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ABSTRACT

The diploid  nature  of  the  genome is  neglected  in  many analyses  done today, where  a  genome is

perceived as a set of unphased variants with respect to a reference genome. Many important biological

phenomena such as compound heterozygosity and epistatic effects between enhancers and target genes,

however, can only be studied when haplotype-resolved genomes are available. This lack of haplotype-

level analyses can be explained by a dearth of methods to produce dense and accurate chromosome-

length haplotypes at reasonable costs. Here we introduce an integrative phasing strategy that combines

global, but sparse haplotypes obtained from strand-specific single cell sequencing (Strand-seq) with

dense, yet  local,  haplotype information available through long-read or linked-read sequencing. Our

experiments provide comprehensive guidance on favorable combinations of Strand-seq libraries and

sequencing coverages to obtain complete and genome-wide haplotypes of a single individual genome

(NA12878) at manageable costs. We were able to reliably assign > 95% of alleles to their parental

haplotypes using as few as 10 Strand-seq libraries in combination with 10-fold coverage PacBio data

or, alternatively, 10X Genomics linked-read sequencing data.  We conclude that the combination of

Strand-seq with different sequencing technologies represents an attractive solution to chart the unique

genetic variation of diploid genomes.
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Human genomes are diploid and possess two copies of each chromosome – one paternal and

one maternal copy. At the DNA sequence level, these two homologous copies differ at a number of loci

along each chromosome. Such heterozygous variants include single nucleotide variants (SNVs), short

indels, as well as larger structural variants like deletions, duplications or inversions that change the

copy number or orientation of segments of the genome. Discriminating and phasing alleles to their

respective parental homologue is valuable in many areas of human genetics. For instance, resolving

haplotype structure is required to track inheritance in human pedigrees and populations1, map regions

of  meiotic  recombination2,3,  identify  variant-disease  associations4,  detect  instances  of  compound

heterozygosity,  and  study  allele-specific  events  like  DNA  methylation  or  gene  expression5.  In

particular, long-range haplotype information is  needed to systematically study interactions between

enhancers and their target genes. This is critical as many variants that have been linked to traits in

genome-wide association studies reside in enhancers and super enhancers6. Enhancer-specific variants

can show epistatic effects among one another7, as well as with their target genes that are beyond the

reach of linkage disequilibrium8. To better understand these interactions, we must move beyond merely

locating  variant  alleles  and  additionally  study  their  functional  relationships  over  long  distances.

Constructing genome-wide chromosome-length haplotypes is therefore the clear next step to build a

more complete picture of genome architecture and function.

Currently, methods used to chart unique variation of individual genomes rely largely on 2nd and

3rd generation DNA sequencing and can include specialized experimental  protocols9–13.  Sequencing

technologies sample the human genome in the form of relatively short molecules (reads) and every read

that spans at least two heterozygous variants can essentially be considered as a 'mini haplotype' that can

be assembled into longer haplotype segments by partially overlapping reads spanning the same variable

locus4.  To this  end,  haplotype-informative  reads  need  to  be  partitioned  into  two  disjoint  sets  that

represent the two haplotypes. This process, however, is complicated by errors in sequencing as well as

genotyping. For these reasons assembling haplotypes directly from sequencing data is computationally

challenging, and the resulting optimization problems are provenly hard14,15. Notwithstanding, a number

of computational approaches for read-based phasing have recently been developed16 and, particularly,

progress  on  fixed-parameter  tractable  (FPT)  algorithms has  enabled  solving  read-based phasing in

practice17–19, for instance through the implementations available in the software package WhatsHap20.

Beyond phasing reads aligned to a reference genome, various approaches for haplotype-resolved  de

novo assembly have been explored21–25.
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However, all approaches to reconstruct haplotypes from sequencing reads, be it reference-based

or reference-free, come with the intrinsic limitation that the distance between subsequent heterozygous

markers can be larger than the read length itself. While long-read sequencing (such as PacBio SMRT26

and Oxford NanoPore MinION27), or linked read data (such as those provided by 10X Genomics28) help

to mitigate this  issue,  these technologies still  fail  to phase over long stretches of homozygosity or

centromeres. Instead, specialized techniques that enable homologous chromosomes to be discriminated

are required to physically connect alleles across whole chromosomes3,29,30. As an alternative to whole

chromosome separation,  chromatin  capture  (Hi-C)  methods31 can  be  employed  to  infer  long-range

haplotype information, based on the assumption that a chromosome will be cross-linked to itself more

often  than  to  its  homologue13.  Recently,  Hi-C  data  have  been  used  in  combination  with  other

sequencing methods for long-range phasing32,33. However to generate a reliable long-range haplotype

scaffold high sequence coverage (~100-fold) is required to reduce bias caused by crosslinks between

non-homologues  chromosomes32.  In  particular,  because  these  haplotypes  need  to  be  inferred

statistically, the probability that two heterozygous variants are correctly phased relative to each other

deteriorates with increasing chromosomal distances.

