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Abstract

One of the triumphs of evolutionary biology is the discovery of robust mechanisms that promote

the evolution of cooperative behaviors even when those behaviors reduce the fertility or survival of

cooperators. Though these mechanisms, kin selection, reciprocity, and nonlinear payoffs to coop-

eration, have been extensively studied separately, investigating their joint effect on the evolution of

cooperation has beenmore difficult. Moreover, how thesemechanisms shape variation in cooperation

is not well known. Such variation is crucial for understanding the evolution of behavioral syndromes

and animal personality. Here, I use the tools of kin selection theory and evolutionary game theory

to build a framework that integrates these mechanisms for pairwise social interactions. Using relat-

edness as a measure of the strength of kin selection, responsiveness as a measure of reciprocity, and

synergy as a measure of payoff nonlinearity, I show how different combinations of these three param-

eters produce directional selection for or against cooperation or variation in levels of cooperation via

balancing or diversifying selection. Moreover, each of these outcomes maps uniquely to one of four

classic games from evolutionary game theory, which means that modulating relatedness, responsive-

ness, and synergy effectively transforms the payoffmatrix from one the evolutionary game to another.

Assuming that cooperation exacts a fertility cost on cooperators and provides a fertility benefit to so-

cial partners, a prisoner’s dilemma game and directional selection against cooperation occur when

relatedness and responsiveness are low and synergy is not too positive. Enough positive synergy in

these conditions generates a stag-hunt game and diversifying selection. High levels of relatedness or

responsiveness turn cooperation from a fitness cost into a fitness benefit, which produces amutualism

game and directional selection for cooperation when synergy is not too negative. Sufficiently negative

synergy in this case creates a hawk-dove game and balancing selection for cooperation. I extend the

results with relatedness and synergy to larger social groups and show that how group size changes the

effect of relatedness and synergy on selection for cooperation depends on how the per capita benefit

of cooperation changes with group size. Together, these results provide a general framework with

which to generate comparative predictions that can be tested using quantitative genetic techniques

and experimental techniques that manipulate investment in cooperation. These predictions will help

us understand both interspecific variation in cooperation as well as within-population and within-

group variation in cooperation related to behavioral syndromes.
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1. Introduction

Evolutionary biologists have long been fascinated by the ability of natural selection to craft complex

and often highly cooperative social behaviors. These behaviors are often costly to perform and include,

among many other examples, the production of fruiting bodies by the slime mold Dictyostelium dis-

coideumwhose stalks sacrifice themselves for the survival of the spores (Strassmann et al., 2000), the for-

mation of termite mounds with millions of individual (Korb, 2010), and the formation of human towers

up to nine levels high as cultural symbols in Catalonia (Vaczi, 2016). While high levels of cooperation

have often been described as an evolutionary “difficulty” (Darwin, 1859) or “puzzle” (Colman, 2006)

when such cooperation exacts fitness costs, multiple biological avenues exist that lead to the evolution of

significant levels of cooperation. These avenues include kin selection, reciprocity, and nonlinear payoffs

for investing in cooperation.

Hamilton pioneered the exploration of kin selection (Hamilton, 1964, 1970) and showed how coop-

erative behaviors can experience positive selection if the individuals who receive the benefits share genes

with the individuals who generate the benefits. In the years since Hamilton’s original insight, kin se-

lection has developed into a robust theoretical approach (Frank, 1998) grounded in population genetics

(Rousset and Billiard, 2000; Rousset, 2004; Van Cleve, 2015) and applicable to species with complex life

histories (Taylor, 1992; Taylor and Irwin, 2000; Lehmann and Rousset, 2010, 2014; Van Cleve, 2015) and

population structures (Rousset and Billiard, 2000; Lehmann et al., 2007; Taylor et al., 2007; Ohtsuki and

Nowak, 2008; Tarnita et al., 2009; Taylor, 2016). Another important avenue is the repeated and recipro-

cal exchange of help between individuals, which is often called reciprocity (Trivers, 1971; Axelrod and

Hamilton, 1981) or responsiveness (Akçay et al., 2009; Akçay andVanCleve, 2012; André, 2015). Though

relatedness and responsiveness operate on much different timescales (evolutionary and behavioral, re-

spectively), they both generate positive selection for cooperation by correlating among individuals the

benefits and costs of cooperation (Queller, 1985). Finally, the payoffs of cooperation can shift in a non-

linear way due to changes in the underlying ecology of the social interaction. For example, a troupe of

chimpanzees might shift from foraging for fruit to hunting red colobus monkeys. This shift involves a

nonlinear increase in the benefit of cooperating because hunting as a troupe can generate more food per

chimpanzee than hunting alone. The additional nonlinear benefit in this example is sometimes called

(positive) synergy (Queller, 1985; Frank, 1995; Hauert et al., 2006; Van Cleve and Akçay, 2014), and if its

large enough, it can create selection for cooperation even when cooperation is individually costly.

Typically, each of the above avenues has been studied independently with a focus on how they affect
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evolved levels of cooperation. However, these avenues interact in important ways to change not only the

evolved level of cooperation but also whether variation in levels of cooperation evolves and whether that

variation is within or among groups. Within and among group variation in cooperation can be character-

ized as different behavioral syndromes or personalities (Sih et al., 2004; Wolf andWeissing, 2012; Jandt et

al., 2014). In this paper, I will illustrate how the intersection of relatedness, responsiveness, and synergy

can be studied systematically using the tools of kin selection and evolutionary game theory. Specifically,

I will show how the scenarios of directional selection for or against cooperation and selection for vari-

ation in cooperation within or among groups correspond to the fitness payoffs of different social games

from evolutionary game theory. Changing the fitness payoffs and shifting from one game to another oc-

curs by changing the level of relatedness, responsiveness, or synergy. I show that the strongest effect of

relatedness and responsiveness is turning directional selection against cooperation to direction selection

for cooperation. Synergy is most important for determining whether variation in cooperation evolves

and whether it is among or within groups: positive synergy is generally required for variation among

groups and negative synergy for variation within groups. Finally, I show increasing the size of the social

group can have a strong effect on creating selection for or against variation in cooperation depending on

whether the per capita benefit of cooperation shrinks with group size or not.

