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Abstract 16 

The genetics and evolution of sex chromosomes are largely distinct from autosomes 17 

and mitochondrial DNA (mtDNA). The Y chromosome offers unique genetic 18 

perspective on male-line inheritance. Here, we uncover novel evolutionary history of 19 

Sus scrofa based on 205 high-quality genomes from worldwide-distributed different 20 

wild boars and domestic pig breeds. We find that only two haplotypes exist in the 21 

distal and proximal blocks of at least 7.7 Mb on chromosome Y in pigs across 22 

European and Asian continents. And the times of most recent common ancestors 23 

(TMRCA) within both haplotypes, approximately 0.14 and 0.10 million years, are far 24 

smaller than their divergence time of around 1.07 million years. What’s more, the 25 

relationship between Sumatran and Eurasian continent Sus scrofa is much closer than 26 

that we knew before. And surprisingly, European pigs share the same haplotype with 27 

many Chinese pigs, which is not consistent with their deep splitting status on 28 

autosome and mtDNA. Further analyses show that the haplotype in Chinese pigs was 29 

likely introduced from European wild boars via ancient gene flow before pig 30 

domestication about 24k years ago. Low mutation rates and no recombination in the 31 

distal and proximal blocks on chromosome Y help us detect this male-driven ancient 32 

gene flow. Taken together, our results update the knowledge of pig demography and 33 

evolution, and might shed insight into the genetics and evolution studies on 34 

chromosome Y in other mammals.  35 
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Introduction 37 

The pig (Sus scrofa) provides human a main source of animal protein and serves as a 38 

biomedical model for human disease (Groenen et al. 2012). Since pigs are usually 39 

raised to yield meat and feed a majority of the world population, lots of studies have 40 

been conducted to reveal the genetic mechanisms for the complex economic traits in 41 

pigs, such as growth and fatness (Andersson et al. 1994), meat quality (Milan et al. 42 

2000; Ma et al. 2014) and reproduction (Uimari et al. 2011). On the other hand, pigs 43 

have experienced a long period of breeding in yards or fields adjunct to human 44 

agricultural societies; they evolved similar eating pattern and dietary structure to 45 

human beings (Fang et al. 2012). And pigs share high resemblances with humans in 46 

terms of anatomy and physiology. It is generally believed that pigs can be treated as 47 

the ideal animal model for studying human microbial infectious diseases (Meurens et 48 

al. 2012), or as the promising candidate for development of tissue engineering 49 

techniques and xenotransplantation (Eventov-Friedman et al. 2006; Ekser et al. 2012). 50 

Therefore pig, as an important domestic animal, is very close related to human. 51 

Elucidating pig evolutionary history increases our cognition to pigs, provides insights 52 

to the development of two foundational functions of pigs, and helps us better 53 

understand the demographic history of humans.  54 

Currently, pig demography and evolutionary history have been adequately revealed 55 

by lots of great works, which mainly included three aspects of zooarchaeological 56 

analyses, mtDNA or ancient mtDNA studies, and autosomal genomic researches. It is 57 

widely accepted that Sus scrofa emerged in Island South East Asia (ISEA) during the 58 

climatic fluctuations of the early Pliocene about 3 to 4 million years ago (Mya) and 59 

over the past one million year colonized almost the entire Eurasian continent (Frantz 60 

et al. 2013; Groenen 2016). On the northern parts of Sumatran Island, one of 61 
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Southeast Asian islands, a wild boar population is also found, which split from 62 

Eurasian wild boar around 1.6 to 2.4 Mya (Frantz et al. 2013; Groenen 2016). The 63 

European and Asian wild boar populations diverged around 1 Mya, and North and 64 

South Chinese Sus scrofa populations separated from each other during the Ionian 65 

stage approximately 0.6 Mya (Groenen et al. 2012; Frantz et al. 2013). Pigs were 66 

domesticated at least at two locations (Anatonia and China) ~10k years ago (Larson et 67 

al. 2005; Larson et al. 2007; Frantz et al. 2013), and gradually formed a variety of 68 

breeds in Europe and Asia (Kijas and Andersson 2001; Wang et al. 2011; Ottoni et al. 69 

2013). While during and after domestication of pigs, long-term gene flows or 70 

hybridization between wild boars and domestic pigs have been evidenced (Giuffra et 71 

al. 2000; Frantz et al. 2015). Nowadays Eurasia has the most rich pig resources, and 72 

about one third of worldwide pig breeds have adapted to divergent environment of 73 

China (Wang et al. 2011). Recently, a complex pattern of admixture and introgression 74 

between European and Asian domestic pigs, and African and American feral pigs has 75 

been well documented, but most of pigs colonizing the American, African and 76 

Australian continents originate from two highly distinct source populations of 77 