For the first  time, we introduce a strategy to obtain dense and global haplotypes  that span

centromeres, homozygosity regions and genome assembly gaps, while keeping error rates, costs and

labor at minimum. To this end, we harness the long-range phasing information provided by single cell

template  strand  sequencing  (Strand-seq)34.  Strand-seq  is  an  effective  method  to  assemble  highly

accurate chromosome-length haplotypes, albeit with lower density of phased alleles in comparison to

read-based phasing9. Unlike other haplotyping methods, Strand-seq by design distinguishes parental

homologues  based  on the  directionality of  single-stranded DNA. We emphasize  that  Strand-seq  is

therefore able to deliver global haplotypes: its ability to correctly phase two variants with respect to

each other does not depend on their distance. To fully exploit this advantage, while at the same time

generating dense haplotypes that contain virtually all heterozygous SNVs, we designed a novel unified

statistical framework to combine Strand-seq data with short-read, long-read, or linked-read sequencing

data. We demonstrate that the combination of long-range Strand-seq haplotypes successfully bridges

partial Illumina, PacBio and 10X Genomics phased segments into contiguous and global haplotypes

that span whole chromosomes. We offer extensive experimental guidance on favorable combinations of

the number of used Strand-seq libraries and the depth of PacBio or Illumina coverage, and thus enable

considerable reductions in costs and labor – yielding a novel, affordable and scalable approach for

reconstruction of haplotype-resolved individual genomes.
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Figure 1: Phasing efficacy of read-based and experimental phasing approaches (example 

Chromosome 1).

A)  Two homologous  chromosomes are shown (blue  and black).  Experimental  phasing approaches  like  Strand-seq  can

connect heterozygous alleles along whole chromosomes, however, at higher costs (time and labor) and lower density of

captured alleles. In contrast, read-based phasing can deliver high-density haplotypes, but only short haplotype segments are

assembled  with  an  unknown  phase  between  them.  B)  Barplot  showing  the  percentage  of  phased  variants,  for  each

sequencing technology, from the total number of reference SNVs (Illumina platinum haplotypes). C) Graphical summary of

phased haplotype segments for Illumina, PacBio, 10X Genomics and Strand-seq phasing shown for chromosome 1. Each

haplotype segment  is  colored in a different color with the longest  haplotype colored in red.  Side bargraph reports the

percentage of SNVs phased in the longest haplotype segment. D) Accuracy of each independent phasing approach measured

as percentage short switch errors in comparison to benchmark haplotypes.
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RESULTS

To explore a new integrative phasing strategy, with the aim of obtaining dense and accurate

chromosome-length  haplotypes,  we  used  sequencing  data  available  for  a  well-studied  individual

(NA12878).  The  NA12878  genome  has  been  extensively  sequenced  using  multiple  technologies,

providing high-coverage public sources of sequence information (see Data Access). In this study, we

focused on read-based phasing data generated from Illumina and PacBio technologies, as they represent

current  standards  for  short-  and  long-read  sequencing,  respectively.  The  Illumina  dataset  was

sequenced to an average depth of 49.5x coverage with a median insert size of 433bp, and the PacBio

dataset was sequenced to 39.6x coverage with an average read length of ~15kb (Supplemental Tab.

S1). In addition, we evaluated the performance of 10X Genomics, an emergent linked-read technology.

Since  none  of  these  technologies  alone  provides  chromosome-length  haplotype  information,  we

additionally incorporated single cell  Strand-seq data9,  which has the capacity to scaffold haplotype

information obtained from other data types (Fig. 1A). Here we used 134 single cell libraries sequenced

to an average depth of 0.037x coverage per library using a paired-end sequencing protocol (see Data

Access and Supplemental Tab. S2). To evaluate the phasing accuracy of haplotypes reported in this

study, we used the publicly available Illumina platinum haplotypes generated for the same individual

(NA12878)  as  a  'reference'  standard  (see Data  Access).  NA12878  'reference  haplotypes’  were

completed by genetic haplotyping using highly accurate genotypes from seventeen individuals of a

three-generation pedigree35 , and can therefore serve as a gold-standard to assess the phasing accuracy

throughout this study.