2. Types of natural selection and evolutionary games

Regardless of how natural selection on investment in cooperation is generated, it can be classified as

either directional, diversifying, or balancing, and each of these kinds of selection corresponds to a two-

player game from evolutionary game theory (Cressman, 2003). Suppose that two individuals engage in

a social interaction (which is known as a “game” in game theory) where either individual can invest in

cooperation (C) or not invest in cooperation (D). The payoffs for each combination of actions is given by

the payoffmatrix in Table 1. Cooperation exacts an individual costC from the cooperating individual and

produces an additive benefit B available to a social partner. Mutual cooperation produces an additional

payoff D, which is the payoff synergy. For the purposes of studying a cooperative or helping behavior,

I assume that the benefit of cooperation is positive, B > 0, and that the benefit is larger than the cost,

B > C.

It is important to specify the units of the payoffs in Table 1 since these units determine what parts of

the life cycle are and are not packed into these payoffs. The units are always direct or proximate measures

of a component of fitness, namely survival or fertility. The life cycle of an organism includes mating

and reproduction and can include dispersal, density-dependent regulation, and social interactions at
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any stage between newborn and adult stages. For example, if the payoff unit is a proxy for how the

social interaction affects the survival of juveniles to the adult stage, then predicting what kind of selection

there is on cooperation will also depend on information about survival rates of adults, fertility, and any

potential population structure generated by limited dispersal. In order to start with the simplest possible

biological example, I assume that the units of payoff are proxies for fertility whereas survival is constant

and unaffected by the social interaction. Additionally, individuals are asexual, live in a single population

of large size, reproduce once, and are immediately replaced by their offspring (semelparity). Given this

simple scenario, the payoffs in Table 1 can fully characterize the type of selection on cooperation.

Positive directional selection corresponds to amutualism game (Clements and Stephens, 1995) where

individuals maximize their payoff by cooperating no matter what their partners do. This occurs when

there is an individual benefit to cooperation (i.e., the cost is negative, C < 0) and synergy is positive,

zero, or not too negative (D > C). Positive directional selection for cooperation leads to all individuals

cooperating and no variation in the level of cooperation. For example, predator avoidance behaviors can

be mutualistic since avoiding a predator has an individual benefit and can provide useful information to

social partners about the presence of a predator.

Negative directional selection leads to no individuals cooperating and produces no variation in the

level of cooperation. The prisoner’s dilemma game (Rapoport and Chammah, 1965) generates negative

directional selection for cooperation and occurs when cooperation has an individual cost (C > 0) and

synergy is negative, zero, or not too positive (D < C). An example of a prisoner’s dilemma is the rate

of consumption of a finite resource such as ripe fruit from a tree located by a group of chimpanzees

(Chapman et al., 1995). Eating the fruit faster yields a short-term benefit for each individual but results

in the fruit running out more quickly when all individuals eat quickly; eating the fruit more slowly has

a short term cost for each individual but benefits the group by maintaining the resource further into the

future.

Diversifying selection is produced by a stag-hunt (or coordination) game, which occurs when an

individual obtains a higher payoff by choosing the same action, cooperate or do not cooperate, as its

partner (Skyrms, 2001). This occurs when cooperation is individually costly (C > 0) and synergy is

sufficiently positive (D > C). The stag-hunt game has two solutions (Nash equilibria in game theory

terminology), both individuals cooperate and neither individual cooperates, and which outcome arises

depends on the organism’s decision making process. Simple decision making processes that attempt to

increase an organism’s payoff lead all individuals to cooperate in some populations and no individuals to

cooperate in other populations, and this generates among group variation in cooperation. Chimpanzees
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hunting red colobus monkeys could correspond to a stag-hunt game since larger groups, which have

more investment in cooperation, are more successful than smaller groups (Boesch and Boesch, 1989)

that might more easily break up in favor of individuals hunting or foraging alone.

Finally, balancing selection occurs when individuals obtain higher payoffs when choosing the op-

posite action (cooperate or do not cooperate) of their partner. These payoffs yield a snowdrfit (Sugden,

2005) or hawk-dove game (Maynard Smith and Price, 1973; Maynard Smith and Parker, 1976) where

cooperation is individually beneficial (C < 0) but obtaining payoff via mutual cooperation is inefficient

compared to not cooperating and obtaining payoff for a cooperating partner (B−C+D < B). The latter

condition implies negative synergy (D < C < 0). In the simplest scenario where individuals are randomly

paired with social partners in a very large population, natural selection leads to all individuals cooper-

ating randomly with probability ̂z = C/D (called a mixed strategy Nash equilibrium in game theory). If

individuals do not pick strategies randomly, a polymorphism between cooperating individuals and non-

cooperating individuals can evolve where the frequency of cooperators is the mixed strategy probability

of cooperation ̂z (Bergstrom and Godfrey-Smith, 1998). In either case, mixed strategy or polymorphism,

each population has a mixture of cooperation and noncooperation and variation in cooperation is within

groups. A hawk-dove game might describe how chimpanzees forage for fruit. Foraging is individually

beneficial when no one else is doing it but locating fruit might also reveal that location to social part-

ners who then receive the benefit without paying the cost of foraging (analogous to a producer-scrounger

game; Barnard and Sibly, 1981; Vickery et al., 1991).