European and Asian local pigs (Ramirez et al. 2009; White 2011; Noce et al. 2015).  78 

These above studies about pig demography and evolution are mainly focused on 79 

zooarchaeological evidences and genetic variations on autosomes and mtDNA. Few 80 

works were conducted from the perspectives of whole sex chromosomes, especially 81 

for the Y-chromosome, possibly due to lacking of enough genomic information. On 82 

the X-chromosome, we have previously found an interesting event of possible ancient 83 

interspecies introgression by sequencing 69 Chinese local pigs (Ai et al. 2015), which 84 

made an important complement to pig evolutionary history. With the development of 85 

sequencing technology, 13 de novo assembled pig genomes (Fang et al. 2012; 86 
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Groenen et al. 2012; Li et al. 2013; Vamathevan et al. 2013; Li et al. 2016) were 87 

available for public access. But the version of Build 10.2 reference genome was still 88 

widely used due to comprehensive gene annotation and rich variants information. 89 

More recently, an improved assembly and gene annotation of the pig X Chromosome 90 

and a draft assembly of the pig Y Chromosome (VEGA62) were also generated by 91 

sequencing BAC and fosmid clones from Duroc animals and incorporating 92 

information from optical mapping and fiber-FISH (Skinner et al. 2016). These 93 

improved assemblies provide us make a profound survey to the evolutionary history 94 

of pigs from the perspectives of sex chromosomes, especially from the unique genetic 95 

perspective on male-line inheritance. 96 

In the current work, we obtained high-quality whole-genome sequence data of 202 97 

pigs from divergent populations and three outgroups including Phacochoerus 98 

africanus, Sus verrucosus and Sus celebensis. Based on variants of the Y-99 

chromosome, we presented a deep investigation for male-line evolutionary history in 100 

pigs from the global, with assist of autosomal and mtDNA information. 101 

 102 

 103 

 104 

 105 
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Results 109 

We have previously sequenced 69 Chinese typical indigenous pigs to reveal the 110 

genetic basis for porcine local climate adaptation and possible ancient interspecies 111 

introgression on the X-chromosome (Ai et al. 2015). Here we increase 104 pigs for 112 

next-generation sequencing, download public data of 39 pigs and 3 outgroups, and 113 

combine our previous samples; we make a high-quality dataset of 205 individuals 114 

(Fig. 1A, Supplemental Table S1). All data was mapped into the Sus scrofa 115 

reference genome (build 10.2) using BWA (Li and Durbin 2009). A total of 116 

48,745,075 SNPs were identified in the 205 genomes (Supplemental Table S2) using 117 

Platypus (Rimmer et al. 2014) under the criterion of minor allele frequencies (MAF) 118 

greater than 0.001 and call rates greater than 80%. All male data was remapped into 119 

the Y-chromosome (VEGA62) using Bowtie2 (Langmead and Salzberg 2012). On the 120 

new version of chromosome Y, a total of 49,103 SNPs were detected in the males 121 

using Platypus under the above criterion of MAF > 0.001 and call rates > 80%. These 122 

SNPs were used for subsequent demographic and evolutionary analyses. 123 

Demographic parameters inferred by autosomal data 124 

We first constructed a neighbor-joining (NJ) tree for the above 205 animals using 125 

47,009,938 SNPs on autosomes. All individuals from the same population gathered 126 

together, and European pigs defined a branch clearly separated from Chinese pigs in 127 

the NJ tree (Fig. 1B). Chinese wild boars clustered into one group, and Chinese 128 

domestic pigs were roughly categorized into four groups, corresponding to their 129 

geographical distributions: South China, West China, East China and North China 130 

(Fig. 1B). We then conducted principal components (Price et al. 2006), 131 

ADMIXTURE (Alexander et al. 2009) and Treemix (Pickrell and Pritchard 2012) 
132 

analyses to assess population structure of these animals. European pigs formed an 133 
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independent lineage that was genetically distinct from Chinese pigs in both the 134 

ADMIXTURE results (Fig. 1C) and the principal components plot (Fig. 1D). The 135 

Treemix analysis inferred the deep divergence not only between Sumatran pigs and 136 

Eurasian pigs, but also between European and Chinese pigs, and North Chinese pigs 137 

showed closer relationship with European pigs than other Chinese pigs (Fig. 1E). We 138 

further inferred the history of population size of Sumatran, Chinese and European 139 

pigs using the multiple sequentially Markovian coalescent method (Schiffels and 140 