Phasing Performance of Individual Technologies

To independently assess the phasing performance of each technology we assembled haplotypes

directly  from  sequencing  reads  (Illumina  or  PacBio)  using  WhatsHap  (see Methods).  The  main

advantage of this algorithm is that it solves the Minimum Error Correction (MEC) problem optimally

with a runtime that scales linearly in the number of variants (alleles) and is independent of the read

length. Therefore, it performs well with short-read technologies (Illumina) and is especially suited for

use with long reads (PacBio, Oxford NanoPore). 10X Genomics haplotype segments were assembled

by the  vendor  using the 10X LongRanger  pipeline.  To phase the  multiple  Strand-seq libraries  we

developed a new phasing algorithm, implemented in the R package StrandPhaseR (see Methods, and

Supplemental Fig.  S1).  In comparison to our previously published phasing algorithm9,  the current

version  implements  a  more  robust  sorting-based  phasing  approach  of  single  cell  haplotypes  into
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consensus haplotypes, such that conflicts of alleles within both consensus haplotypes are reduced. The

haplotypes generated by each technology (i.e. Illumina, PacBio, 10X Genomics and Strand-seq) were

compared to the Illumina platinum reference haplotypes, to establish the density, completeness and

accuracy  of  the  phase  blocks  delivered  by  each  platform  independently.  For  a  more  streamlined

exposition,  we focus on results  obtained for Chromosome 1 in  the following analysis  and present

numbers aggregated across all chromosomes in a concluding discussion.

We found both PacBio and 10X Genomics technologies capable to phase nearly the complete

set of variants listed in the reference haplotypes (98.8% and 97.2%, respectively), whereas Illumina

alone  phased  only  77.8%  and  Strand-seq  only  57.6%  of  the  reference  SNVs  (Fig.  1B).  The

comparatively  low  percentage  for  Strand-seq  can  be  explained  by  the  relatively  low  sequencing

coverage employed, combined with a slight unevenness in genomic coverage (Supplemental Fig. S2).

For all technologies except Strand-seq, only short-range haplotypes were assembled using the read-

based phasing, with a limited number of alleles phased per haplotype segment (Fig. 1C). For instance,

we found >30,000 unconnected haplotype segments assembled from Illumina data, with the largest

segment  of 16kb (median ~500bp) harbouring only 0.06% of the phased variants.  This is  because

heterozygous variants that are further apart than the length of the sequenced DNA fragments cannot be

connected, resulting in multiple disjoint haplotype segments with an unknown phase between them.

Improvements were achieved using longer sequencing reads from PacBio technology, which effectively

decreased  the  number  of  phased  haplotype  segments  (1,927)  and  increased  their  size;  the  largest

segment of 1.7Mb (median ~21kb) containing 1.25% of all SNVs on Chromosome 1 (Fig. 1C). 10X

Genomics produced even longer haplotype segments than both Illumina and PacBio data (Fig. 1C).

The largest haplotype segment contained almost 5% of the heterozygous SNVs and spanned more than

8.5Mb (median ~241kb). Still, the haplotypes of Chromosome 1 came in 199 disconnected segments

and, hence, an end-to-end phasing was not achieved. That is, the linked reads from 10X Genomics were

not  able  to  connect  distant  neighboring  heterozygous  sites,  for  instance  at  centromeres,  genome

assembly gaps or regions of low heterozygosity (Fig. 1A).  This is  in contrast  to the global,  albeit

sparse, haplotypes produced by Strand-seq. Although the completeness of Strand-seq haplotypes was

lower compared to the other  technologies,  all  phased variants were placed into a single haplotype

segment spanning the entire length of Chromosome 1 (Fig. 1B, and C).

Finally, we assessed the accuracy of each technology by calculating the extent of switch errors

in comparison to the reference haplotypes. High phasing accuracy of each technology was exemplified

by the low percentage (<0.4%) of switch errors (Fig. 1D) with PacBio and 10X Genomics being the

most accurate. Since no single phasing technology was sufficient to generate both global and dense
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haplotypes,  we explored integrative phasing approaches that combine global, sparse haplotyping as

afforded by Strand-seq technology with local high-density haplotypes from read-based phasing.

Figure 2: Integration of global and local haplotypes by WhatsHap algorithm.