In order to see how the payoffs of the game determine the type of selection, suppose that a focal indi-

vidual who cooperates with probability z• interacts with an individual who cooperates with probability

z∘. Using Table 1, the payoff π obtained by the focal individual is given by

π(z•, z∘) = z•z∘(B − C + D) − z•(1 − z∘)C + (1 − z•)z∘B . (1)

Further, assume that there are two alleles for cooperation in the population: a resident (wild type) allele

that produces cooperation with probability z and a mutant allele that produces cooperation with proba-

bility z + δ. If δ is small (terms smaller than δ can be ignored), then the change in the frequency of the

mutant allele, Δp, is proportional to (denoted by the symbol “∝”) the change in the payoff the focal indi-

vidual gets by increasing its probability of cooperating (Taylor and Jonker, 1978; Hofbauer and Sigmund,

1998),

Δp ∝
𝜕π
𝜕z•

= −C + Dz , (2)
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evaluated at the resident probability of cooperating, z. Equation (2) shows how the payoffs from the game

and the probability of cooperating determine the kind of selection on themutant: directional selection for

increasing the frequency of the mutant (Δp > 0) occurs when −C > 0 and D > C, directional selection

for decreasing the frequency of themutant (Δp < 0) occurs whenC > 0 andD < C, diversifying selection

(Δp > 0 for z = 1 and Δp < 0 for z = 0) occurs when D > C > 0, and balancing selection (Δp > 0 for

z < ̂z = C/D and Δp < 0 for z > ̂z) occurs when D < C < 0.

Table 1 summarizes how the different types of selection correspond to the four games and what level

of cooperation and what kind variation in cooperation level each game supports. So far, I have shown

how one can shift between these games by changing how synergy compares to the cost of cooperation.

However, shifting between games also can occur by changes in relatedness and responsiveness. In order

to understand how these three mechanisms can interact together to shift the fitness payoffs from one

game to another, I use mathematical tools from kin selection and evolutionary game theory.

3. The direct fitness method and kin selection

The direct fitness method of kin selection theory (Frank, 1998; Rousset and Billiard, 2000) uses pop-

ulation genetics to derive an expression for the expected change in the frequency of a mutant allele, Δp,

when the population is spatially structured and local dispersal builds up genetic relatedness between

neighboring individuals. The direct fitness method can account for arbitrarily complex populations, but

to keep things simple I assume that individuals live in groups of equal size that are connected by some

rate of dispersal. Moreover, individuals engage in a pairwise social interaction or game whose payoffs in

units of fertility are given in Table 1. Assuming that the change in investment is small, one can show that

(Hamilton, 1964, 1970; Taylor and Frank, 1996; Frank, 1998; Rousset and Billiard, 2000; Rousset, 2004)

Δp ∝
𝜕w
𝜕z•

+ r
𝜕w
𝜕z∘

= −c + rb , (3)

wherew is the expected fitness of a focal individual, r is the genetic relatedness, z• is the strategy of a focal

individual, z∘ is the mean strategy of other individuals in focal group, and the derivatives are evaluated at

the resident strategy z. Equation (3) is Hamilton’s rule (Hamilton, 1964, 1970) and shows how the direct

effect of selection, the fitness cost −c, and the indirect effect of selection, the fitness benefit b weighted

by relatedness r, combine to determine the direction of selection on a social trait. The fitness cost is the

change in expected fitness due to the effect of a change in the focal individual’s behavior, −c = 𝜕w
𝜕z•

, and

the fitness benefit is the change in expected fitness due to a change in the strategy of other individuals in

the social group, b = 𝜕w
𝜕z∘

. The expected fitness w measures the expected number of surviving offspring
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of a focal individual over a single generation and thus must account for how demographic factors such

as dispersal and density dependent regulation affect fitness.

While Hamilton’s rule in equation (3) is useful conceptually for partitioning the effects of selection

on a social trait based on fitness and relatedness, it is less useful for showing how relatedness can shift a

social interaction between the different game types in Table 2 as function of the payoffs in Table 1. This

is because the payoffs are packaged within the fitness cost and benefit, −c and b, along with other demo-

graphic factors. A more useful expression of Δp unpacks the payoffs from within −c and b and gathers

the effects of demographic forces and relatedness into a single term. Using the assumptions necessary for

deriving equation (3), this expression is

Δp ∝
𝜕π
𝜕z•

+ κ
𝜕π
𝜕z∘

, (4)

where π is the expected payoff the focal individual receives, the derivatives are evaluated at the resi-

dent strategy z, and κ is the “scaled-relatedness” coefficient (Lehmann and Rousset, 2010; Van Cleve and

Lehmann, 2013; Van Cleve, 2015; Peña et al., 2015). The scaled relatedness coefficient κ determines the

strength of selection on a change in the cooperative behavior of social partners as a function of how it

changes the payoff (i.e., fertility) of the focal individual. If individuals live in a group-structured pop-

ulation, then changes in fertility translate into changes in fitness only after individuals have a chance

to disperse and after local competition for resources or breeding patches. This local competition can

counteract some (or all) of the positive effect of relatedness on selection for increasing the fertility of

a social partner. Thus, low values of scaled relatedness represent either populations with low levels of

genetic relatedness or high levels of local competition. High values of scaled relatedness correspond to

high levels of genetic relatedness and low levels of local competition. Although determining the value of

scaled relatedness that corresponds to a specific demography and genetic relatedness requires calculation

(Lehmann and Rousset, 2010; Van Cleve, 2015), one can use scaled relatedness simply as an index of the

overall effect of demography and genetic relatedness on selection for social effects on fertility.