Durbin 2014). Obviously, the demographic profile of Sumatran pigs largely differed 141 

from those of Chinese and European pigs. But from the ancient time of the Last 142 

Glacial Maximum to the recent 1000 years, the curve of Sumatran pigs almost 143 

overlapped with the one of European wild boars. Interestingly, the demographic 144 

profiles of Chinese pigs began to diverge from those of European pigs about 0.3 Mya 145 

(Fig. 1F), and had experienced less severe decline in population size during the Last 146 

Glacial Maximum, which is consistent with the previous reports (Groenen et al. 2012; 147 

Frantz et al. 2013). Notably, all the test pigs had experienced a bottleneck effect from 148 

~ 5000 to 2000 years ago, which was most severe than the past time. We 149 

hypothesized that the activities of human domestication or human hunting might 150 

contribute to the decease of pig or wild boar across the global. 151 

Altogether, these results based on the autosomal data support the previous 152 

conclusion that Chinese and European pigs represent two genetically divergent 153 

ancestral populations and Sumatran wild boars are largely different with Eurasian pigs 154 

(Larson et al. 2005; Groenen et al. 2012; Frantz et al. 2013). 155 

Odd haplotype patterns of both sex chromosomes in Eurasian pigs 156 

We then made a close examination on sex chromosomes using 1,730,532 and 49,103 157 

SNPs on chromosomes X and Y, respectively. As expected, the low-recombinant low-158 
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mutation-rate region of 52 Mb (from 49 to 101 Mb on Build 10.2 reference genome) 159 

on the X chromosome exhibits three different major haplotypes: one found in 160 

European pigs and North Chinese wild boars; one found in pigs from South and West 161 

China; and the recombinant haplotype between the two haplotypes was observed in 162 

North, East and West Chinese domestic pigs (Supplemental Fig. S1). This new view 163 

of the odd haplotype pattern on the X-chromosome is well accordant with our 164 

previous finding (Ai et al. 2015). Unexpectedly, the distal and proximal region on the 165 

Y chromosome of at least 7.7 Mb (hereafter referred to as the SSCY region) displayed 166 

two different haplotypes in all tested Euroasian pigs (European pigs, n=30; Chinese 167 

pigs, n=71; Fig. 2A). The SSCY region was defined as the region from 8.9 to 10.6 Mb 168 

and from 39.5 to 43.5 Mb on the VEGA62 version of Y chromosome, meanwhile plus 169 

a 2-Mb unmapped contig of Y chromosome. The two haplotypes exhibit a deep 170 

divergence as reflected by pairwise nucleotide diversity (Fig. 2B) and the phylogenic 171 

tree (Fig. 2C). 172 

However to our surprise, the distribution pattern of these two haplotypes on the Y 173 

chromosome in Eurasian pigs was different from the haplotype pattern on the X 174 

chromosome. One haplotype was exclusively found in pigs across China and hence 175 

denoted as Asian haplotype; while the other one was found in European pigs and 176 

some Chinese pigs from North, South and West China, therefore designated as 177 

Eurasian haplotype (Fig. 2A). We further investigated the geographical distribution of 178 

the two haplotypes in a larger panel of 426 male pigs from 82 diverse populations 179 

across Eurasia and America using six tagging SNPs representing the SSCY region 180 

(Fig. 2D and Supplemental Table S3). Again, the Asian haplotype was observed 181 

only in East Asian pigs including Chinese pigs, Korean wild boars and Russian 182 

Primorsky wild boars; and the Eurasian haplotype was found in European and 183 
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Chinese pigs, as well as American pigs, which were originated from European pigs 184 

(Fig. 2D).  185 

Demography and Evolutionary history inferred by the Y-chromosome 186 

We estimated the divergence time of the haplotypes on the SSCY region using a strict 187 

molecular clock implemented in BEAST (Drummond et al. 2012) under the GTR+Γ+I 188 

model. In the Bayesian tree, there is a clear split between European pigs with the 189 

Eurasian haplotype and Chinese pigs with the Asian haplotype (Fig. 2C). Their 190 

divergence time was estimated to be 1.07 million years (Table 1). However, the time 191 

of most recent common ancestors (TMRCA) of European and Chinese pigs with the 192 

Eurasian haplotype and of Chinese pigs with Asian haplotype were estimated to be 193 

only about 0.10 and 0.14 million years, which are unusually smaller than their 194 

splitting time (Table 1). And TMRCA of Chinese pigs with the Eurasian haplotype was 195 

inferred to be 24k years with 95% confidence intervals from 16k to 30k years (Table 196 