An example solution of the weighted minimal error correction problem (wMEC) using WhatsHap algorithm is shown. For

simplicity base qualities used as weights are omitted from the picture (for details on wMEC see Patterson et al. 2015). (i)

The columns of the matrix represent 34 heterozygous variants (SNVs). Continuous stretches of zeros and ones indicate

alleles supported by respective reads (0 – reference allele, 1 – alternative allele). First two rows of the wMEC matrix are

represented  by Strand-seq  haplotypes,  illustrated  as  one  'super  read'  connecting alleles  along the  whole length  of  the

chromosome. (1st row haplotype 1 alleles, 2nd row haplotype 2 alleles). Subsequent rows of the matrix are represented by

reads that map to the reference assembly in short overlapping segments.  Sequencing errors (shown in red in read 2 and 7)

are corrected when the cost for flipping the alleles is minimized. (ii) Reads are then partitioned into two haplotype groups

(Haplotpye 1 – dark blue, Haplotype 2 – light blue) such that a minimal number of alleles are corrected (in red). As an

illustration of long haplotype contiguity facilitated by Strand-seq 'super reads', we depict two non-overlapping groups of

reads (gray rectangles) that can be stitched together by Strand-seq (dashed lines). (iii) Final haplotypes are exported for both

groups of optimally partitioned reads.
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Integrative global phasing strategy

To  generate  more  complete  and  dense  haplotypes,  we  sought  to  establish  a  novel  and

integrative phasing approach using a combination of Strand-seq data with the other data types. That is,

we aim to enrich the sparse yet global phasing from Stand-seq using the dense haplotype information

provided  by  Illumina,  PacBio  or  10X  Genomics.  However,  integrating  phase  information  across

platforms poses a non-trivial statistical and algorithmic challenge, which we resolved by treating the

sparse Strand-seq haplotypes generated by StrandPhaseR as one row in the fragment matrix processed

by WhatsHap (see Methods). The other rows correspond to sequencing reads (PacBio, Illumina) or

pre-assembled haplotype segments (10X Genomics) (see Methods). This allows, for the first time, for

integrative  phasing  by solving  the  corresponding  optimization  problem (weighted  MEC)  provably

optimal  (Fig.  2).  We performed  extensive  experiments  to  demonstrate  that  this  approach  enables

excellent results in practice, as we describe in the following section.

To discover the most beneficial combinations of Strand-seq with Illumina or PacBio data, we

explored combinations of variable numbers of Strand-seq libraries together with increasing depths of

sequencing reads. To this end, we downsampled the number of Strand-seq libraries used in the analysis

by randomly selecting subsets of libraries (5, 10, 20, 40, 60, 80, 100, or 120) from the original (N =

134) dataset. Similarly, we randomly downsampled the sequencing reads from the Illumina and PacBio

datasets to a lower genomic coverage (2, 3, 4, 5, 10, 15, 25, and 30-fold). We applied our integrative

phasing  strategy  to  all  pairs  of  downsampled  Strand-seq  libraries  and  the  downsampled

PacBio/Illumina datasets to assess the completeness (i.e. % of phased SNVs), contiguity (length of the

largest haplotype segment) and accuracy (agreement with the 'reference' standard) of each assembled

haplotype.

We found that  the  combination  of  Strand-seq  haplotypes  with  any of  the  other  data  types

markedly increased the number of variants that were phased in the largest haplotype segment, albeit to

differing degrees (Fig. 3A). Specifically, for the Illumina data we observed the completeness of each

haplotype increased gradually with the number of Strand-seq libraries used in the experiment, whereas

the depth of coverage of Illumina data had only a minor but noticeable effect (Fig. 3A, i). In contrast,

the  PacBio  data  showed a  significant  improvement  in  haplotype  completeness  at  10-fold  genomic

coverage, regardless of the number of Strand-seq libraries used (Fig. 3A i, gray rectangle). Similar

results were seen when we combined Strand-seq with the 10X Genomics haplotypes (Fig. 3A, ii). In all

cases, integration of Strand-seq phasing drastically improved the contiguity of the haplotype spanning

Chromosome 1 (Fig. 3B). When combining Illumina data with 40 Strand-seq libraries >65% of the

reference variants could be phased accurately (Fig. 3B i, black asterisk); 5497 haplotype segments
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(collectively representing 19.7% of the phased SNVs), however, remained disconnected, even when

integrating the complete (N=134) Strand-seq dataset. These results confirm that Illumina data are of

limited utility for haplotype phasing.