4. The effects of relatedness and synergy on evolutionary games

Using the payoff from equation (1) in Hamilton’s rule (equation 4), the change in the frequency of the

mutant becomes

Δp ∝ −C + Dz + κ(B + Dz)

= Bκ − C + D(1 + κ)z .
(5)
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Equation (5) is in effect Hamilton’s rule written in a form that exposes the fertility payoffs of the game

and uses scaled relatedness to capture the effect of genetic relatedness and demography on selection for

cooperation by social partners. Comparing equation (5) with the result without relatedness and popu-

lation structure (equation 2) shows how scaled relatedness κ can relax the conditions for the evolution

of investment in cooperation. Specifically, equation (5) shows that the benefit B is important only when

there is non zero scaled relatedness and that scaled relatedness magnifies the effect of payoff synergy D.

One useful way to conceptualize how scaled relatedness changes the conditions under which there is

directional, diversifying, or balancing selection on cooperation is to show how scaled relatedness changes

the structure of the payoff matrix in Table 1. In deriving the expression for Δp in equation (2) without

scaled relatedness, I used the payoffs from Table 1 to build the payoff function π in equation (1) and then

calculated 𝜕π
𝜕z•

. Working backwards from the expression for Δp with scaled relatedness in equation (5),

the payoff matrix that would produce this expression for Δp by simply calculating 𝜕π
𝜕z•

is given in Table

3 (Hamilton, 1971; Grafen, 1979; Hines and Maynard Smith, 1979; Day and Taylor, 1998; Peña et al.,

2015). In effect, scaled relatedness shifts the type of evolutionary game by modifying the entries of the

payoff matrix. For example, the benefit B becomes B − Cκ since a focal individual who obtains benefit

from a cooperative partner is related to, and hence shares some genetic fate with, their partner where Cκ

of the partner’s cost translates to the focal individual. Likewise, an individual who cooperates effectively

obtains an additional fitness payoff of Bκ since individuals it helps are related to it by fraction κ. Finally,

the payoff of mutual cooperation is increased by 1 + κ, which reflects the additional evolutionary success

of cooperating with relatives who also cooperate.

In order to visualize how the combination of payoff synergy and relatedness shifts evolutionary game

types, I use Table 3 and equation (5) in the same way that I used Table 1 and equation (2) in section 2 to

determine what kind of game a particular combination of synergy and relatedness produces. The results

of this are shown in the left hand panel (ρ = 0.0) of Figure 1 where the fertility cost of cooperation is

assumed to be positive (C > 0). Synergy is zero (D = 0) along the horizontal axis, and the classic re-

sult from Hamilton’s rule emerges where directional selection for cooperation (mutualism game) occurs

when Bκ > C and directional selection against cooperation (prisoner’s dilemma) occurs when Bκ < C.

More generally, relatedness greater than C/D generates directional selection for cooperation so long as

synergy is non-negative. Relatedness κ is zero along the vertical axis, and sufficient synergy, D > C,

yields diversifying selection and a stag hunt game. The threshold level of synergy needed to produce

diversifying selection decreases with increasing relatedness until κ > C/B, at which point investment in

cooperation is effectively converted from an inclusive fitness cost to an inclusive fitness benefit and selec-
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tion on investment in cooperation becomes directional and positive. Unlikemodifying either relatedness

or synergy alone, a combination of negative synergy and relatedness can produce balancing selection (a

hawk-dove game). In effect, sufficient positive relatedness (κ > C/B) converts the prisoner’s dilemma

into amutualism game, and negative synergy converts themutualism game into a hawk-dove game. From

the perspective of variation in investment (see Table 2), the plot reveals that among group variation in

cooperation occurs only when synergy is sufficiently positive and relatedness is not too strong. Within

group variation in cooperation occurs only when relatedness is sufficiently strong (κ > C/B) and synergy

is negative.

5. The effects of responsiveness and synergy on evolutionary games

The payoffs in Tables 1 and 3 (that result in equations 2 and 5) reflect a social interaction where in-

dividuals stick to one strategy, cooperate or not. Individuals do not flexibly or plastically respond to the

past behavior of their social partners when choosing a strategy; in other words, there is no responsive-

ness or reciprocity and strategies are fixed by individual genotype. In game theory, behavioral plasticity

is studied in the context of repeated or iterated games where individuals choose strategies that determine

how way their actions (cooperate or not) depend on the past actions of their social partners. While there

is a rich literature that studies which of these repeated strategies yields the best long-term payoff (e.g.,

Osborne and Rubinstein, 1994; Binmore, 2007; Axelrod and Hamilton, 1981; Boyd and Lorberbaum,

1987; Hilbe et al., 2013; Stewart and Plotkin, 2013), many of those approaches are difficult to integrate

with the direct fitness approach used above to incorporate the effect of relatedness. Thus, I will use here a

relatively simple model of how individuals can respond to the most recent action of their partner. Anal-

ogous to previous work (McNamara et al., 1999; Killingback and Doebeli, 2002; André and Day, 2007;

Akçay et al., 2009; Akçay and Van Cleve, 2012; Van Cleve and Akçay, 2014), this model uses a single re-

sponsiveness parameter, ρ, that measures how likely an individual will respond to its partner by copying

their the previous action.

Suppose that individuals have an “intrinsic” action, cooperate or not, that they choose with prob-

ability 1 − ρ and that they copy the last action of their partner with probability ρ (see Supplementary

Material A). Individuals choose actions simultaneously and interact repeatedly for long enough so that

the mean payoff from the interaction does not depend on the initial rounds (or time steps). Each round,

one individual is chosen randomly to update its action and the other individual repeats its action from

the previous round. This process of repeated game play can be represented by a transition matrix that

specifies the probability that the two individuals use specific actions given their actions in the last round
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(see equation A.1). In the long run, there is a stationary probability that the two individuals, given their

intrinsic strategies, will choose any pair of actions. For each of the four possible pairs of intrinsic strate-

gies that two individuals can choose, the payoff of the interaction can be calculated using the stationary

probabilities and the payoffs from Table 1. This leads to the payoff matrix in Table 4 that incorporates

responsiveness (see Supplementary Material A).