1). Also surprisedly, Sumatran wild boar showed much closer relationship to Chinese 197 

pigs with Asian haplotype with the splitting time of 0.90 million years (Table 1), 198 

which is much smaller than the time of 2.1 million years as previously reported using 199 

autosomal data (Frantz et al. 2013). 200 

To learn more about the evolutionary history of chromosome Y, we further 201 

calculated nucleotide variability at the genomic level and within the SSCY region in 202 

these sequenced male animals. The SSCY region had a significantly lower level of 203 

nucleotide diversity in comparison with autosomes (Fig. 3), which is not likely caused 204 

by sex-biased genetic drift (Supplemental Table S4 and S5) and could be due to the 205 

absence of recombination and reduced mutation rates within this region. Moreover, 206 

nucleotide variability parameters including segregation sites, theta and Pi values were 207 

all lower in European pigs with the Eurasian haplotype than Chinese pigs with the 208 
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Asian haplotype (Fig. 3, Supplemental Table S4 and S5). This could be explained 209 

by the fact that European wild boars had suffered a more dramatically decrease of 210 

population size than Asian wild boars during the Last Glacial Maximum period (Fig. 211 

1F). Of note, Chinese pigs having the Eurasian haplotype had ~ six-fold lower values 212 

of nucleotide variability than European pigs with this haplotype (Supplemental 213 

Table S4 and S5), and selection signal was not observed in these Chinese pigs as 214 

indicated by Tajima’s D values (Fig. 3, Supplemental Table S4 and S5). A 215 

reasonable explanation for this observation is that the Eurasian haplotype in Chinese 216 

pigs is a European-originated genetic component and has been introgressed into Asian 217 

wild boars via an ancient gene flow before domestication approximately 24k years 218 

ago. This genetic component contributes to the current gene pool of a proportion of 219 

Chinese domestic pigs, possibly via a complicated human-mediated dispersal after pig 220 

domestication. Similar to our previous finding of the interspecies introgression on 221 

chromosome X (Ai et al. 2015), our ability to detect this ancient male-driven gene 222 

flow on chromosome Y is facilitated by the fact that the introgression fragment falls 223 

in a region without recombination and low mutation rates and thus can be maintained 224 

for a prolonged period. If the introgressed segment had not fallen in such a region, we 225 

would likely never have detected the unusual haplotype pattern as recombination and 226 

normal mutation rates may quickly degenerate the integrity of introgression fragments. 227 

Of note, this evolutionary pattern has not been observed on the Y-chromosome of 228 

other mammals like human (Poznik et al. 2016), dog (Shannon et al. 2015) and horse 229 

(Wallner et al. 2013). 230 

  231 
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Discussion 232 

Chromosome Y clarifies the evolutionary history of Sus scrofa 233 

In the present study, we show a previous unknown evolutionary history of the porcine 234 

Y chromosome. In our findings, three key points surprise us. First, only two huge 235 

different haplotypes were observed in the distal and proximal blocks of Chromosome 236 

Y in a diverse panel of Eurasian pigs (Fig. 2A). The genomic and genetic analyses 237 

reveal that these regions have two special evolutionary features: no recombination and 238 

lower mutation rates, which have not been found in sex chromosomes of other 239 

common mammals but only in pigs. Previously we found large region on 240 

Chromosome X (48 Mb on the Wuzhishan reference X chromosome; 52 Mb on the 241 

Build 10.2 version of Duroc reference X chromosome) harbors the characteristics of 242 

low recombination and low mutation rates. We speculated that the enrichment of a 6-243 

kb poly(T) core sequence in the region might contribute to low recombination (Ai et 244 

al. 2015). But what exactly contribute to low mutation rates on these regions with 245 

large size? Still we don’t know. This unknown biological mechanism, depressing the 246 

nucleotide mutation on these regions, merits for further exploration. Second, from the 247 

perspective of chromosome Y, we found that the relationship between Sumatran wild 248 

boar and pigs from Eurasian continents is much closer than that inferred by autosomes. 249 

Previously, Frantz et al. (2013) have observed the discordant phenomenon of 250 

conflicting phylogenetic signal between mtDNA and autosomal chromosomes in 251 

Sumatran wild boar. They explain this phenomenon by sunda-shelf admixture. Our 252 

results of Chromosome Y confirm the hypothesis and make the whole event of inter-253 

specific gene flow more reasonable and much clearer. Third, many Chinese pigs share 254 

the same haplotype of chromosome Y with European pigs, which is not consistent 255 

with their deep splitting status on autosome and mtDNA. It is well recognized that 256 
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European and Asian pigs are two geographically and genetically distinct identities 257 