In  contrast,  as  few  as  10  Strand-seq  cells  combined  with  10-fold  PacBio  coverage  were

sufficient to phase more than 95% of all heterozygous SNVs into a single haplotype segment (Fig. 3B

ii,  black asterisk),  and merely 5 Strand-seq single cell  libraries were required to  connect  all  10X

Genomics haplotypes.  However, we recommend at least  10 Strand-seq libraries (Fig. 3B iii,  black

asterisk) to ensure that at least one haplotype-informative (i.e. Watson-Crick-type) cell exists for every

chromosome with high probability (p=0.978). This global haplotyping was unique to Strand-seq, as the

combination of 10X Genomics with PacBio reads proved inefficient to join locally phased segments

(Fig. 3B iv). That is, the added value of combining these two technologies is limited as the haplotype

segments tend to break at similar locations.

Finally, we assessed the phasing accuracy of  the assembled haplotypes  (the longest  phased

segment  only)  (Fig.  3C).  Similar  to  the  completeness  of  the  haplotype,  the  accuracy of  Illumina

phasing  gradually  increased  with  sequencing  depth  and  Strand-seq  library  number,  indicating  that

Illumina coverage of 30-fold and higher is advisable (Fig. 3C, i). We further observed slightly elevated

switch error rates at lower PacBio depths, which plateaued at 10-fold coverage. This is likely caused by

allele uncertainty resulting from error-prone PacBio reads, especially at lower sequencing depths (Fig.

3C, i). The lowest switch error rate (< 0.2%) was achieved by the combination of Strand-seq with 10X

Genomics data (Fig. 3C, ii).

Switch error rates reflect local inaccuracies expressed by the number of pairs of consecutive

heterozygous variants that are wrongly phased with respect to each other. These error rates are not

necessarily informative about global haplotype accuracy, which largely depend on how switch errors

are spatially distributed (Methods, Supplemental Fig. S4A). Note that one single switch error implies

that all following alleles (up to the next switch error) are assigned to the wrong haplotype. Since our

goal is to generate dense and global haplotypes, we additionally report the Hamming error rate of the

largest haplotype segment in comparison to the reference haplotypes (Methods, Supplemental Fig.

S4B). Illumina reads are highly accurate and therefore we observed lower impact of sequencing depth

on  the  global  accuracy of  the  largest  phased  haplotypes  (Fig.  3C,  iii).  In  contrast,  PacBio  reads

exhibited  higher  sequencing  error  rates,  which  translated  into  higher  switch  error  rates  at  low

sequencing depths. Using 10-fold PacBio coverage combined with at least 10 Strand-seq cells yielded

highly accurate global haplotypes (Fig. 3C, iii gray rectangle), while lower coverages led to markedly

worse results.  Furthermore,  the combination of Strand-seq with 10X Genomics haplotypes  yielded
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highly accurate global haplotypes, already at the minimal amount of Strand-seq libraries (Fig. 3C, iv).

Taken together, these results illustrate that Strand-seq can be used to phase existing sequence

data and build dense, global and highly accurate haplotypes. Indeed, we found our approach highly

efficient for genome-wide phasing (Fig. 4A). Using a combination of 40 Strand-seq libraries with 30-

fold Illumina coverage,  or 10 Strand-seq libraries with either 10-fold PacBio coverage or the 10X

Genomics haplotypes we successfully scaffolded chromosome-length haplotypes for every autosome of

NA12878. The completeness of the genome-wide haplotypes measured for the largest haplotype block

reached 95.7% and 69.1% using PacBio  and Illumina  reads,  respectively (Fig.  4A,  i).  We further

demonstrated the high accuracy of these haplotypes on the local and global scales, which showed low

switch (<0.45%) and Hamming error (<0.99%) rates for both the PacBio and Illumina combination

(Fig. 4A, i,ii).  Whereas scaffolding the 10X Genomic haplotypes produced the most accurate local

haplotypes (switch error rate of 0.05%), global performance suffered, and the highest Hamming error

rate (2.18%) was calculated for this combination. Nevertheless, using Strand-seq to scaffold any of the

datasets  remarkably  improved  the  completeness,  contiguity  and  accuracy  of  phasing  for  each

chromosome, highlighting our integrative phasing strategy as a robust method for building dense and

accurate whole genome haplotypes.
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Figure 3: Various combinations of Strand-seq and read-based phasing (Illumina, PacBio, 10X

Genomics) - example Chromosome 1.