Let z nowmeasure the probability that an individual’s intrinsic action is cooperation. Using the payoff

matrix in Table 4, the change in the frequency of a mutant allele in a population with a resident intrinsic

cooperation probability z is

Δp ∝ Bρ − C + D(z + ρ(1 − z)) . (6)

As in the cases with synergy and relatedness, I can use equation (6) and the payoff matrix in Table 4 to

analyze the combined effect of responsiveness and synergy on shifting between evolutionary game types.

The leftmost panel in Figure 2 (κ = 0.0) shows the results of this analysis. Comparing this panel to the

leftmost panel in Figure 1 shows that the combined effects of relatedness and synergy are qualitatively

very similar to those of responsiveness and synergy. When responsiveness is zero (ρ = 0), enough syn-

ergy (D > C) turns a prisoner’s dilemma with directional selection against cooperation into a stag hunt

game with diversifying selection. High levels of responsiveness result in directional selection for coop-

eration. Intermediate levels of responsiveness create diversifying selection when synergy is intermediate

and positive and balancing selection when synergy is intermediate and negative. Unlike relatedness, re-

sponsiveness does not have a simple ρ > C/B threshold for all values of synergy. Rather, this threshold

holds only for zero synergy, is relaxed for positive synergy (mutualism game possible for ρ < C/B) and

is stricter for negative synergy (prisoner’s dilemma game possible for ρ > C/B). Nevertheless, the inter-

pretation is similar in that increasing responsiveness converts the direct fitness cost of cooperation into

a direct fitness benefit, which results in directional selection for cooperation when synergy is positive

and first diversifying selection and then directional selection for cooperation when synergy is negative.

Focusing on when there is variation in cooperation, responsiveness generates between population varia-

tion via diversifying selection when synergy is sufficiently positive and responsiveness is low and within

group variation via balancing selection when synergy is moderately negative and responsiveness is high.

Compared to relatedness, responsiveness has a smaller scope for variation in cooperation via either di-

versifying or balancing selection.
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6. The combined effects of relatedness, responsiveness, and synergy

Equation (6) andTable 4 correspond to a social interaction in an unstructured population of unrelated

individuals who are responsive to their social partners with probability ρ. Additionally accounting for

relatedness involves using the payoffs from Table 4 in equation (4), which yields

Δp ∝ B(κ + ρ) − C(1 + κρ) + D(1 + κ)(z + ρ(1 − z)) , (7)

which is equivalent to previous results without synergy (D = 0) (Akçay and Van Cleve, 2012; Van Cleve

and Akçay, 2014). As in section 4, equation (7) can be generated by calculating only 𝜕π
𝜕z•

using an aug-

mented payoff matrix, which is given in Table 5. Using the payoff matrix in Table 5 and equation (7), I

show the joint effect of relatedness, responsiveness, and synergy in the three rightmost panels in Figures

1 and 2. Both figures show that increasing relatedness and responsiveness together can easily lead to

positive directional selection for cooperation, particularly if synergy is zero or positive. Since diversify-

ing selection relies on cooperation being individually costly, a large enough combination or relatedness

and responsiveness eliminates the possibility of diversifying selection by effectively making cooperation

individually beneficial. In contrast, negative synergy can still generate balancing selection under these

conditions so long as neither relatedness nor responsiveness is too close to one. This suggests that varia-

tion in investment in cooperation is most likely to be within groups when relatedness or responsiveness

is significantly greater than zero.

7. The effect of social group size and relatedness

Extending the model from pairwise social interactions to social interactions involving larger groups

adds substantial complexity since it expands the payoff matrix to account for all possible group composi-

tions of who cooperates and who does not. This expanded payoff matrix is given in Table 6 for a group of

size nwhere uk and vk are the payoffs an individual receives for cooperating and not cooperating, respec-

tively, when k other individuals in their group cooperate and n−k−1 other individuals do not cooperate.

There are many ways that payoff can change as the number of cooperators in the social groups changes

and this leads to the possibility of many different stable and unstable group compositions (i.e., fractions

of cooperators or values of the mixed strategy ̂z; Motro, 1991; Bach et al., 2006; Gokhale and Traulsen,

2010; Peña et al., 2014, 2015). In other words, n-player games generically have a more complex set of

outcomes than two-player games, and thus, unlike two-player games, cannot be easily related uniquely

to directional, diversifying, and balancing selection as described in section 2. In order to determine the
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effect of increasing social group size without this additional complexity, I borrow from Peña et al. (2015)

who demonstrated an elegant description of n-player payoffs in cooperation (or “public goods”) games

that yield only the four outcomes obtained in two-player games (see Table 2). The crux of the approach

is that if increasing the number of individuals in the group who cooperate always increases the benefit

available to the group as a public good, then the only outcomes possible are the ones obtained in two-

player games (Peña et al., 2015). This approach then allows one to study the effect of increasing group size

as well as relatedness, responsiveness, and synergy. I present results for relatedness and synergy below

and leave responsiveness for future work.

In the n-player case, C is still the individual cost of cooperation. In order to control for the potential

that total group benefit changes as group size increases, the payoff for cooperationwhen all social partners

(n−1 of them) also cooperate is set atB−C+D, which is same as for the two-player game. Further, assume

that the total additive benefit when all individuals cooperate is B, which means that each investment by

a social partner produces B/(n − 1) additive benefit. For a fixed group size, the public good or total

benefit available to the group increases with each additional individual who cooperates. Assume that

the kth investment in cooperation contributes the additive benefit, B/(n − 1), times a synergy parameter

λk−1. Thus, two individuals who cooperate produce a total benefit of B/(n − 1)(1 + λ), three individuals

produce B/(n−1)(1+λ+λ2), and so on (Peña et al., 2015, equation 12). When λ = 1, there is no synergy

and individual investments in cooperation contribute additively to the total benefit, which corresponds

to D = 0 in the two-player game. When λ > 1 and λ < 1, there is positive synergy (D > 0) and negative

synergy (D < 0), respectively. The “Fixed total additive benefit” column in Table 7 shows the payoffs for

this scenario and the relationship between the two-player and n-player synergy parameters D and λ.

