appearance. In a clinical setting, this 
framework could be extended to explore anatomical patterns underlying developmental or 
neuropsychiatric disorder, or stratifying clinical populations by locating individuals within clusters 
based on the expression of different neuroanatomical imaging components. Indeed, combining 
functional, diffusion and possibly genetic information into a larger manifold framework and considering 
similarities over multiple modalities to model local neighbourhoods and communities within large 
datasets could provide a more complete model of individual variation during this time period. In 
addition, the projection of longitudinal data onto the manifold could enable individuals to be tracked 
over time, an important consideration for developmental studies (Mills and Tamnes, 2014).  

In summary, we present a framework for modelling anatomical development during childhood. This 
model accurately predicts age and sex based on image-derived markers of cerebral morphology and 
generalises well to independent populations.  
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Supplemental Materials 
      
 

Table S1: PING demographics by site 
  

 
Site n age (range) Male 

 
 

a 112 15.14 (4.08-21.0) 57 (50.8) 
 

 
b 105 14.69 (3.75-21.0) 59 (56.2) 

 
 

c 118 12.29 (3.17-21.0 58 (49.2) 
 

 
d 124 12.03 (3.17-20.92) 68 (54.8) 

 
 

e 64 13.42 (4.17-20.92) 34 (53.1) 
 

 
f 129 8.79 (3.25-20.25) 65 (50.4) 

 
 

g 116 10.87 (3.42-21.00) 63 (54.3) 
 

      
 

Total 768 12.28 (3.17-21.0) 404 (52.6) 
 

       

	
   	
   	
   	
   	
   	
  
	
  

Table S2: ABIDE and ABIDE-II demographics by site 
	
  

	
  
  ABIDE     

	
  
	
  

Site n age (range) male (%) 
	
  

	
  
a 19 15.30 (9.44-20.65) 16 (84.2) 

	
  
	
  

b 15 16.53 (10.0-21.0) 13 (86.7) 
	
  

	
  
c 15 10.06 (8.20-11.99) 15 (100) 

	
  
	
  

d 22 14.22 (8.67-16.88) 16 (72.8) 
	
  

	
  
e 21 16.28 (12.04-20.33) 21 (100) 

	
  
	
  

f 72 14.48 (8.2-19.2) 54 (75.0) 
	
  

	
  
g 22 15.31 (8.77-19.76) 22 (100) 

	
  
	
  

h 28 12.68 (7.66-17.83) 20 (71.4) 
	
  

	
  
i 4 20.75 (20.0-21.0) 3 (75.0) 

	
  
	
  

j 23 15.08 (12.20-21.0) 18 (78.2) 
	
  

	
  
k 24 10.01 (8.07-12.77) 20 (83.3) 

	
  
	
  

l 82 13.08 (6.47-20.56) 63 (76.8) 
	
  

	
  
m 20 9.95 (7.75-12.43) 16 (80.0) 

	
  
	
  

n 43 12.96 (9.21-17.79) 37 (86.0) 
	
  

	
  
o 7 12.57 (7.00-21.00) 7 (100) 

	
  
	
  

p 6 19.52 (17.0-20.90) 4 (66.7) 
	
  

	
  
q 1 20 (-) 1 (-) 

	
  
	
   	
   	
   	
   	
   	
  
	
  

Total 424 13.69 (6.47-21.0) 346 (81.6) 
	
  

	
       	
  
	
  

  ABIDE-II     
	
  

	
  
Site n age (range) male (%) 

	
  
	
  

a 10 19.6 (18.0-21.0) 7 (80.0) 
	
  

	
  
b 52 10.45 (8.06-13.80) 26 (50.0) 

	
  
	
  

c 25 13.25 (8.10-17.70) 23 (92.0) 
	
  

	
  
d 56 10.38 (8.0-14.0) 27 (48.2) 

	
  
	
  

e 7 19.43 (18.0-21.0) 7 (100) 
	
  

	
  
f 6 17.89 (13.83-20.17) 6 (100) 

	
  
	
  

g 21 15.61 (10.25-20.0) 21 (100) 
	
  

	
  
h 28 9.06 (5.89-12.9) 27 (96.4) 

	
  
	
  

i 154 10.35 (8.02-12.90) 99 (64.2) 
	
  

	
  
j 5 14.79 (11.50-18.58) 5 (100) 

	
  
	
  

k 8 20.25 (19.0-21.0) 6 (75.0) 
	
  

	
  
l 12 14.30 (8.17-20.51) 3 (25.0) 

	
  
	
  

m 15 9.81 (7.76-14.09) 10 (66.7) 
	
  

	
  
n 25 8.15 (6.33-10.12) 20 (80.0) 

	
  
	
  

o 14 14.80 (12.25-17.17) 10 (71.4) 
	
  

	
       	
  
	
  

Total 438 11.5 (5.89-21.00) 297 (67.7) 
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Figure S1: Manifold embedding after correction for global scale. NPE was repeated in the PING dataset after 
removing variation due to ICV, total surface area and mean cortical thickness from the imaging data. The first two embedding 
coordinates for each metric are shown in A. Age-related variation remains apparent in both volume and cortical area  (left and 
middle), whereas variation due to sex but not age is preserved in cortical thickness (right). Mean absolute errors for age prediction 
(B) and classification accuracies for sex prediction (C) are shown below, for the combined embedding and for each metric 
individually. In general, the combination of all metrics resulted in an improved performance over single metrics.  

 

 
Figure S2: Site variation in age prediction 
error for PING, ABIDE and ABIDE-II. 
Predicted age error is shown within individual sites 
for each cohort.  
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Figure S3: Regional sex differences show a small effect size. Two regions are highlighted, based on the coefficient 
image in Fig 2A, where larger volume is associated with female sex (left: negative model coefficients, caudate mask inset) and 
male sex (right: positive model coefficients, posterior cingulate mask inset). Histograms show the volume distribution (measured as 
the mean log Jacobian within each mask) across sexes. In a univariate setting, the average difference in volume in these regions is 
small. This highlights how appropriate multivariate subspace projection methods are able to robustly isolate structured variation 
within populations, even if the effect size within individual regions is small. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2017. ; https://doi.org/10.1101/126441doi: bioRxiv preprint 

https://doi.org/10.1101/126441
http://creativecommons.org/licenses/by-nc-nd/4.0/