Plots show haplotype quality measures for various combinations of Strand-seq cells (5, 10, 20, 40, 60, 80, 100, 120, 134)

with selected coverage depths of Illumina or PacBio sequencing data (2, 3, 4, 5, 10, 15, 25, 30, >30-fold), or in combination

with 10X Genomics haplotypes.  A) Assessment of the completeness of the largest haplotype segment as the % of phased

SNVs.  Grey  bars  highlight   PacBio  sequencing  depth  where  completeness  and  accuracy  of  final  haplotypes  do  not

dramatically  improve.  B)  Assessment  of  the  contiguity of  the  largest  haplotype  segment  as  the  length  of  the  largest

haplotype segment. Every phased haplotype segment is depicted as a different color, with the largest segment colored in red.

C) Assessment of the accuracy of the largest haplotype segment as the level of agreement with the ‘reference’ standard.

Gray bars highlight Illumina and PacBio sequencing depth where accuracy of final haplotypes do not dramatically improve.

In case of Illumina sequencing such improvement is more gradual.
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Figure 4: Recommended settings to phase certain amounts of individuals.

A) Genome-wide phasing of NA12878 using combination of 40 Strand-seq libraries with 30x short Illumina reads, 10

Strand-seq libraries with 10-fold long PacBio reads, or 10 Strand-seq libraries with 10X Genomics data. (i) The percentage

of phased SNV pairs in the largest haplotype segment for each combination (ii)The cumulative accuracy the genome-wide

haplotype was calculated by summing the switch error rates and (iii) the Hamming error rates found for each autosomes. B)

A  diagram  providing  the  recommendations  for  the  required  number  of  Strand-seq  libraries  to  be  combined  with

recommended minimum of 10-fold PacBio and 30x Illumina coverage in order to reach global and accurate haplotypes for a

depicted number of individual diploid genomes.
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DISCUSSION

Strand-seq has been successfully prepared from a wide range of cell types taken from various

organisms9,34,36 and is currently being adopted by an increasing number of researchers. The integrative

phasing strategy we introduce here paves the way to leveraging Strand-seq to obtain chromosome-

length  dense  and  accurate  haplotypes  at  a  manageable  cost  and  labor  investment.  Based  on  the

comprehensive evaluation presented above, we recommend three different combinations of Strand-seq

with a complementary technology (Fig. 4).

As one option, one can combine Strand-seq with standard Illumina sequencing. Although the

power of Illumina data for phasing is limited, mainly due to short insert sizes and read lengths, it still

has some merit for adding additional variants to Strand-seq haplotypes. This might be of interest to

many researchers since Illumina sequencing still constitutes the most common technology and there is

an abundance of Illumina sequence data currently available for many sample genomes. To completely

phase these preexisting data, we recommend generating 40 Strand-seq libraries for the sample genome,

which  is  sufficient  to  phase  >68% of  all  heterozygous  variants  genome-wide  with  good accuracy

(switch error 0.45%, Hamming error 0.99%), see Figure 4A and Supplemental Tab. S3.

To build more complete haplotypes, we recommend combining Strand-seq with either PacBio

or 10X Genomic technologies. A minimum of 10-fold PacBio coverage coupled with 10 Strand-seq

libraries will phase >95% of heterozygous variants genome-wide with excellent accuracy (switch error

0.25%, Hamming error 0.91%). PacBio has been demonstrated to be particularly powerful for resolving

structural  variation37,38 and,  although  not  explored  here,  might  hence  be  the  best  choice  when the

resolution of haplotypes, structural variation and repetitive regions is desired. However, the cost of this

platform is  still  comparatively high.  Therefore,  until  long-read technologies have become standard

practice, we recommend combining 10 Strand-seq libraries with 10X Genomics technology. We found

this combination yielded the most complete (>98% heterozygous variants genome-wide) haplotypes

with the lowest switch error rate (0.05%). We did observe a slightly increased Hamming error rate

(2.18%), however, which indicates that some genomic intervals are placed on the wrong haplotype,

most likely due to switch errors in the pre-phased haplotype segments (produced by 10X Genomics)

used as input. Overall, combining Strand-seq with 10X Genomics is the most cost-effective (in terms of

time and money) strategy to phase an individual genome at extraordinary accuracy.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/126136doi: bioRxiv preprint 

https://doi.org/10.1101/126136


Our  results  demonstrate  that  dense  and  accurate  chromosome-length  haplotypes  can  be

generated at manageable costs. This development brings haplotype-level analyses closer to a routine

practice, which can be key for understanding disease phenotypes. We emphasize that the strategy we

present  here  works  for  single  individuals  without  relying  on  other  family  members  or  statistical

inference from haplotype reference panels. In contrast to such population-based phasing approaches,

the method we advocate here allows insights into rare and  de novo variants and long-range epistatic

effects.