The results of Peña et al. (2015) can be used to determine which of the four types of selection on coop-

eration and their corresponding game types is produced by a specific combination of n, B,C, andD. Using

these results (Peña et al., 2015, Table 2), I plot in Figure 3 the type of selection and evolutionary game as

a function of relatedness, synergy, and social group size. Figure 3 shows that increasing social group size

given this payoff scenario has a remarkably small effect on how relatedness and synergy determine the

type of selection on cooperation. The most significant effect of increasing group sizes is when relatedness

is close to zero: larger group sizes require higher levels of synergy to switch directional selection against

cooperation to diversifying selection. Otherwise, increasing relatedness retains its strong effect on shift-

ing the inclusive fitness cost of cooperation to an inclusive fitness benefit when κ > C/B, which generates

directional selection for cooperationwhen synergy is non-negative and balancing selectionwhen synergy

is sufficiently negative.
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Fixing the total additive benefit at B and allowing the per capita benefit to decrease with group size

(B/(n−1)) in Figure 3 appears to produce an n-player gamewhose evolutionary outcomes are remarkably

similar to the two-player case. This similarity evaporates if these previous assumptions are changed. For

example, I can fix the per capita benefit atB, whichmeans it does not changewith group size, and allow the

total additive benefit, (n−1)B, to increase with group size. The payoffs for this case are given in the “Fixed

per capita additive benefit” column in Table 7. Notably, fixing the per capita benefit at B is equivalent to

setting the cost to C/(n− 1) and shrinking it with group size since what matters for the group-structured

demography used here is relative, not absolute, payoff. Using these payoffs, Figure 4 shows the type of

selection on investment in cooperation as a function of relatedness and synergy for different social group

sizes. Allowing the total group benefit to increase with group size strongly increases the effect of related-

ness; the threshold relatedness required to shift investment in cooperation from an inclusive fitness cost

to an inclusive fitness benefit decreases as group size increases. Thus, much weaker levels of relatedness

can generate directional selection for cooperation when synergy is positive and balancing selection when

synergy is sufficiently negative. The scope for directional selection against cooperation and diversifying

selection is reduced rapidly as group size increases since the threshold relatedness decreases rapidly. As

group size increases, synergy must be increasingly negative in order to generate balancing selection for a

given value of relatedness. Though this decreases the scope for balancing selection, it remainsmuchmore

likely than diversifying selection as group size increases. Thus, variation in investment cooperation, if it

exists in this particular scenario, is more likely within groups as group size increases.

8. Discussion

Understanding the combined role of relatedness, responsiveness, and synergy in promoting the evo-

lution of cooperation has been hindered by a lack on integration of these mechanisms in a common

theoretical framework. Here, I show how kin selection theory and evolutionary game theory provide an

approach that reveals how the effects of relatedness, responsiveness, and synergy can be characterized in

terms of the four basic two-player games and how these games create directional, balancing, or diversify-

ing selection on cooperation (Table 2). The framework here shows how relatedness, responsiveness, and

synergy created different types of selection on cooperation by effectively transforming the structure of

the payoff matrix (e.g., Table 5). Past work has also emphasized that demographic, behavioral, and eco-

logical parameters can alter the structure of the payoff matrix (Taylor and Nowak, 2007; Van Cleve and

Akçay, 2014; Taylor and Maciejewski, 2012), and that such parameters may themselves evolve (Akçay

and Roughgarden, 2011; Stewart and Plotkin, 2014).
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While the importance of synergy in shaping variation in cooperation has been highlighted in the

past (e.g., Fletcher and Doebeli, 2006; Hauert et al., 2006; Cornforth et al., 2012), my results here em-

phasize the special role that synergy has vis-à-vis other factors that are conducive to investment in coop-

eration like relatedness, responsiveness, and group size. Specifically, responsiveness and relatedness are

primarily important in creating conditions generally conducive to investment in cooperation whereas

synergy determines whether there is variation or not. Synergy creates frequency-dependent selection

where frequency in the framework here refers to the probability of investing in cooperation z. With ad-

ditive benefits and costs of investing in cooperation and no synergy, selection is frequency independent

and directional and leads to either full cooperation or no cooperation. Positive synergy generates posi-

tive frequency-dependent selection, which makes the full cooperation equilibrium ( ̂z = 1) stable when

synergy is strong enough. If the no cooperation equilibrium ( ̂z = 0) is also stable because relatedness

and responsiveness are low and cooperation is a fitness cost, then positive synergy can create diversify-

ing selection and a stag-hunt game. If the no cooperation equilibrium is unstable because relatedness

or responsiveness is high enough (cooperation is a fitness benefit), then positive synergy enhances con-

vergence to the full cooperation equilibrium. In contrast, negative synergy creates negative-frequency

dependent selection, which if negative enough leads to instability of the full cooperation equilibrium

even when relatedness or responsiveness is high. High relatedness or responsiveness makes the no co-

operation equilibrium unstable, which leaves a mixed-strategy equilibrium (0 < ̂z < 1) stable due to

balancing selection.

Integrating relatedness, responsiveness, and synergy in a single framework also reveals new evolu-

tionary pathways between closely related species that exhibit variation in investment in cooperation.