(Groenen et al. 2012; Frantz et al. 2013). However, Asian germplasm had been 258 

deliberately imported to Europe to improve commercial trait in European breeds 259 

during the Industrial Revolution (Bosse et al. 2014), resulting in the fact that ~30% of 260 

the genomes of European commercial pigs are derived from Chinese breeds (Groenen 261 

et al. 2012). Here we show another interesting feature of Sus scrofa demography, i.e. 262 

ancient hybridization between European and Asian wild boars provided an importance 263 

source of male genetic components for Asian (Chinese) domestic pigs. These results 264 

collectively depict a complex demographic pattern of Sus scrofa, significantly 265 

advance our knowledge of pig evolutionary history. 266 

Male-driven gene flow on Chromosome Y is not likely a recent but an ancient 267 

event 268 

Given the geographic distance between Europe and Asia, introgression and 269 

hybridization between European and Asian domestic pigs were certainly extremely 270 

rare before Ferdinand Magellan circumnavigated the globe. More recently, two waves 271 

of gene flow between European and Asian domestic pigs have been well documented. 272 

One occurred at the onset of Industrial Revolution and early nineteenth centuries. 273 

During this period, Asian pigs mainly from South China were introduced into British 274 

to improve local breeds, resulting in mosaic modern genomes of British-derived 275 

commercial breeds (such as Large White, Landrace and Duroc) that possess ~30% of 276 

Asian haplotypes (White 2011; Groenen et al. 2012). Interestingly, the gene flow 277 

orientation shifted afterwards. Since the early twentieth centuries, European improved 278 

breeds having desirable performance of lean pork production were imported into 279 

China via the Russian, British and German colonies. These breeds including Large 280 

White, Berkshire, Duroc and Landrace were introgressed into some Chinese 281 
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indigenous breeds like Kele and Licha, leaving hybridization signals in the genomes 282 

of these breeds (Ai et al. 2014). This raises one possibility that the gene flow observed 283 

on chromosome Y could take place after the twentieth centuries via the introgression 284 

of European germplasm into Chinese local pigs. This possibility seems to be 285 

supported by the observation of very few segregating sites and small Theta and Pi 286 

values in Chinese pigs with Eurasian Y haplotype (Supplemental Table S4) and of a 287 

short branch of these pigs in the Bayesian tree (Fig. 2C). However, we can definitely 288 

exclude this possibility based on the following four arguments, therefore supporting 289 

the conclusion that the male-driven gene flow on chromosome Y is an ancient event 290 

before domestication around 24k years ago. 291 

First, nearly all Chinese pig samples used in this study were collected from nucleus 292 

herds raised in national conservation farms. These herds are geographically isolated 293 

populations. Except for North Chinese domestic pigs, there is a lack of any historical 294 

records describing the importation of European breeds into these populations. Indeed, 295 

we did not find European ancient lineages in autosomes of most of Chinese domestic 296 

pigs in the ADMIXTURE analysis (Fig. 1C), which could be detected if there was a 297 

recent gene flow between these European and Chinese pigs. 298 

Second, we did not observe any evidence of admixture between European and 299 

Chinese domestic pigs on chromosome X. All Chinese pigs with the Eurasian SSCY 300 

haplotype do not have the European haplotype of 52 Mb on chromosome X 301 

(Supplemental Fig. S1). If European germplasm were recently introgressed into 302 

Chinese domestic pigs during the last century, it is impossible to retain only Eurasian 303 

SSCY segments while completely loss the European chromosome X haplotype in all 304 

introgressed individuals via genetic drift or artificial selection within a short time 305 

interval of ~100 years. Unlike European commercial breeds, no intensive selection for 306 
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specific traits has been documented for Chinese indigenous breeds during the past 307 

century. 308 

Third, our mtDNA data show that 20 European pigs (males=9, females=11) 309 

including White Duroc, Large White, Landrace and Pietrain have mtDNA of Chinese 310 

origin (Supplemental Table S2). This is most likely attributable to the recent 311 

importation of Chinese breeds to Europe during the 1900s. However, all 134 Chinese 312 

pigs (males=71, females=63) lack Europe-originated mtDNA (Supplemental Table 313 

S2). This also conflicts with the hypothesis of a recent gene flow between European 314 

and Chinese domestic pigs. 315 

Forth, we calculated a negative and positive value of Tajima’s D for the SSCY 316 

haplotype in European pigs (-1.631) and Chinese pigs (2.350) with the Eurasian 317 

haplotype, respectively (Fig. 3). For a recently introgressed haplotype, a surplus of 318 

rare alleles appearing after the introgression usually creates smaller (i.e. more 319 

negative) value of Tajima’s D. Therefore, it is theoretically expect to obtain a more 320 

negative value of D in presumably introgressed Chinese pigs, i.e. those with the 321 