Our future efforts will focus on de novo assembly of haplotype resolved-genomes without the

alignment to a reference genome. This will provide us with true diploid representations of individual

genomes, which will have profound implications to study variability of personal genomes in health and

disease.
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METHODS

1. StrandPhaseR pipeline

To build whole genome haplotypes from Strand-seq data we developed a new sorting-based

pipeline, called StrandPhaseR. StrandPhaseR implements an improved phasing algorithm based on a

binary sorting strategy of two parallel matrices, storing haplotype information obtained from single cell

Strand-seq libraries. The analysis pipeline takes as input aligned BAM (binary alignment map) files

from single cells, which were initially filtered for duplicate and low mapping quality reads (mapq <

10).  Haplotype informative WC regions were localized in every Strand-seq library as described in

Porubsky et al. (2016). Alleles at variable positions (supplied as set of SNVs obtained from Illumina

platinum haplotypes)  were identified separately for W and C reads in  every informative region to

generate low density single cell haplotypes that are then sorted by the phasing algorithm. The partial

single cell haplotypes are used to fill two matrices, where rows represent cells and columns represent

covered variable positions (SNVs) in any given cell  (Supplemental  Fig.  S1).  Initially, one matrix

stores all variable positions found within the Watson templates, and a second matrix stores all variable

positions found within the Crick templates. Cells in the matrices are sorted in decreasing order based

on  the  number  of  covered  variants  (i.e.  depth  of  coverage).  Initially,  a  score  of  each  column  is

calculated as the sum of all covered variants minus the most abundant variant. This represents the level

of disagreement across all cells for the given SNV in the column. The sum of scores for each column

represents  the  overall  score  of  the  matrix,  and  a  lower  matrix  score  represents  a  higher  level  of

concordance across all SNV positions. Once the score of both matrices is determined, all SNVs in the

first row (i.e. those belonging to the first cell) are swapped between the two matrices. In essence, this

exchanges the Watson and Crick template strands of the cell within the matrix, to test whether there is a

higher level of agreement across the phased SNVs found for all the cells. To determine this, the matrix

scores are recalculated and if the scores are lower than the previous scores the change is kept, otherwise

the change is reversed. The algorithm continues with the second row. Again, the covered variants of the

second  cell  are  swapped  between  matrices,  the  matrix  score  are  recalculated  and  the  decision  to

preserve or reverse the change is made. This is repeated through all rows (cells) of the matrix, sorting

the single cell haplotypes within both matrices to reduce the number of conflicting alleles within each

column. We repeated sorting process twice, after which we did not observe any further changes. The

resulting haplotypes are reported as the consensus allele found across all the cells for each column of

the matrices. Ideally, there is only one allele present for every variable site in each matrix, however

sporadic sequencing errors or cell-specific artefacts can introduce discrepancies. Lastly, any missing
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alleles at heterozygous sites are rescued by searching within the 'uninformative' reads (i.e. those from

WW and CC regions) present in Strand-seq libraries and filled in. The final consensus haplotypes are

exported in standardized VCF format, with each variable position has an assigned Phred quality score

and entropy value reflecting the confidence in the given allele. All phasing steps of StrandPhaseR have

been implemented into a single open-source R package (see Code availability).

2. Downsampling of Strand-seq libraries and read data (PacBio or Illumina)

To assess difference combinations of Strand-seq libraries (w.r.t. number of single cell libraries)

with  read  data  (w.r.t.  depth  of  coverage),  we  performed  a  systematic  analysis  of  the  phasing

performance  for  various  subsets  of  each  dataset.  To achieve  this,  we  downsampled  the   original

publicly  available  (see  Data  Access)  datasets  consisting  of:  134  single  cell  Strand-seq  libraries

(Porubsky et al. 2016), 39.6x coverage long-read PacBio data39, and 49.6x coverage short-read Illumina

data40,41. To simulate Strand-seq datasets consisting of reduced numbers of single cells, we randomly

selected subsets of either 5, 10, 20, 40, 60, 80, 100, or 120 libraries from the original number of 134

libraries in the dataset. Read data from the PacBio and Illumina datasets were downsampled using

Picard (picard-tools-1.130) to meet a defined depth of coverage of either 2, 3, 5, 10, 15, 25, or 30-fold.

The downsampling was performed for 5 independent trials to account for variability in downsampled

datasets, and the average phasing performance across all trials was reported (as described below).