Variation in cooperation between groups, populations, or species can be created by diversifying selection

due to a stag-hunt game whereas within group variation can be created by balancing selection due to a

hawk-dove game. These two game types are often seen as the result of disparate ecological scenarios since

a hawk-dove game in simple scenarios without relatedness and responsiveness requires that cooperation

yields an individual payoff benefit (C < 0) whereas a stag-hunt requires that cooperation exacts an in-

dividual cost (C > 0). Explaining how closely related species evolved both within and between group

variation in cooperation then requires explaining how this one fundamental payoff parameter could have

changed. By combining the effects of relatedness, responsiveness, and synergy, I show how both within

and between group variation in cooperation are both possible even when cooperation has an individual

payoff cost. Low levels of relatedness and responsiveness translate the individual payoff cost into a fitness

cost and between group variation in cooperation is then possible when synergy is sufficiently positive.
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High levels of relatedness and responsiveness create a fitness benefit despite the payoff cost, which al-

lows for within group variation in cooperation when synergy is sufficiently negative. Thus, it is possible

to create conditions for within or between group variation in investment in cooperation by altering the

economics of generating benefits (i.e., synergy) and either the population demography (e.g., levels of

dispersal that shape relatedness) or the amount of behavioral plasticity (e.g., behavioral responsiveness).

Using this framework, I also show how changes in social group size are alone not guaranteed to have

much effect on how relatedness, responsiveness, and synergy affect investment in cooperation. When

the total additive benefit of cooperation is fixed (the per capita additive benefit decreases with group

size), increasing group size has remarkably little effect on the conditions necessary for selection to favor

cooperation or variation in cooperation. The only notable effect is that low levels of relatedness require

higher levels of positive synergy to generate diversifying selection. When the per capita additive benefit

of cooperation is fixed and the total additive benefit increases with group size, larger groups are much

more conducive to investment in cooperation. In particular, the threshold level of relatedness necessary

for cooperation to be a fitness benefit decreases quickly as group size increases. Increasing group size

in this scenario also decreases the scope for diversifying selection, which leaves balancing selection and

within group variation the more likely outcome if cooperation levels vary.

In addition to providing conceptual insights, this framework can also be tested empirically bymeasur-

ing levels of relatedness, responsiveness, and synergy. Measuring levels of genetic relatedness is routine

(Rousset, 2002) and there are sophisticated statistical methods based on the animal model of quantitative

genetics that can properly account for identity by descent as measured by pedigrees and the effect of that

identity on traits such as cooperation (Lynch and Walsh, 1998; Wilson et al., 2010). Further develop-

ments of the animal model called “indirect genetic effects” (IGE) also allow estimation of responsiveness

coefficients bymeasuring an additional regression coefficient (Moore et al., 1997; McGlothlin et al., 2010;

Akçay and Van Cleve, 2012; McGlothlin et al., 2014). There has been less emphasis on measuring the de-

gree of nonadditivity in the production of benefits from the social interaction (i.e., synergy). This can

likely be accomplished by adding nonlinear terms to IGE regression models. Manipulative experiments

can also measure synergy by changing the investment level of individuals or the number of individuals

investing at a certain level andmeasuring the resulting benefits obtained by the social group. Thus, future

empirical studies should be able to simultaneously measure relatedness, responsiveness, and synergy and

test predictions regarding the evolved levels of cooperation and variation in levels of cooperation. Such

predictions are particularly important for understanding conditions that favor or disfavor the evolution

behavioral syndromes in animal populations (Sih et al., 2004; Wolf andWeissing, 2012; Jandt et al., 2014).
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C D
Payoff to C B − C + D −C
Payoff to D B 0

Table 1: Payoff matrix for a pairwise or two-player game.

Selection Game type Equilibrium cooperation level Type of variation
Directional Mutualism Full No variation
Directional Prisoner’s dilemma None No variation
Diversifying Stag hunt Full or none Among group
Balancing Hawk dove Mixed / intermediate Within group

Table 2: Types of natural selection and the two-player evolutionary games that produce them.

C D
Payoff to C (B − C + D)(1 + κ) −C + Bκ
Payoff to D B − Cκ 0

Table 3: Payoff matrix that accounts for the effect of scaled relatedness κ.

C D
Payoff to C (B − C + D)(1 + ρ) −C + Bρ + Dρ
Payoff to D B − Cρ + Dρ 0

Table 4: Payoff matrix that accounts for the effect of responsiveness ρ. See Supplementary Material A for
a derivation.

C D
Payoff to C (B − C + D)(1 + κ)(1 + ρ) B(κ + ρ) − C(1 + κρ) + Dρ(1 + κ)
Payoff to D B(1 + κρ) − C(ρ + κ) + Dρ(1 + κ) 0

Table 5: Payoff matrix that accounts for the effects of both scaled relatedness and responsiveness.

Partners playing C n − 1 ⋯ 1 0

Payoff to C un−1 ⋯ u1 u0
Payoff to D vn−1 ⋯ v1 v0

Table 6: Payoff matrix for a social interaction involving n individuals.
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Additive benefit type
Fixed total Fixed per capita

Payoff to C (uk) −C + Bλ
n−1(λk−1

λ−1 ) −C + Bλ(λk−1
λ−1 )

Payoff to D (vk) B
n−1(λk−1

λ−1 ) B(λk−1
λ−1 )

Additive synergy D B
n−1(λn−1

λ−1 − n) B(λn−1
λ−1 − n)

Table 7: Two different n-player payoff scenarios for the payoff matrix in Table 6 and the corresponding
relationship between the n-player and two-player synergy parameters. In the first scenario, the total
additive benefit in the social group is fixed at B and the per capita benefit is B/(n − 1). In terms of the
parameters of Peña et al. (2015, Table 1), β = B/(n − 1) and γ = C + B/(n − 1). The additive per capita
(per individual) benefit is fixed at B in the second scenario leading to a total additive benefit (n − 1)B,
β = B and γ = B + C.
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Figure 1: Evolutionary game types produced by the payoffmatrix given in Table 5 as a function of synergy
D and scaled relatedness κ. Responsiveness ρ is held fixed in each of the four plots at the value noted. See
Table 2 for how these games map to different types of natural selection.
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Figure 2: Same as Figure 1 except results are plotted as function of responsiveness ρ and synergy D with
scaled relatedness κ held constant in each plot at the value noted.
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Figure 3: Evolutionary game types as a function of scaled relatedness and synergy where each plot is
a different social group size. The payoffs used to generate these plots are in Table 7 under the heading
“Fixed total additive benefit”.