Eurasian SSCY haplotype. However, the prediction is contradictory to our 322 

observation, thus excluding the possibility of a recent gene flow on SSCY. 323 

Together, we conclude that the male-driven gene flow on SSCY is an ancient event, 324 

in which hybridization between European and Asian wild boars occurred before 325 

domestication (~24k years ago) and provided an important source of male genetic 326 

components for Asian (Chinese) domestic pigs. The very few segregating sites and 327 

small values of Theta and Pi in Chinese pigs with the Eurasian SSCY haplotype are 328 

most likely due to the unusually evolutionary feature of this region: low mutation 329 

rates and no recombination. 330 

  331 
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Methods 332 

Samples and genome sequencing 333 

We sequenced the genomes of 163 Chinese and European pigs, including 24 South 334 

Chinese domestic pigs, 33 North Chinese domestic pigs, 36 West Chinese domestic 335 

pigs, 33 East Chinese domestic pigs, 6 South Chinese wild boars and 31 European 336 

domestic pigs. Of these animals, Chinese pigs were from 16 geographically divergent 337 

breeds, European pigs were from 4 commercial breeds (Supplemental Table S1), and 338 

59 Chinese pigs have been sequenced in our previous study (Ai et al. 2015).  339 

The genome sequencing was conducted as previously described (Ai et al. 2015). 340 

Briefly, genomic DNA was extracted from ear tissues using a standard phenol-341 

chloroform method, and then sheared into fragments of 200-800 bp according to the 342 

Illumina DNA sample preparation protocol. These treated fragments were end-343 

repaired, A-tailed, ligated to paired-end adaptors and PCR amplified with 500 bp (or 344 

350 bp) inserts for library construction. Sequencing was performed to generate 100 bp 345 

(or 150 bp) paired-end reads on a HiSeq 2000 (or 2500) platform (Illumina) according 346 

to the manufacture’s standard protocols. 347 

SNP calling 348 

We downloaded the genome sequence data of 39 pigs, one African warthog 349 

(Phacochoerus africanus), one Java warty pig (Sus verrucosus) and one Celebes 350 

warty pig (Sus celebensis) from the NCBI SRA database 351 

(https://www.ncbi.nlm.nih.gov/sra). These data were integrated into the sequence data 352 

obtained in this study, resulting in a 205-sample high-quality data set (Supplemental 353 

Table S1 and Supplemental Table S2). Clean reads from all individuals were 354 

aligned to the Sus scrofa reference genome (build 10.2) using BWA (Li and Durbin 355 

2009). The mapped reads were subsequently processed by sorting, indel realignment, 356 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/126060doi: bioRxiv preprint 

https://doi.org/10.1101/126060


 

16 

 

duplicate marking, and low quality filtering using Picard (http://picard.sourceforge.net) 357 

and GATK (McKenna et al. 2010). Sequencing coverage and depth of each sample 358 

were calculated using genomecov implemented in Bedtools (Quinlan and Hall 2010). 359 

A two-round procedure of SNP calling was performed using Platypus (Rimmer et al. 360 

2014). In the first round, SNPs were individually called with default parameters, and 361 

high-quality called SNPs were merged together. These merged SNPs were treated as 362 

known variants to guide the second-round genotyping for all the samples via Platypus 363 

with parameters of “--source=KnownVariants.vcf.gz --minPosterior=0 --364 

getVariantsFromBAMs=0”. All SNPs except those on chromosome Y were filtered 365 

with the criterion of MAF > 0.001 and SNP call rates > 80%. For SNPs on the Y-366 

chromosome, only male individuals were explored to call SNPs under the criterion of 367 

MAF > 0.001 and call rates > 80%. 368 

Population genetic analysis using autosome data 369 

A total of 47,009,938 qualified SNPs on autosomes were used to calculate genetic 370 

distance among all individuals using Plink as previously described (Ai et al. 2013). A 371 

neighbor-joining tree was then constructed for all individuals using Neighbor in 372 

PHYLIP v3.69 (Felsenstein 2005) and visualized by FigTree software 373 

(http://beast.bio.ed.ac.uk/FigTree). Population genetic structure was inferred using the 374 