3. Integrative phasing using WhatsHap

As an input for integrative phasing, Strand-seq haplotypes were phased using StrandPhaseR

(exported in VCF format) and combined with either PacBio or Illumina alignments (both stored in

BAM format)  or  10X Genomics  pre-phased  haplotype  segments  (stored  in  the  VCF produced  by

LongRanger)  to  phase  heterozygous  variants  obtained from Illumina  platinum genomes  (see Data

Access). We achieved this integrative phasing across platforms by solving the weighted minimum error

correction (wMEC) problem using WhatsHap19,20.

Mathematically,  aligned  reads  from  Illumina  or  PacBio  (or  pre-phased  10X  Genomics

haplotype segments) and sparse Strand-seq haplotypes are jointly represented in the form of a fragment

matrix, where each  row represent either one reads (in case of Illumina and PacBio), one pre-phased

haplotype segment (in case of 10X Genomics) or one sparse global haplotype (in case of StrandSeq

data) and columns represent the variant sites (Fig. 2). The matrix is filled with 0, 1 and ‘-’ entries,

where  0  and  1  indicate  that  the  corresponding  read  supports  the  reference  or  alternative  allele,

respectively,  and ‘-’ means the information is missing (e.g. because a read does not cover this variant
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site). WhatsHap selects a subset of rows and solves the wMEC problem optimally on these rows, as

described earlier20. The result is a maximum likelihood bipartition of rows, which corresponds to the

two sought haplotypes.

For all analyses, whatshap was provided with a reference genome (option --reference) to enable

re-alignment-based allele detection when constructing the fragment matrix from sequencing reads. This

has been shown to significantly improve performance for PacBio reads20.

4. Quality metrics of assembled haplotypes

To assess the quality of assembled haplotypes in this study, we calculated different metrics

described in the following.

Completeness: The process of haplotyping establishes phase relations between pairs of consecutive

heterozygous  variants.  We call  each  such  pair  a  'phase  connection'.  For  each  haplotype  segment

produced by a (combination of) technologies, we therefore count the number of phase connections,

which is equal to the number of heterozygous markers that make part of such a haplotype segment

minus one. To measure the completeness of a phasing, we sum the number of phase connections across

all haplotype segments and divide by the maximum possible number of phase connections, which is

equal to the number of heterozygous variants on a chromosome minus one.

Switch error rate:  The switch error rate is the fraction of phase connections for which the phasing

between the two involved heterozyous variants is wrong (Supplemental Fig. S3A).

Largest haplotype segment: In this study we are interested in haplotypes that span the whole length of

all  chromosomes.  To measure the completeness of phasing,  we report  the fraction of heterozygous

variants that are part of the largest haplotype segment.

Largest haplotype segment Hamming rate: To assess whether haplotypes are correct also over long

genomic distances, we only consider the largest haplotype segment and compute the Hamming distance

between  true  and predicted  haplotypes  (Supplemental  Fig.  S3B),  divided  by the  total  number  of

heterozygous variants in this haplotype segment. That is,the Hamming error rate is equal to the fraction

of wrongly phased heterozygous variants. Note that, only one switch error (e.g. in the middle of a

chromosome) can result  into a very high Hamming distance and hence the Hamming distance is a

much more stringent  quality measure.  While  the switch error rate  assesses whether haplotypes are

correct locally, i.e. between pairs of neighboring heterozygous variants, the Hamming distance assesses

whether haplotypes are correct globally.
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Data Access

Illumina reads40,41: Obtained from 1000 Genome Project Consortium 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/high_coverage_alignment/).

PacBio reads39: Obtained from Genome in a Bottle Consortium (GIAB) (ftp://ftp-

trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NA12878_PacBio_MtSinai/sorted_final_merged.bam).

10X Genomics haplotypes: pre-assembled 10X Genomics haplotypes were downloaded from 10X 

Genomics website: https://support.10Xgenomics.com/genomeexome/datasets/NA12878_WGS_210 

(we have filtered for only heterozygous and PASS filter SNVs)

Strand-seq libraries9: For this study have been downloaded from the European Nucleotide Archive 

(http://www.ebi.ac.uk/ena), accession number: PRJEB14185.

Reference haplotypes35: In this study we use as a reference trio based haplotypes of NA12878 obtained 

from Illumina platinum genomes (http://www.illumina.com/platinumgenomes/)

Code availability

The StrandPhaseR software is publicly available through GitHub.

(https://github.com/daewoooo/StrandPhaseR)

The WhatsHap software is publicly available through bitBucket.

(https://bitbucket.org/whatshap/whatshap)
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