24

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 11, 2017. ; https://doi.org/10.1101/126367doi: bioRxiv preprint 

https://doi.org/10.1101/126367
http://creativecommons.org/licenses/by-nc/4.0/


Group size
n = 2 n = 3 n = 5 n = 10

Sy
ne

rg
y,
D

Stag Hunt Mutualism

Hawk Dove
Prisoner's
Dilemma

0 C

B
1

0

C

Stag
Hunt

Mutualism

Hawk DovePD

0 C

B
1

Stag
Hunt

Mutualism

Hawk Dove

Prisoner's
Dilemma

0 C

B
1

Stag
Hunt

Mutualism

Hawk Dove

Prisoner's
Dilemma

0 C

B
1

Relatedness, κ

Figure 4: Same as Figure 3 except the payoffs used to generate the plots are in the “Fixed per capita
additive benefit” column in Table 7. Note that before plotting, the payoffs have all been normalized by
n − 1, which keeps the total additive payoff and the synergy D on the same scale as in Figure 3.
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Supplementary Material A: Two-player responsiveness model

Suppose that individuals engage in pairwise interactions where they simultaneously choose either

to cooperate (C) or to not cooperate (D) and obtain payoffs given in Table 1. At the beginning of every

interaction, each individual is either (i) an intrinsic cooperatorwho cooperates by default with probability

1−ρD or responds to its partner by copying the partner’s last action with probability ρC or (ii) an intrinsic

non-cooperator who does not cooperate by default with probability 1 − ρD and copies its partner’s last

action with probability ρD. Since my analysis is focuses on understanding how responsiveness ρ affects

selection on investment in cooperation and not on understanding how ρ evolves intrinsically, I set ρC =

ρD = ρ. Since individuals only require knowledge of their partner’s last action, the model is Markovian

and the state space of the model consists only of the four possible current states, (D,D), (D,C), (C,D),

and (C,C), where the elements are the action of the focal individual and its partner, respectively. Further

assume that each time step only one of the two individuals has an opportunity to update its action (i.e.,

choose its “intrinsic” action with probability 1 − ρ and copy its partner with probability ρ). This is kind

Markov model is called a “quasi birth-death process” (Latouche and Ramaswami, 1999) and is simpler

than alternative formulations when the model is extended from pairwise to n-player interactions (Van

Cleve, unpublished).

Since individuals can act as either intrinsic cooperators or non-cooperators, there are four possible

pairwise interactions and each interaction has a transition matrix describing the Markov chain. Each

Markov chain is irreducible and aperiodic (for 0 < ρ < 1) and thus has a unique stationary distribution

that describes the probability of each pairwise state in the long run for the corresponding social inter-

action. Independent of the value of ρ, an interaction between two intrinsic cooperators has a stationary

distribution where both individuals always cooperate; likewise, two intrinsic defectors both always de-

fect in the long run. The transition matrix for an interaction between a focal intrinsic cooperator and a

non-cooperator social partner is

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1+ρ
2 0 1−ρ

2 0
1
2 0 0 1

2
ρ
2 0 1 − ρ ρ

2

0 0 1−ρ
2

1+ρ
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(A.1)

where each element specifies the probability that the row state leads to the column state and the order of
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intrinsic C intrinsic D

Payoff to intrinsic C (B − C + D) −C+Bρ+Dρ
1+ρ

Payoff to intrinsic D B−Cρ+Dρ
1+ρ 0

Table A.1: Payoff matrix for the two-player responsiveness model.

states in the rows and columns is (D,D), (D,C), (C,D), and (C,C). The stationary distribution ν of M is

ν = (
ρ

1 + ρ , 0,
1 − ρ
1 + ρ ,

ρ
1 + ρ) . (A.2)

When ρ = 0, the stationary distribution ν becomes (0, 0, 1, 0), which means that the intrinsic coopera-

tor always cooperates and the intrinsic non-cooperator never cooperates and corresponds to the model

without responsiveness or reciprocity. When ρ = 1, the stationary distribution is ν = (1/2, 0, 0, 1/2),

which reflects perfect responsiveness where individuals who both begin cooperating or not cooperating

always continue cooperating or not cooperating. Pairs that begin with one individual cooperating and

the other not cooperating end up either both cooperating or not cooperating with equal probability. The

transition matrix for a focal intrinsic non-cooperator interacting with an intrinsic cooperating partner is

the transpose of M from equation (A.1) and the stationary distribution ν is also given by equation (A.2)

except with the labels of the states inverted (C replaced by D and vice versa).

For simplicity, I assume that payoffs are accrued only at the stationary distribution, which means that

the interaction is long enough so that transient payoffs at the beginning of the game can be discarded.

Payoffs for each of the four pairwise combinations of intrinsic cooperators and non-cooperators can then

be calculated by using the stationary distributions of the four transition matrices and multiplying each

element of distribution with the corresponding payoff from Table 1. This results in Table A.1, which

simplifies to Table 1 when ρ = 0. Since Nash equilibria are invariant under linear transformations of

payoffs (Straffin, 1993, p. 50), the entries of Table A.1 can be multiplied by 1 + ρ, which generates Table

4.
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