Maximum Likelihood approach implemented in ADMIXTURE v1.20 (Alexander et 375 

al. 2009). The ADMIXTURE program was run in an unsupervised manner with a 376 

variable number of clusters (K = 2 to 5). Principal component (PC) analysis was 377 

conducted using Smartpca in EIGENSOFT v6.0 (Price et al. 2006). To avoid artifacts 378 

caused by linkage disequilibrium (LD), we excluded SNPs with r2 ≥ 0.2 in the PC 379 

analysis.  380 
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TreeMix (Pickrell and Pritchard 2012) was employed to infer the patterns of 381 

historical splits and mixtures among Eurasian pig populations in the context of Suidae, 382 

with no migration events and 5000 SNPs grouping together in a LD block. We 383 

inferred demographic history of Eurasian pigs using the Multiple Sequentially 384 

Markovian Coalescent (MSMC) method (Schiffels and Durbin 2014). To ensure the 385 

quality of consensus sequence, we only used representative samples (n=40) of high 386 

sequencing depth for each geographic population (n=20) with parameters set as 387 

follow: “-p 2*2+50*1+1*4+1*6 --fixedRecombination”. The generation time (g) was 388 

set as 5 years, and a standard mutation rate (μ) of 2.5×10-8 was used as previously 389 

described (Groenen et al. 2012).   390 

Evolutionary history analysis using chromosome Y data 391 

The bowtie2 software (Langmead and Salzberg 2012) was employed to align filtered 392 

clean reads from all male individuals to the chromosome Y reference sequence 393 

(VEGA62 version) (Skinner et al. 2016) with the parameter of “--no-mixed --no-394 

discordant --no-unal”. Then the two-round SNP calling was performed using Platypus 395 

(Rimmer et al. 2014) same as for autosomal SNPs. A total of 49,103 SNPs on 396 

chromosome Y passed the criterion of MAF > 0.001 and call rates > 80%. Shapeit2 397 

(Delaneau et al. 2013) was used to phase these SNPs with the parameters of “-X --398 

burn 14 --prune 16 --main 40”. Phased alleles on the distal and proximal blocks were 399 

linked together to form sequences, which were then used to reconstruct a phylogenetic 400 

tree using BEAST (Tamura et al. 2013) under the GTR+Γ+I model of evolution. 401 

Splitting times and 95% highest posterior density intervals in the tree were estimated 402 

using a Bayesian Markov chain Monte Carlo method implemented in BEAST 403 

(Tamura et al. 2013) with 1,000,000 MCMC samples. The node age of Sus verucosus 404 

was set to be 4.2 million years (Frantz et al. 2013) as the calibration constraint.  405 
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    To investigate global distribution of the haplotypes within the distal and proximal 406 

region on chromosome Y, we employed six tagging SNPs representing this region 407 

from porcine 60K chip in 426 Eurasian pigs from 82 geographically divergent 408 

populations. Pairwise nucleotide differences per site within (dx) and between (dxy) 409 

populations were calculated as previously described (Ai et al. 2015). Segregating sites, 410 

Theta, Pi and Tajima’s D values were calculated for autosomes and the SSCY region 411 

in 50 kb windows at a step size of 25 kb using c++ library of libsequence (Thornton 412 

2003). A coalescence simulation for the SSCY region was performed in Chinese pigs 413 

with the Asian haplotype, Chinese pigs with the Eurasian haplotype and European 414 

pigs with the Eurasian haplotype using the ms software (Hudson 2002) under 415 

demographic model inferred from the MSMC (Schiffels and Durbin 2014) results 416 

without recombination.  417 

Data access 418 

The raw sequence reads from this study have been submitted to the NCBI Sequence 419 

Read Archive (SRA; http://www.ncbi.nlm.nih.gov/sra) under accession number 420 

SUB2302970.  421 
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 436 

Figure legends 437 

Figure 1. Demographic history of Eurasian pigs inferred using autosomal SNP 438 

data.  439 

(A) Geographical locations of Eurasian pigs analyzed in this study. EP, European pigs 440 

including Creole, Duroc, Iberian, Large White, Mangalica, Landrace, Pietrain and 441 

wild boars; ECDP, East Chinese domestic pigs including Erhualian and Jinhua; 442 

WCDP, West Chinese domestic pigs including Baoshan, Neijiang and Tibetan pigs in 443 

Yunnan and Sichuan provinces; SCDP, South Chinese domestic pigs including 444 

Bamaxiang, Luchuan and Wuzhishan; NCDP, North Chinese domestic pigs including 445 

Bamei, Hetao, Laiwu and Min; CWB, Chinese wild boars. (B) Neighbor joining 446 

phylogenic tree of all sequenced pigs. SWB, Sumatran wild boars. S. celebensis 447 

(Celebes wild boar), S. verrucosus (Java warty pig) and P. africanus (African 448 

warthlog) were used as outgroups. (C) ADMIXTURE analysis with K = 2-5. Colors in 449 

each column represent ancestry proportion. (D) Principal component analysis plots 450 

based on the first two principal components. (E) Relationships among Eurasian pigs 451 

inferred using Treemix. (F) Effective population sizes of Eurasian pigs inferred using 452 

MSMC. The period of the Last Glacial Maximum (LGM; ~20,000 years ago) is 453 

shaded in grey. 454 
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Figure 2. Demographic history of Eurasian pigs based on the data of 455 

chromosome Y.  456 

(A) The pattern of haplotype on chromosome Y sharing in Eurasian pigs. The 457 

haplotypes were reconstructed for each individual using all qualified SNPs on the Y 458 

chromosome. Alleles that are identical or different from the ones on the VEGA62 459 

reference genome are indicated by orange or blue, respectively. (B) The plots of dx 460 

and dxy (the number of pairwise differences per site) statistics in a window size of 461 

200 kb on chromosome Y. These statistics were calculated for pigs with the Eurasian 462 

or Asian haplotypes. U_Y indicates the unmapped contig on chromosome Y. (C) 463 

Bayesian trees of Eurasian pigs constructed using SNP data of the SSCY region and 464 

mtDNA, and neighbor-joining tree of these pigs based on autosomal data. Inferred 465 

divergence time is shown in Y-axis of the Bayesian trees. The abbreviations of EP, 466 

ECDP, NCDP, WCDP, CWB, SCDP and SWB are as in Figure 1. S. verrucosus 467 

(Java warty pig) was set as outgroup. (D) The geographical distribution of the 468 

Eurasian (red) and Asian (blue) haplotypes within the proximal and distal region on 469 

the Y chromosome (the SSCY region) in Eurasian pigs. The two haplotypes were 470 

phased using six tagging SNPs on the porcine 60K Chip (Illumina) within this region. 471 

ISEA haplotype (black), the haplotype found in a Sumatran wild boar. 472 

Figure 3. Comparison of nucleotide variability within the proximal and distal 473 

region on the Y chromosome and on autosomes.  474 

Statistics of segregation sites, theta, Pi and Tajima’s D values were calculated in a 475 

window size of 50 kb for European pigs with the Eurasian haplotype, Chinese pigs 476 

with the Eurasian haplotype and Chinese pigs with the Asian haplotype on the Y 477 

chromosome, respectively. 478 

 479 
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Table 480 

Table 1. Time estimates for the TMRCA of phylogenetic nodes of particular 481 

interest on the SSCY region 482 

Node 
Time estimate of 

TMRCA (Million years) 

95% highest posterior 

density (HPD) interval 

All the Sus scrofa 1.070 0.945-1.156 

Sumatran wild boar and Chinese pigs 

with Asian haplotype 

0.903 0.778-0.977 

All the pigs with Asian haplotype 0.136 0.111-0.152 

All the pigs with Eurasian haplotype 0.102 0.087-0.125 

Chinese pigs with Eurasian haplotype 0.024 0.016-0.030 

 483 

Supplemental materials 484 

Supplemental Table S1.  485 

Samples used in this study. See excel file “Supplemental Table S1.xlsx”. 486 

Supplemental Table S2.  487 

Sequencing statistics of 205 samples used in this study. See excel file “Supplemental 488 

Table S2.xlsx”. 489 

Supplemental Table S3. 490 

The geographical distribution of the two haplotypes in a large panel of 426 male pigs 491 

from the global. See excel file “Supplemental Table S3.xlsx”. 492 

Supplemental Table S4.  493 

Z-test showing that gene drift is not likely a cause of the two haplotypes on 494 

chromosome Y in Eurasian pigs. See excel file “Supplemental Table S4.xlsx”. 495 

Supplemental Table S5.  496 
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Coalescent simulations showing that gene drift is not likely a cause of the two 497 

haplotypes on chromosome Y in Eurasian pigs. See excel file “Supplemental Table 498 

S5.xlsx”.  499 

Supplemental Fig. S1  500 

The pattern of haplotype on the X chromosome sharing in Eurasian pigs. The 501 

haplotypes were reconstructed for each individual using all qualified SNPs on this 502 

chromosome. Alleles that are identical or different from the ones on the Duroc 503 

reference genome are indicated by orange or blue, respectively. The abbreviations of 504 

EP, NCDP, ECDP, WCDP, SCDP and CWB are as in Figure 1. 505 

 506 
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Fig. 1 654 

 655 

 656 

  657 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/126060doi: bioRxiv preprint 

https://doi.org/10.1101/126060


 

30 
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Fig. 3 663 
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Supplemental Fig. S1 667 
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